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HOMOLOGICAL DIMENSIONS AND ABELIAN
MODEL STRUCTURES ON CHAIN COMPLEXES

MARCO A. PÉREZ

ABSTRACT. We construct Abelian model structures on
the category of chain complexes over a ring R, from the
notion of homological dimensions of modules. Given an
integer, n > 0, we prove that the left modules over a
ringoid R with projective dimension at most n form the
left half of a complete cotorsion pair. Using this result,
we prove that there is a unique Abelian model structure
on the category of chain complexes over R, where the
exact complexes are the trivial objects and the complexes
with projective dimension at most n form the class of
trivially cofibrant objects. In [4], the authors construct
an Abelian model structure on chain complexes, where the
trivial objects are the exact complexes, and the class of
cofibrant objects is given by the complexes whose terms
are all projective. We extend this result by finding a new
Abelian model structure with the same trivial objects where
the cofibrant objects are given by the class of complexes
whose terms are modules with projective dimension at most
n. We also prove similar results concerning flat dimension.

1. Introduction. In 2002, Hovey established in [14, Theorem 2.2]
a correspondence for constructing an Abelian model structure from two
compatible and complete cotorsion pairs (see, [14, Theorem 2.2]). We
apply this correspondence in order to construct new model structures
on the category of chain complexes, from certain special classes of chain
complexes involving homological dimensions.

In his book, [15, Section 2.3], Hovey constructs a model category
structure on the category Ch (RMod) of chain complexes of left R-
modules, where the weak equivalences are the quasi-isomorphisms and
the trivial cofibrations are the monomorphisms whose cokernels are pro-
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jective. We shall refer to this structure as the projective model structure.
We extend this model structure to any projective dimension. Specifi-
cally, we shall find a model structure with the same weak equivalences
where the trivial cofibrations are the monomorphisms whose cokernels
are complexes with projective dimension ≤ n, with n a positive integer.
At the beginning of Section 3 we give a description of these complexes
as those exact complexes whose cycles have projective dimension ≤ n.

The method we use for constructing the model structure mentioned
above involves the study in Section 3 of the category of left modules over
a ringoid R, denoted Mod (R). If we consider the class Pn(Mod (R))
of n-projective modules over R, i.e., modules with projective dimension
≤ n, then we show that every module in Pn(Mod (R)) is filtered by the
class (Pn(Mod (R)))≤κ of n-projective modules with cardinality ≤ κ,
where κ is a fixed infinite regular cardinal satisfying a certain condition
with respect to R. As a consequence, one has that Pn(Mod (R)) is
the left half of a complete cotorsion pair. These facts in Mod (R) are
generalizations of [2, Proposition 4.1, Theorem 4.2]. Since the cate-
gory Ch (RMod) of chain complexes of left R-modules is a particular
example of Mod (R), we have that the class of n-projective complexes
is the left half of a complete cotorsion pair, which turns out to be com-
patible with another complete cotorsion pair whose left half is given
by the class of differential graded n-projective complexes. In order to
prove this last assertion we present in Proposition 4.3 a rather simple
but interesting method that relates the completeness of two given com-
patible cotorsion pairs. Roughly speaking, we shall see that, in order
to show the completeness of two compatible cotorsion pairs, it suffices
to prove that either is complete.

As a consequence of Hovey’s correspondence, we shall get the
Abelian model structure described in Theorem 4.5 (the n-projective
model structure). One interesting application of this model structure
is given at the end of Section 4 and consists of finding another way to
compute extension groups ExtiR(M,N) for every pair of left R-modules,
M and N . Recall that one normally computes ExtiR(M,N) by using ei-
ther a left resolution of M by projective modules or a right resolution of
N by injective modules. Somewhat surprisingly, there are many other
ways to do it. This was pioneered by Gillespie in [9, Section 5] who
proved that, in order to compute ExtiR(M,N), one can use a left reso-
lution of M by flat modules and simultaneously a right resolution of N
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by cotorsion modules. We prove that one can also use a left resolution
of M by modules of projective dimension at most n. The disadvantage
of doing so is that we use right resolutions of N by a class of modules
which is hard to describe. The same results apply to the n-flat and n-
injective model structures (see Theorems 4.9 and 6.1), although in the
n-injective one we use right resolutions of N by modules of injective
dimension ≤ n.

In Section 5, we construct another model structure on Ch (RMod)
from the class of n-projective modules. In [4], Bravo, et al., construct
an Abelian model structure on Ch (RMod), where the trivial objects
are the exact complexes and the class of cofibrant objects is given by
the complexes with projective terms. Among the arguments given by
the authors, there is a famous theorem by Kaplansky on projective
modules, which states that every projective module is a direct sum of
countably generated projective modules. We present an extension of
Kaplansky’s theorem to any projective dimension, in order to prove
that every degreewise (dw) n-projective complex (we mean a complex
whose terms have projective dimension ≤ n) is filtered by the class
of chain complexes X such that each module Xk has a projective
resolution of length n, where each projective term is written as a direct
sum of countably generated projective modules over a countable set.
We introduce the notion of nice sub-resolutions of n-projective modules
to show that every exact dw-n-projective complex is filtered by the
class of exact dw-n-projective complexes with cardinality ≤ κ, with
κ > Card (R). This gives rise to an extension of some of the techniques
developed in Bravo, et al. [4], to the class of n-projective modules, from
which we obtain a new Abelian model structure on Ch (RMod) where
the quasi-isomorphisms are weak equivalences and the monomorphisms
with (exact) dw-n-projective cokernels are (trivial) cofibrations.

Section 6 is devoted to obtaining two new model category structures
on Ch (RMod) from the class of modules with flat dimension ≤ n
(see Theorems 6.1 and 6.2). This is motivated by early studies in
the case n = 0 developed by Aldrich, et al., in [1, Propositions 3.1,
4.1], where they proved that every flat complex is filtered by the class
of flat complexes with cardinality ≤ κ. They also proved a similar
result for the class of complexes which have all their terms flat. We
show how their techniques can be adapted to the case n > 0 to prove
analogous results for the class of n-flat complexes, i.e., complexes with
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flat dimension ≤ n, and degreewise n-flat complexes, i.e., complexes
which have all their terms with flat dimension ≤ n. Later, we deduce
that every chain complex can be covered by a complex with flat
dimension ≤ n. This latter result represents an extension of Enochs’
Flat cover conjecture (which states that every module has a flat cover)
to the category of chain complexes and for any flat dimension.

The new model structures obtained in this paper are not monoidal
in general. However, at the end, we present an interesting application
of a Künneth theorem to show that the degreewise projective and
degreewise flat model structures on Ch (RMod) are monoidal in the
case where R is a commutative ring with weak dimension at most 1.

2. Preliminaries. Given an Abelian category C, two classes A and
B of objects in C form a cotorsion pair (A,B) if they are orthogonal
to each other with respect to the first extension bi-functor Ext1C(−,−),
i.e., the following equalities are satisfied:

• A = ⊥B := {X ∈ Ob (C) /Ext1C(X,B) = 0 for every B ∈ B}.

• B = A⊥ := {X ∈ Ob (C) /Ext1C(A,X) = 0 for every A ∈ A}.

We are interested in a special class of cotorsion pairs (A,B) from which
it is possible to obtain pre-covers and pre-envelopes by the left and right
halves of (A,B), respectively. A cotorsion pair (A,B) in C is complete
if, for every object X of C, there exist two short exact sequences

0 −→ B −→ A −→ X −→ 0

and

0 −→ X −→ B′ −→ A′ −→ 0

where A,A′ ∈ A and B,B′ ∈ B. The map A → X is called a special
A-pre-cover and X → B′ a special B-pre-envelope.

Two cotorsion pairs (A,B′) and (A′,B) are compatible if there exists
a class of objects W in C such that A′ = A ∩W and B′ = B ∩W.

A class of objects A in C is said to be thick if it is closed under
retracts, and if for every exact sequence,

0 −→ A′ −→ A −→ A′′ −→ 0,



HOMOLOGICAL DIMENSIONS 955

two out of three of the terms A′, A and A′′ are in A, then so is the
third.

Theorem 2.1 (Hovey’s correspondence, [14, Theorem 2.2]). Let C be
a bi-complete Abelian category. If (A,B ∩ W) and (A ∩ W,B) are
complete cotorsion pairs in C and the class W is thick, then there
exists a unique Abelian model structure on C such that A is the class
of cofibrant objects. B is the class of fibrant objects and W is the class
of trivial objects.

Conversely, if C is equipped with an Abelian model structure and A,
B and W denote the classes of cofibrant, fibrant and trivial objects,
respectively, then (A ∩ W,B) and (A,B ∩ W) are complete cotorsion
pairs.

Roughly speaking, a model structure on a bi-complete category C is
given by three classes of morphisms of C, called cofibrations, fibrations
and weak equivalences, such that it is possible to use homotopy theory
in C. A trivial or acyclic cofibration is a map which is a cofibration and
a weak equivalence. Trivial fibrations are defined similarly. We do not
recall the axioms defining a model structure, but a good introduction
to this notion along with very detailed examples is in [15].

If we are given a model structure on an Abelian category, C, an
object X of C is said to be cofibrant (respectively, fibrant) if the map
0 → X is a cofibration (respectively, if X → 0 is a fibration). If 0 → X
is a weak equivalence, then X is said to be trivial or acyclic.

A model structure on a bi-complete Abelian category C is said to be
Abelian if the following two conditions are satisfied:

• A map f is a (trivial) cofibration if, and only if, f is a mono-
morphism and CoKer (f) is cofibrant (and trivial).

• A map g is a (trivial) fibration if, and only if, g is an epimor-
phism and Ker (g) is fibrant (and trivial).

Eklof and Trlifaj’s theorem is probably one of the most effective
methods for obtaining complete cotorsion pairs. It states that, if S is
a set of objects in a Grothendieck category, then the cotorsion pair
(⊥(S⊥),S⊥) is complete (this theorem was originally proven in [6,
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Theorem 10] for the category of modules, but it is also valid in every
Grothendieck category, as specified in [11, Remark 3.2.2]).

If (A,B) is a cotorsion pair such that B = S⊥ for some set S, then
(A,B) is said to be cogenerated by S. In this work, every time we want
to show that a cotorsion pair (A,B) is complete, we shall find a set S
such that every object in A is S-filtered. Under these conditions, the
pair (A,B) is cogenerated by S.

A transfinite composition in a cocomplete Abelian category C is a
morphism of the form f : F0 → CoLimα<λ(Fα), where F : [λ] → C is a
colimit preserving functor and λ is an ordinal. The morphism f is also
known as the transfinite composition of the morphisms Fα → Fα+1 for
every α + 1 < λ. If, in addition, all the morphisms Fα → Fα+1 are

monic with cokernel in some class S, F0
f→ CoLimα<λ(Fα) is called

a transfinite extension of F0 by S. If F0 ∈ S as well, the colimit
CoLimα<λ(Fα) is called a transfinite extension of S.

If X is an object of C such that X = CoLimα<λ(Fα) is a transfinite
extension of S, X is said to be S-filtered and the family (Fα : α < λ)
an S-filtration.

Definition 2.2. Let A be a class of objects in an Abelian category C.
We shall say that an object X has a left A-resolution if there exists an
exact sequence

· · · −→ A1 −→ A0 −→ X −→ 0,

where Ak ∈ A for every k ∈ Z≥0. In this sense, we shall say that
X is a left n-A-object if it has a finite left A-resolution of length n,
i.e., an exact sequence as above where Ak = 0 for every k > n. Right
A-resolutions and right n-A-objects are defined dually.

We recall that a cotorsion pair (A,B) in C is hereditary if ExtiC(A,B)
is null for every A ∈ A, B ∈ B and i > 1. The following result is easy
to prove.

Lemma 2.3. Let (A,B) be a hereditary cotorsion pair in an Abelian
category C. Then the classes of left n-A-objects and right n-B-objects
are both closed under extensions.
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The following lemma is proven in the category of left R-modules
in [11], but the arguments appearing there carry over to every
Grothendieck category.

Lemma 2.4 (Eklof [11, Lemma 3.1.2]). Let X and Y be two objects
of a cocomplete Abelian category C, and suppose X = CoLimα<λ(Xα),
where (Xα : α < λ) is a transfinite extension of ⊥{Y }. Then
X ∈ ⊥{Y }.

As a consequence, we have the following proposition.

Proposition 2.5. Let (A,B) be a cotorsion pair in an Abelian category
C. If S ⊆ A is a set of objects in C such that every object of A is S-
filtered, then (A,B) is cogenerated by S.

3. Cotorsion pairs from projective dimensions of left mod-
ules over a ringoid. In this section, we shall study some facts con-
cerning the projective dimension of objects in an Abelian category C.
We shall focus on the particular case where C is the category Mod (R)
of modules over a ringoid R, for which we prove the class of objects
with projective dimension bounded by some n ≥ 0 is the left half of
a cotorsion pair cogenerated by a set. This was initially proven by
Aldrich, et al., in [2] in the case C is the category of left R-modules

RMod . We provide some modifications to their arguments to gen-
eralize their results to Mod (R). The advantage in doing this lies in
the fact that both RMod and the category Ch (RMod) of complexes
of the left R-modules are particular examples of categories of modules
over a ringoid.

We recall some notation in the category Ch (C) of complexes over
an Abelian category C. Given a chain complex X = (Xm)m∈Z with
boundary or differential maps ∂X

m : Xm → Xm−1, the object Zm(X) :=
Ker(∂X

m) is called the m-cycle of X, and Bm(X) := Im(∂X
m+1) the m-

boundary of X.

Example 3.1. Let C ∈ Ob (C). The mth sphere complex centered at
C, denoted Sm(C), is defined by (Sm(C))m := C and (Sm(C))k := 0
if k ̸= m. The mth disk complex centered at C, denoted Dm(C), is
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defined by (Dm(C))k := C if k = m or m− 1, and 0 otherwise, where

the only non-zero boundary map ∂
Dm(C)
m is the identity idC .

From now on, left n-P0(C)-objects and right n-I0(C)-objects shall
be called n-projective and n-injective objects, respectively. Let X be
an object in an Abelian category C. Let pd (X) and id (X) denote
the projective and injective dimension of X, respectively. Note that
X is n-projective (respectively, n-injective) if, and only if, pd (X) ≤ n
(respectively, id (X) ≤ n). We shall denote by Pn(C) and In(C) the
classes of n-projective and n-injective objects of C, respectively.

Example 3.2 ([2, Theorem 4.2]). Let R be an associative ring with
unity and κ an infinite cardinal such that κ ≥ Card (R). The class
Pn := Pn(RMod ) of n-projective modules is the left half of a cotorsion
pair (Pn, (Pn)

⊥) cogenerated by a set of representatives by the class

(Pn)
≤κ := {M ∈ Pn : Card (M) ≤ κ}.

Using induction and the fact that the class of exact chain complexes
is thick, the following result follows.

Lemma 3.3. Let C be an Abelian category.

(i) If
0 −→ An −→ · · · −→ A0 −→ X −→ 0

is an exact sequence in Ch (C) such that Ai is exact for every
0 ≤ i ≤ n, then so is X.

(ii) If
0 −→ Y −→ B0 −→ · · · −→ Bn −→ 0

is an exact sequence in Ch (C) such that Bi is exact for every
0 ≤ i ≤ n, then so is Y .

Lemma 3.4. Consider a short exact sequence

0 −→ Y
f−→ Z

g−→ X −→ 0

of chain complexes over C.
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(i) The sequence

0 −→ Zm(Y ) −→ Zm(Z) −→ Zm(X) −→ 0

is exact if Y is an exact complex.
(ii) The sequence

0 −→ Ym

Bm(Y )
−→ Zm

Bm(Z)
−→ Xm

Bm(X)
−→ 0

is exact if X is an exact complex.

Proof. We only show the first statement for RMod , by [19, Theo-
rem 3, page 204]. Let Zm(f) : Zm(Y ) → Zm(Z) be the homomorphism
induced by the universal property of kernels, given by y 7→ fm(y) for
every y ∈ Zm(Y ). The homomorphism Zm(g) : Zm(Y ) → Zm(X) is
defined similarly. It is easy to check that Zm(f) is monic and that
Ker (Zm(g)) = Im (Zm(f)). These facts do not depend on the exact-
ness of Y . Let x ∈ Zm(X). There exists z ∈ Zm such that x = gm(z).
We have gm−1 ◦ ∂Z

m(z) = ∂X
m ◦ gm(z) = 0. Since the sequence

0 −→ Ym−1 −→ Zm−1 −→ Xm−1 −→ 0

is exact, there exists y ∈ Ym−1 such that ∂Z
m(z) = fm−1(y). Then

fm−2 ◦ ∂Y
m−1(y) = ∂Z

m−1 ◦ fm−1(y) = 0, and so ∂Y
m−1(y) = 0 since

fm−2 is monic. By the exactness of Y there exists y′ ∈ Ym such that
y = ∂Y

m(y′). Hence, ∂Z
m(z − fm(y′)) = 0 and gm(z − fm(y′)) = x. �

Using Lemma 3.4 along with the induction principle, we obtain the
following result.

Lemma 3.5. Let

0 −→ An
fn−→ An−1 −→ · · · −→ A1

f1−→ A0 −→ 0

be an exact sequence in Ch (C) of exact chain complexes. Then for
every m ∈ Z, the m-cycles Zm(Ai) form the following exact sequence
in C:

0 −→ Zm(An) −→ Zm(An−1) −→ · · · −→ Zm(A1) −→ Zm(A0) −→ 0.

Statement (ii) of the next proposition is proven in [8, Theorem
3.1.3]. We give here a different argument.
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Proposition 3.6. Let C be an Abelian category and n a positive integer.

(i) Assume C has enough projective objects. A chain complex X is
n-projective if, and only if, X is exact and each m-cycle is an
n-projective object of C.

(ii) Assume C has enough injective objects. A chain complex Y is
n-injective if, and only if, Y is exact and each m-cycle is an n-
injective object of C.

Proof. LetX be an exact complex with n-projective cycles. Consider
a partial projective resolution

0 −→ K −→ Pn−1 −→ · · · −→ P0 −→ X −→ 0.

Note that K is exact by Lemma 3.3. Notice also that Zm(Pi) is
projective for every 0 ≤ i ≤ n − 1 and every m ∈ Z. It follows by
Lemma 3.5 that Zm(K) ∈ Ωn(Zm(X)) (where Ωn(Zm(X)) denotes the
class of n-syzygies of Zm(X)). Hence, Zm(K) ∈ P0(C) since Zm(X) is
n-projective. The converse follows similarly. �

We shall see that the class Pn(Ch (RMod)) of n-projective chain
complexes is the left half of a complete cotorsion pair. This, along with
Example 3.2, is a consequence of a more general result in the category
Mod (R) of left modules over a ringoid R. We begin by studying the
projective dimension of objects in this category.

A small pre-additive category R is called ringoid or ring with many
objects. Then we have a composition law

HomR(b, c)⊗HomR(a, b) −→ HomR(a, c)

y ⊗ x 7−→ y ◦ x

for every a, b, c ∈ Ob (R), and a unit id a ∈ HomR(a, a) for every a ∈
Ob (R). The composition law defines a ring structure on HomR(a, a)
for every a ∈ Ob (R). Moreover, the Abelian group HomR(a, b) has the
structure of a bi-module, with a left action by HomR(b, b) and a right
action by HomR(a, a).

Example 3.7.

(i) Every ring R can be regarded as a ringoid R having a single
object ⋆ if we put HomR(⋆, ⋆) = R.
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(ii) We shall denote by S the ringoid generated by the following
infinite graph together with the relation ∂n ◦ ∂n+1 = 0 for n ∈ Z.

....· · · ..2 ..1 ..0 ..−1 ..−2 ..· · · ..
∂2 .

∂1 .
∂0.

∂−1.

e2

.

e1

.

e0

.

e−1

.

e−2

We have Ob (S) = Z and

HomS(i, j) =


⟨ei⟩ := {m · ei : m ∈ Z} if j = i,

⟨∂i⟩ := {m · ∂i : m ∈ Z} if j = i+ 1,

0 otherwise.

A (left) module over R is an additive functor M : R → Ab, where
Ab is the category of Abelian groups. A map of (left) R-modules is a
natural transformation M → N .

Example 3.8. Given a ringoid R and a ∈ Ob (R), the covariant
functor HomR(a,−) : R → Ab is a (left) R-module.

The category Mod (R) of left modules over R is defined as the
category [R,Ab] of additive functors R → Ab. Note that Mod (R) is
Abelian and bi-complete since Ab is.

Example 3.9 (Specific examples of Mod (R)).

(i) If R is the ringoid of Example 3.7 (i), then Mod (R) is the
category RMod of left R-modules.

(ii) Recall that the tensor product C ⊗ D of two pre-additive cate-
gories C and D is the pre-additive category defined by putting
Ob (C ⊗ D) = Ob (C) × Ob (D) and HomC⊗D((C,D), (C ′, D′)) =
HomC(C,C

′) ⊗ HomD(D,D′). If C, D and E are pre-additive
categories, then we have a canonical isomorphism of pre-additive
categories [C ⊗ D, E ] ≃ [C, [D, E ]]. In particular, if K and R are
ringoids, then [K,Mod (R)] = [K, [R,Ab]] ≃ [K ⊗ R,Ab] =
Mod (K⊗R). If we consider a ring R and the ringoid S defined
in Example 3.7 (ii), then we have an isomorphism [S,Mod (R)] ∼=
Mod (S ⊗ R) of additive categories. This means that a chain
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complex of R-modules is a module over the ringoid S ⊗ R, i.e.,
Ch (RMod) ∼= Mod (S⊗R).

Remark 3.10. A sequence

· · · −→ M1 −→ M0 −→ M−1 −→ · · ·

of left R-modules is exact if, for every a ∈ Ob (R), the sequence of
Abelian groups

· · · −→ M1(a) −→ M0(a) −→ M−1(a) −→ · · ·

is exact.

Definition 3.11. We shall say that an element x ∈ M(a) is homoge-
nous of grade a, and we shall write a = |x|.

If M is a left module over R, then the map

HomR(a, b) −→ HomAb(M(a),M(b))

of Abelian groups defined by M induces a multiplication

HomR(a, b)⊗M(a) −→ M(b)

(r, x) 7−→ r · x := M(r)(x),

for every a, b ∈ Ob (R). The product of r ∈ HomR(a, b) by x ∈ M(a)
is an element r · x ∈ M(b).

Definition 3.12. We shall say that a linear combination of homoge-
nous elements y =

∑
i∈I ri · xi is admissible if y is homogenous and

ri ∈ HomR(|xi|, |y|) for every i ∈ I. We shall accept infinite combina-
tions in the case where ri = 0 for all but finitely many i ∈ I.

Definition 3.13. If M is a left R-module, we shall say that a family
N = {N(a) : a ∈ Ob (R)} of subgroups N(a) ⊆ M(a) is a submodule
of M if x ∈ N(a) implies r · x ∈ N(b) for every r ∈ HomR(a, b).

Remark 3.14. Note that the family {N(a) : a ∈ Ob (R)} in the
previous definition defines a functor N : R → Ab, where N(r) is the
restriction M(r)|N(a) for every map r : a → b. Conversely, if N is a
sub-functor of M , then {N(a) : a ∈ Ob (R)} is a submodule of M .
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We want to construct, for every n-projective left R-module, a trans-
finite extension of “small” n-projectiveR-modules. The construction of
this transfinite extension in the case C = RMod is based on a method,
probably first introduced by Aldrich, et al., in [2], known as the zigzag
procedure. We shall explain how to adapt this procedure to the category
Mod (R).

We need to introduce some notation and recall the notion of free
R-modules.

Definition 3.15. If M is an R-module, we shall say that a submodule
N ⊆ M is generated by a family {xi}i∈I of homogenous elements if N
is the smallest submodule of M which contains all the elements xi.

Let N ⊆ M be a submodule generated by a family {xi}i∈I of
homogenous elements of M . Then an element x ∈ M(a) belongs to
N(a) if and only if it is an admissible linear combination

x =
∑
i∈I

ri · xi

(where ri = 0 for all but finitely many i ∈ I).

Definition 3.16. We shall say that a family {xi}i∈I of homogenous
elements of M is a basis of M if every homogenous element x ∈ M can
be written uniquely as an admissible linear combination

x =
∑
i∈I

ri · xi.

We shall say that M is free if it admits a basis.

If R is a ringoid and M is a left R-module, then it follows from
Yoneda’s lemma that, for every a ∈ Ob (R) and every x ∈ M(a),
there is a unique map of R-modules α : HomR(a,−) → M such that
x = αa(id a). More generally, if {ai}i∈I is a family of objects of R, let
us put

⟨ai : i ∈ I⟩ :=
⊕
i∈I

HomR(ai,−)



964 MARCO A. PÉREZ

and [i] := (ui)ai(id ai), where ui : HomR(ai,−) → ⟨ai : i ∈ I⟩ is the
inclusion. Consider a family of elements {xi}i∈I in

∏
i∈I M(ai). Then,

for each i ∈ I, we can write xi = (αi)ai(idai), where αi is a map
HomR(ai,−) → M of left R-modules. Since Mod (R) is cocomplete,
there exists a unique map f : ⟨ai : i ∈ I⟩ → M such that the following
triangle commutes:

..
..HomR(ai,−) ..⟨ai : i ∈ I⟩

. ..M

.

ui

.

α i

. ∃! α

Note that αai([i]) = αai ◦ (ui)ai(id ai) = (αi)ai(id ai) = xi for every
i ∈ I. It follows that the R-module ⟨ai : i ∈ I⟩ is freely generated by
the elements [i] of grade ai for i ∈ I.

Definition 3.17. The family {ai}i∈I defines a map | − | : I → Ob (R)
if we put |i| = ai for i ∈ I. We shall say that the set I equipped with
the map | − | : I → Ob (R) is R-graded.

If I is an R-graded set, then the R-module ⟨I⟩ =
⊕

i∈I HomR(|i|,−)
is freely generated by elements [i] of grade |i| for i ∈ I.

Proposition 3.18. An R-module M is free if, and only if, it is
isomorphic to a coproduct of R-modules HomR(ai,−) for a family
{ai}i∈I of objects of R,

M ∼=
⊕
i∈I

HomR(ai,−).

Proof. The implication (⇐) follows by the comments above. Now
suppose M is a free left module over R admitting a basis {xi}i∈I .
Consider the natural transformation α : ⟨ai : i ∈ I⟩ >→ M given
above, where xi ∈ M(ai). We check that α is a natural isomorphism,
i.e., αb :

⊕
i∈I HomR(ai, b) → M(b) is an isomorphism for every

b ∈ Ob (R). Let x ∈ M(b). We can write x as a unique admissible
linear combination x =

∑
i∈I ri · xi, where ri ∈ HomR(ai, b) for

every i ∈ I. Since α is a natural transformation, we have that
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M(ri) ◦ αai = αb ◦ ⟨ai : i ∈ I⟩(ri). Then,

x =
∑
i∈I

M(ri)(xi) =
∑
i∈I

M(ri)(αai([i]))

=
∑
i∈I

αb ◦ ⟨ai : i ∈ I⟩ (ri)([i])

=
∑
i∈I

αb(ri · [i]) = αb

(∑
i∈I

ri · [i]

)
,

where
∑

i∈I ri · [i] is unique. �

Corollary 3.19. Every free (left) R-module is projective.

Proof. Since the direct sum of projective objects is projective, by
the previous proposition it suffices to show that HomR(a,−) is projec-
tive in Mod (R), i.e., that the functor HomMod (R)(HomR(a,−),−) :
Mod (R) → Ab is exact. Suppose we are given a short exact sequence
0 → M ′ → M → M ′′ → 0 in Mod (R). Then the sequence:

..
..0 ..HomMod (R)(HomR(a,−),M ′) ..HomMod (R)(HomR(a,−),M)

. ..HomMod (R)(HomR(a,−),M ′′) ..0

is exact since it is isomorphic to

0 −→ M ′(a) −→ M(a) −→ M ′′(a) −→ 0,

by Yoneda’s lemma. �

Proposition 3.20 (Eilenberg’s trick for modules over a ringoid). For
every projective R-module P , there exists a free R-module F together
with an isomorphism P ⊕ F ∼= F .

As a consequence of the Eilenberg’s trick, we have:

Corollary 3.21. Every n-projective (left) R-module has a left free
resolution of length n.
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Definition 3.22. Let κ be an infinite regular cardinal strictly greater
than the cardinality of HomR(a, b) for every a, b ∈ Ob (R). We shall
say that an R-module M is κ-small if Card (M(a)) ≤ κ, for every
a ∈ Ob (R).

Remark 3.23 (κ-small modules and complexes). Let R be a ringoid
and κ an infinite regular cardinal such that κ > Card(HomR(a, b)) for
every a, b ∈ Ob(R). Given a class X of left modules over R, we shall
denote by X≤κ the class of κ-small left modules in X .

(i) If R is the ringoid of Example 3.7 (i), then we have that κ >
Card (R) and that a left R-module M is κ-small if, and only if,
Card (M) ≤ κ.

(ii) We knowCh (RMod) is equivalent to the category of left modules
over the ringoid S ⊗ R, with S as in Example 3.7 (ii). It is not
hard to see that κ > Card (R) and that the following conditions
are equivalent for every chain complex X in Ch (RMod):
(a) X is κ-small.
(b) Card (Xm) ≤ κ for every m ∈ Z.
(c)

∑
m∈Z Card (Xm) ≤ κ.

We shall say for the rest of this work that a left R-module M is κ-
small if Card (M) ≤ κ, and that a chain complex X in Ch (RMod) is
κ-small if each Xm is a κ-small module, where κ is an (infinite) regular
cardinal satisfying κ > Card (R).

Lemma 3.24 (Generalization of [2, Proposition 4.1]). Let κ be an
infinite regular cardinal as in Definition 3.22. Let M be an n-projective
R-module. Then for every homogeneous element x ∈ M(a) there exists
a κ-small submodule N ↩→ M with x ∈ N(a) such that the R-modules
N and M/N are n-projective.

Proof. By Corollary 3.21, we start with a free resolution of M , say

0 −→ ⟨In⟩
∂n−→ ⟨In−1⟩ −→ · · · −→ ⟨I1⟩

∂1−→ ⟨I0⟩
∂0−→ M −→ 0,

where Ik is an R-graded set for every 0 ≤ k ≤ n.

The map

(∂0)a : ⟨I0⟩ (a) =
⊕
i∈I0

HomR([i], a) −→ M(a)



HOMOLOGICAL DIMENSIONS 967

is surjective, so we can find a finite number of maps ri1 : [i1] →
a, . . . , rik : [ik] → a such that x = (∂0)a(ri1 + · · · + rik). Then
Z0 = {i1, . . . , ik} is a finite subset of I0 such that x ∈ ∂0(⟨Z0⟩) (by abuse
of notation, this shall mean that x ∈ (∂0)a ◦ ⟨Z0⟩(a)). Consider the
natural transformation ∂0|⟨Z0⟩ : ⟨Z0⟩ → M , and let y ∈ Ker (∂0|⟨Z0⟩)
be of degree b. Since ⟨I1⟩(b) → ⟨I0⟩(b) → M(b) is exact, there exists
y′ ∈ ⟨I1⟩(b) such that y = (∂1)b(y

′). We can write y′ =
∑

i∈Zy
1
ri · [i],

where Zy
1 is a finite subset of I1. Let Z1 =

⊔
{Zy

1 : y ∈ Ker (∂0|⟨Z0⟩)}.
In order to estimate the number of elements of Zy

1 , note that for
each y ∈ Ker (∂0|⟨Z0⟩) we have a unique tuple (ρi : i ∈ Z0), with
ρi ∈ HomR([i], b). Then we have

Card (Z1) =
∑{

Card(Zy
1 ) : y ∈ Ker

(
∂0|⟨Z0⟩

)}
≤ Card

(
Ker

(
∂0|⟨Z0⟩

))
since each Zy

1 is finite,

≤ Card
(
{(ri : i ∈ Z0) : y ∈ Ker

(
∂0|⟨Z0⟩

)
}
)

≤
∏
i∈Z0

Card (HomR([i], b)) ≤ κ,

and so Z1 is a κ-small subset of I1 such that ∂1(⟨Z1⟩) ⊇ Ker (∂0|⟨Z0⟩),
i.e., (∂1)b(⟨Z1⟩(b)) ⊇ Ker ((∂0)b|⟨Z0⟩(b)) for every b ∈ Ob (R). In a
similar way, we can find a κ-small subset Z2 ⊆ I2 such that ∂2(⟨Z2⟩) ⊇
Ker (∂1|⟨Z1⟩). We keep repeating this procedure until we get a κ-small
subset Zn ⊆ In such that ∂(⟨Zn⟩) ⊇ Ker (∂n−1|⟨Zn−1⟩).

The next step in the zigzag procedure consists of choosing a κ-small

subset Z
(1)
n−1 ⊆ In−1, containing Zn−1, such that ∂n(⟨Zn⟩) ⊆ ⟨Z(1)

n−1⟩.
Let y ∈ ∂n(⟨Zn⟩) of degree b. Then y = (∂n)b(z), where

z =
∑
i∈Zn

ri · [i].

We have
y =

∑
i∈Zn

(∂n)b(ri · [i]).

On the other hand,

(∂n)b(ri · [i]) =
∑

j∈Z
(1),y,i
n−1

qj · [j]



968 MARCO A. PÉREZ

for a finite set Z
(1),y,i
n−1 ⊆ In−1. Thus,

y =
∑
i∈Zn

∑
j∈Z

(1),y,i
n−1

qj · [j] =
∑

j∈Z
(1)
n−1

qj · [j],

where Z
(1)
n−1 is the disjoint union⊔

{Z(1),y,i
n−1 : y ∈ ∂n(⟨Zn⟩) and i ∈ Zn}.

We have

Card
(
Z

(1)
n−1

)
=
∑{

Card
(
Z

(1),y,i
n−1

)
: y ∈ ∂n (⟨Zn⟩) and i ∈ Zn

}
≤ Card ({(ri : i ∈ Zn) : y ∈ ∂n (⟨Zn⟩)}) ≤ κ.

Then Z
(1)
n−1 is a κ-small subset of In−1 such that ∂n(⟨Zn⟩) ⊆ ⟨Z(1)

n−1⟩.
Note that we can construct Z

(1)
n−1 containing Zn−1. Similarly, there is a

κ-small subset Z
(1)
n−2 ⊆ In−2 containing Zn−2 such that ∂n−1(⟨Z(1)

n−1⟩)
⊆ ⟨Z(1)

n−2⟩.
At this point, we just need to mimic the argument given in the

proof of [2, Proposition 4.1], with the corresponding considerations for
Mod (R). Set

Jk := Zk ∪ Z
(1)
k ∪ · · ·

for every 0 ≤ k ≤ n. It is clear that ⟨Jk⟩ :=
⊕

i∈Jk
HomR([i],−) is a

κ-small submodule of ⟨Ik⟩. By construction, we have an exact sequence

0 −→ ⟨Jn⟩
∂n−→ ⟨Jn−1⟩ −→ · · · −→ ⟨J1⟩

∂1−→ ⟨J0⟩
∂0−→ N −→ 0,

where N = CoKer (⟨J1⟩
∂1→ ⟨J0⟩). Note that x ∈ N and that each

⟨Jk⟩ is projective by Corollary 3.19. It remains to show that M/N is
n-projective. It suffices to take the quotient of the resolution of M by
the resolution of N , to get an exact sequence

0 −→ ⟨In⟩
⟨Jn⟩

−→ ⟨In−1⟩
⟨Jn−1⟩

−→ · · · −→ ⟨I0⟩
⟨J0⟩

−→ M

N
−→ 0.

It is not hard to check that ⟨Ik⟩/⟨Jk⟩ ∼= ⟨Ik − Jk⟩. So the previous
sequence is a projective resolution of length n of M/N . �
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Proposition 3.25. Let (A,B) be a hereditary cotorsion pair of left
modules over R and κ a regular cardinal satisfying the condition κ >
Card (HomR(a, b)) for every a, b ∈ Ob (R). Suppose, for each left n-
A-module X and each x ∈ X, there exists a κ-small left n-A-module
Xx ⊆ X such that x ∈ Xx and that X/Xx is also a left n-A-module.
Then every left n-A-module is a transfinite extension of the class of
κ-small left n-A-modules.

Proof. Let X be a left R-module as described in the statement.
Choose any x0 ∈ X. Then there exists a small left n-A-module X0

such that x0 ∈ X0 and such that X/X0 is also a left n-A-module.
Now choose a class x1 + X0 ̸= 0 + X0. Then there exists a small
left n-A-module X1/X0 such that x1 + X0 ∈ X1/X0 and such that
X/X1

∼= (X/X0)/(X1/X0) is a left n-A-module. Note that X0 ⊆ X1

and that X1 is κ-small since Card (X1) = Card (X1/X0) · Card (X0).
Since we have a short exact sequence

0 −→ X0 −→ X1 −→ X1/X0 −→ 0,

where X0 and X1/X0 are left n-A-modules, by Lemma 2.3, X1 is also
a left n-A-module. Using transfinite induction, we can construct a
family of modules (Xα : α < λ), for some ordinal λ, such that X is the
transfinite extension X = CoLimα<λXα. �

The following theorem is proven in [2] for the category RMod . The
arguments carry over easily to the category of modules over ringoids.

Theorem 3.26 ([2, Theorem 4.2] for modules over ringoids). The class
of n-projective left R-modules Pn(Mod (R)) is the left half of a heredi-
tary and complete cotorsion pair (Pn(Mod (R)), (Pn(Mod (R)))⊥) co-
generated by a set of representatives of the class (Pn(Mod (R)))≤κ.

4. n-projective model structures. The goal in this section is
to construct a new Abelian model structure on Ch (RMod) where
the weak equivalences are given by the quasi-isomorphisms and the
trivial cofibrations by monomorphisms with n-projective cokernels.
The motivation of this problem comes from the case n = 0 studied
by Hovey in [15, subsection 2.3].
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Given two chain complexes X and Y in Ch (C), the enriched hom-
complex Hom′(X,Y ) is defined by

Hom′(X,Y )m :=
∏
k∈Z

HomC(Xk, Ym+k)

for every m ∈ Z, with boundary maps

∂Hom′(X,Y )
m : Hom′(X,Y )m −→ Hom′(X,Y )m−1

f = (fk : Xk −→ Ym+k)k∈Z

7−→ (∂Y
k+n ◦ fk − (−1)nfk−1 ◦ ∂X

k )k∈Z.

We recall the following notions given by Gillespie in [9, Definition
3.3]. Let (A,B) be a cotorsion pair in an Abelian category C. A chain
complex X in Ch (C) is:

(1) An A-complex if X is exact, and each cycle Zm(X) is in A.
(2) A dg-A-complex (“dg”for differential graded) if Xm ∈ A for each m

and every chain map X → B is homotopic to zero (or equivalently,
the complex Hom′(X,B) is exact) whenever B is a B-complex.

(3) A dg-B-complex if Xm ∈ B for each m and every chain map A → X
is homotopic to zero (or equivalently, the complex Hom′(A,X) is
exact) whenever A is an A-complex.

Let Ã, dgÃ and dgB̃ denote the classes of A-complexes, dg-A-
complexes and dg-B-complexes, respectively.

Example 4.1. By Proposition 3.6, P̃n(C) and Ĩn(C) are the classes of
n-projective and n-injective complexes in Ch (C), respectively.

Consider the class Pn of n-projective leftR-modules. We know by [2,
Theorem 4.2] that (Pn, (Pn)

⊥) is a hereditary and complete cotorsion
pair in RMod . So, by [9, Corollary 3.8 and Theorem 3.12], we have

two compatible cotorsion pairs (P̃n, (P̃n)
⊥) and (dgP̃n, (dgP̃n)

⊥). By
Example 3.9 (ii) and Proposition 3.26, we have the following result.

Corollary 4.2. The cotorsion pair (P̃n, (P̃n)
⊥) is hereditary and com-

plete.
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The fact that the pair (dgP̃n, (dgP̃n)
⊥) is complete shall be a

consequence of the following result.

Proposition 4.3. Let (A ∩ W,B) and (A,B ∩ W) be two compatible
cotorsion pairs in an Abelian category C.

(i) Suppose (⊥W,W) is a cotorsion pair cogenerated by a set SW .
If the pair (A ∩ W,B) is also cogenerated by a set SA∩W , then
(A,B ∩W) is cogenerated by SA∩W ∪ SW .

(ii) Suppose C has enough projective and injective objects. If both
(⊥W,W) and (W,W⊥) are complete cotorsion pairs, then the
pair (A,B ∩W) is complete if, and only if, (A ∩W,B) is.

Proof. Part (i) follows by

B ∩W = (SA∩W)⊥ ∩ (SW)⊥ = (SA∩W ∪ SW)⊥.

For part (ii), we only prove the implication (⇒), since the other is
dual. So suppose (A,B ∩W) is complete, and let X be an object in C.
Since (W,W⊥) is complete, there exists a short exact sequence

0 −→ X −→ C −→ W −→ 0,

where C ∈ W⊥ and W ∈ W. Since (A,B∩W) is complete, there exists
a short exact sequence

0 −→ B −→ A −→ W −→ 0,

where A ∈ A and B ∈ B ∩ W. Taking the pullback of C → W and
A → W and using [19, Proposition 2, page 203], we get two exact
sequences

0 −→ X −→ C ×W A −→ A −→ 0,

0 −→ B −→ C ×W A −→ C −→ 0.

Since W is closed under extensions, we have A ∈ A ∩W. It suffices to
show C×WA ∈ B. Note that A∩W ⊆ W impliesW⊥ ⊆ (A∩W)⊥ = B.
Then C ∈ B. It follows that C ×W A ∈ B since B is closed under
extensions. Hence, X → C ×W A is a special B-pre-envelope. By [21,
Corollary 2.4], (A ∩W,B) is complete. �
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Remark 4.4. A cotorsion pair (A,B) in an Abelian category C is
functorially complete if, for every object X, there exist a special A-
pre-cover A → X and a special B-pre-envelope X → B such that A
and B are both functorial in X.

(i) Proposition 4.3 (ii) is also valid for functorially complete cotorsion
pairs. In this sense, (ii) can also be stated as follows:
(ii′) If C has functorially enough projective and injective objects,

and if (⊥W,W) and (W,W⊥) are functorially complete, then
(A,B∩W) is functorially complete if, and only if, (A∩W,B)
is.

(ii) In the statement of Eklof and Trlifaj’s theorem, cotorsion pairs
cogenerated by sets are actually functorially complete.

(iii) To prove the “if” part of Hovey’s correspondence, (A∩W,B) and
(A,B ∩ W) need to be functorially complete (see [14, Theorem
2.2]).

To deduce that (dgP̃n, (dgP̃n)
⊥) is complete, consider the class E

of exact chain complexes. The trivial cotorsion pairs (P0,RMod ) and

(RMod , I0) induce two pairs (dgP̃0, (dgP̃0)
⊥) and (⊥(dgĨ0), dgĨ0) by

[9, Corollary 3.8]. In [8, Propositions 2.3.4, 2.3.5], it is proven that

(dgP̃0)
⊥ = E = ⊥(dgĨ0). On the one hand, (E ,dgĨ0) is complete by [8,

Theorem 2.3.17]. On the other hand, in [4, Lemma 5.1], it is proven

that (dgP̃0, E) is cogenerated by a set, and so complete. Then putting

W = E in the previous proposition, we have that (dgP̃n, (dgP̃n)
⊥) is a

complete cotorsion pair (cogenerated by a set). Therefore, the following
theorem follows by Hovey’s correspondence.

Theorem 4.5. The two compatible and complete cotorsion pairs

(A,B ∩W) = (dgP̃n, (dgP̃n)
⊥)

and

(A ∩W,B) = (P̃n, (P̃n)
⊥)

give rise to a unique Abelian model category structure on Ch (RMod),

called n-projective model structure, such that A = dgP̃n, B = (P̃n)
⊥
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and W = E are classes of cofibrant, fibrant and trivial objects, respec-
tively.

Remark 4.6.

(i) It is not hard to see that, in the previous model structure,
weak equivalences are given by quasi-isomorphisms. Moreover,
in every Abelian model category with E as the class of trivial
objects, a map is a weak equivalence if, and only if, it is a quasi-
isomorphism. To see this, it is important to know that, in [14],
weak equivalences in Abelian model structures are defined as the
composition of trivial cofibrations followed by trivial fibrations.

(ii) So far we have only defined the fibrant objects of the previous
model structure as those that have no extension from the trivially
cofibrant objects. Using [9, Corollary 3.8], we have that an object
Y is fibrant if, and only if, each Ym has no extension from the n-
projective modules and if every chain map X → Y is homotopic
to 0 whenever X is trivially cofibrant. In a similar way, we have
that an object, Y , is trivially fibrant if, and only if, it is exact
and if every cycle Zm(Y ) has no extension from the n-projective
modules.

An interesting question about a new model structure whether or not
it is monoidal. In order to have a monoidal model structure on C, we
need C to be equipped with a symmetric monoidal structure. Roughly
speaking, a symmetric monoidal structure on C is given by a tensor
product −⊗− : C ×C → C and a unit object S ∈ Ob (C) such that, for
every X,Y, Z ∈ Ob (C), we have isomorphisms

X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y )⊗ Z,

X ⊗ Y ∼= Y ⊗X,

S ⊗X ∼= X,

and

X ⊗ S ∼= X,

(see [15, Section 4.1] for details). The category RMod , with R a
commutative ring, is an example of a symmetric monoidal category.
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The tensor product is the standard tensor product ⊗R of modules,
where R is the unit.

We present two more examples of symmetric monoidal structures
on Ch (RMod). Given two chain complexes X ∈ Ob (Ch (ModR))
and Y ∈ Ob (Ch (RMod)), the standard tensor product of X and Y is
given by the chain complex X ⊗ Y in Ch (Ab) defined by

(X ⊗ Y )n :=
⊕
k∈Z

Xk ⊗R Yn−k,

where the boundary maps are given by

x⊗ y 7−→ ∂X
k (x)⊗ y + (−1)kx⊗ ∂Y

n−k(y),

for every x ⊗ y ∈ Xk ⊗ Yn−k. This construction defines a functor
−⊗−, from which one constructs the left derived functors Tori(−,−),
with i ≥ 0. From ⊗, the bar tensor product of X and Y is defined as
the chain complex X⊗Y in Ch (Ab) given by

(X⊗Y )n :=
(X ⊗ Y )n
Bn(X ⊗ Y )

,

where the boundary maps are defined by

x⊗ y +Bn(X ⊗ Y ) 7−→ ∂X
k (x)⊗ y +Bn−1(X ⊗ Y ),

for every x⊗ y +Bn(X ⊗ Y ) ∈ (X⊗Y )n. As far as the author knows,
the definition of this tensor product first appeared in [8]. If R is
a commutative ring, then (Ch (RMod),⊗) and (Ch (RMod),⊗) are
symmetric monoidal categories, where S0(R) and D1(R) are the units
with respect to ⊗ and ⊗, respectively (see [8, Proposition 4.2.1 4] and
[15, Proposition 4.2.13]).

A monoidal model category is a model category C equipped with a
symmetric monoidal structure (⊗, S) such that the following conditions
are satisfied:

(1) For each pair of maps f : U → V and g : W → X, the pushout
of f ⊗ idW and id U ⊗ g induces a map f � g, making the following
diagram commute:
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..

..U ⊗W ..U ⊗X

..V ⊗W ..(V ⊗W )
⨿

U⊗W (U ⊗X)

. . ..V ⊗X

.

id U ⊗ g

.

f ⊗ idW

.

f � g

If, given cofibrations f : U → V and g : W → X in C, the induced map
f � g is a cofibration, which is trivial if either f or g is.

(2) Using functorial factorizations, write

0 −→ S = 0 −→ Q(S)
q−→ S

as the composition of a cofibration followed by a trivial fibration. Then
the maps q ⊗X : Q(S)⊗X → S ⊗X and X ⊗ q : X ⊗Q(S) → X ⊗ S
are weak equivalences for all cofibrant objects X.

It is known that the n-projective model structure is monoidal with
respect to the usual tensor product on Ch (RMod) if n = 0 (see [15,
Chapter 4]). In general, this is not the case if n > 0. For instance,
consider n = 1 and R = Z. Note that Z2 is a 1-projective Z-module,
since it is not projective, and there exists a short exact sequence

0 −→ Z 2×−→ Z π−→ Z2 −→ 0,

where 2× is the map x 7→ 2 × x and π is the canonical projection
x 7→ x ∈ {0, 1}. Now let X be the complex given by the previous
sequence, where X1 = Z, X0 = Z and X−1 = Z2. We have X ∈
P̃1. Consider also the complex S0(Z2). Then S0(Z2) ∈ dg P̃1 since
Ext1Ch (Mod Z)

(S0(Z2), Y ) ∼= Ext1Z(Z2, Z0Y ) (by [10, Lemma 4.2]) and

Ext1Z(Z2, Z0Y ) = 0 for every Y ∈ P̃1
⊥ = (dg P̃1)

⊥. It is not hard to
see that

(S0(Z2)⊗X)m =


Z2 ⊗Z Z if m = 0 or 1,

Z2 ⊗Z Z2 if m = −1,

0 otherwise,
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and that ∂
S0(Z2)⊗X
1 is the zero map, so the sequence

· · · −→ 0 −→ Z2⊗ZZ
∂
S0(Z2)⊗X
1 −→ Z2⊗ZZ

∂
S0(Z2)⊗X
0 −→ Z2⊗ZZ2 −→ 0 −→ · · ·

is not exact. We have a cofibration 0 → S0(Z2) and a trivial cofibration
0 → X, but the induced map

(0 −→ S0(Z2)) � (0 −→ X) = 0 −→ S0(Z2)⊗X

is a cofibration not a weak equivalence, since S0(Z2)⊗X is not exact.
Therefore, the n-projective model structure on Ch (Mod Z) is not
monoidal with respect to the tensor product ⊗. We can conclude the
same for Ch (Mod Z) with respect to the bar tensor product ⊗, since

(S0(Z2)⊗X)m =

{
Z2 ⊗Z Z if m = 0 or 1,

0 otherwise,

and

S0(Z2)⊗X = · · · −→ 0 −→ Z2 ⊗Z Z
∂
S0(Z2)⊗X
1 −→ Z2 ⊗Z Z −→ 0 −→ · · · ,

where ∂
S0(Z2)⊗X
1 is the zero map. Hence, S0(Z2)⊗X is not an exact

complex, and so the induced chain map

0 −→ S0(Z2)⊗X = (0 −→ S0(Z2)) � (0 −→ X)

is not a trivial cofibration.

It is time to give an application of the n-projective model structure
in the context of homotopy theory. Consider the category Ch (RMod)
equipped with this model structure. This setting provides another
way to compute the extension groups ExtiR(M,N) for every pair of
left R-modules M and N , in which we resolve M by the class of
n-projective modules. Recall that ExtiR(M,N) is given by the ith
cohomology group of the complex HomR(P•, N), or equivalently, by
Exti(M,N) = H−i(HomR(P•, N)), where P• is the chain complex
obtained from a left projective resolution of M after deleting the term
M . On the other hand, it is not hard to see that H−i(HomR(P•, N))
is isomorphic to the quotient HomCh (RMod)(P•, S

i(N))/ ∼, where ∼
is the equivalence relation given by the chain homotopy equivalence.
We have ExtiR(M,N) ∼= HomCh (RMod)(P•, S

i(N))/ ∼, where the
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right side term can be described by using the language of homotopy
categories.

Let Ho (Ch (RMod)) denote the homotopy category associated to
the model category Ch (RMod). We assume the reader is familiar
with the notion of homotopy categories, although a good introduction
to this field is given in [5]. To compute ExtiR(M,N) by resolving M
by n-projective modules, we first point out that there exists a bijection

Ho (Ch (RMod))(S0(M), Si(N)) ∼= HomCh (RMod)(Q,R)/ ∼,

where Q is a cofibrant replacement of S0(M) and R a fibrant replace-
ment of Si(N). We can have a left n-projective resolution

· · · −→ L1 −→ L0 −→ M −→ 0

of M with each cycle module in (Pn)
⊥ and a right (Pn)

⊥-resolution

0 −→ N −→ J0 −→ J1 −→ · · ·

of N with each cycle module in Pn, since (Pn, (Pn)
⊥) is a complete

cotorsion pair. Deleting M and N in the previous complexes and using
[9, Lemma 5.3], we have that

L = · · · −→ Q1 −→ Q0 −→ 0

is a cofibrant replacement of S0(M) and that the ith suspension Σi(J)
of

J = 0 −→ R0 −→ R1 −→ · · ·

is a fibrant replacement of Si(N). In this sense, we obtain

Ho (Ch (RMod))(S0(M), Si(N)) ∼= HomCh (RMod)(L,Σ
i(J))/ ∼ .

Recall that the ith suspension of a chain complex X is defined as
the chain complex Σi(X) where (Σi(X))m = Xm−i and where the

boundary maps are given by ∂
Σi(X)
m := (−1)i∂X

m−i, for every m ∈ Z.
Using the arguments given by Gillespie in [9, Section 5], we have

ExtiR(M,N) ∼= HomCh (RMod)(L,Σ
i(J))/ ∼ .

Finally, by [9, Lemma 2.1], we obtain the isomorphism ExtiR(M,N) ∼=
H−i(Hom′(L,J)). The only inconvenience with this expression is that
the terms of J are not described as easily as those of L.
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We conclude this section by presenting the dual of the n-projective
model structure. The case of the injective dimension is easier to study.
Assume for the rest of this section that C is a Grothendieck category
with a generator G. Grothendieck categories have enough injective
objects. This was proven by Grothendieck in his famous paper (see
[12, Theorem 1.10.1]). Moreover, in that paper, the validity of the Baer
criterion is proven for any Grothendieck category (see [12, Lemma 1,
page 136]). The next result follows.

Proposition 4.7. Let C be a Grothendieck category with a generator G.
Then an object Y of C is n-injective if, and only if, Extn+1

C (G/J, Y ) = 0
for every sub-object J of G.

Corollary 4.8. If C is a Grothendieck category with generator G, then
In(C) is the right half of a cotorsion pair (⊥(In(C)), In(C)) cogenerated
by a set of representatives of the class of all S ∈ Ωn(G/J) with J
running over the set of all sub-objects of G.

It is not hard to see that the class In(C) is coresolving, and hence the
pair (⊥(In(C)), In(C)) is also hereditary. If, in addition, C has enough
projective objects, [9, Corollary 3.8] and Proposition 4.8 imply that

(dg ˜⊥(In(C)), Ĩn(C)) and ( ˜⊥(In(C)), dg Ĩn(C)) are compatible cotorsion

pairs in Ch (C). Moreover, by Proposition 3.6, we know Ĩn(C) =

In(Ch (C)). It follows by Corollary 4.8, the pair (dg ˜⊥(In(C)), Ĩn(C))
is complete. Hence, (⊥̃(In),dg Ĩn) is a complete cotorsion pair by
Proposition 4.3. Then Theorem 4.9 follows.

Theorem 4.9. The two compatible and complete cotorsion pairs,

(A,B ∩W) = (⊥(Ĩn), Ĩn)

and

(A ∩W,B) = (⊥(dg Ĩn), dg Ĩn),

give rise to a unique Abelian model category structure on Ch (RMod),

called n-injective model structure, such that A = ⊥(Ĩn), B = dg Ĩn
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and W = E are the classes of cofibrant, fibrant and trivial objects,
respectively.

Using [9, Corollary 3.8], we have that an object X is cofibrant if,
and only if, each Xm has no extension from the n-injective modules and
if every chain map X → Y is homotopic to 0 whenever Y is trivially
fibrant. In a similar way, we have that an object X is trivially cofibrant
if, and only if, it is exact and if every cycle Zm(X) has no extension
from the n-injective modules.

As with the n-projective model structure, we can present another
way to compute ExtiR(M,N) by using fibrant and cofibrant replace-
ments in the n-injective model structure. Specifically, we have

ExtiR(M,N) ∼= H−i(Hom
′(T,D)),

where D is obtained by deleting N in a right n-injective resolution of
N with cycles in ⊥(In), and T by deleting M in a left ⊥(In)-resolution
of M with cycles in In.

5. Degreewise n-projective model structures. This section is
devoted to constructing an Abelian model structure on Ch (RMod)
where the exact complexes are trivial objects, and the cofibrant objects
are chain complexes whose terms have projective dimension at most n.
This structure represents an extension of the model structure found
by Enochs, et al., in [4, Theorem 5.5]. For this purpose, it is useful
to recall more induced cotorsion pairs in Ch (C) from a cotorsion pair
(A,B) in C, along with some of their properties.

Let A be a class of objects in an Abelian category C. Let dw Ã
denote the class of all complexes X in Ch (C) such that Xm ∈ A for

every m ∈ Z. We shall say that a complex in dw Ã is a degreewise

A-complex, or a dw-A-complex. The class ex Ã := dw Ã ∩ E shall be
called the class of exact dw-A-complexes. These definitions were given
by Gillespie in [10, Definition 3.1].

In [10, Proposition 3.2], it is proven by Gillespie that, if (A,B) is

a cotorsion pair in an Abelian category C, then (dw Ã, (dw Ã)⊥) and

(⊥(dw B̃), dw B̃) are cotorsion pairs in Ch (C). The same author proved
in [10, Proposition 3.3] that if, in addition, B contains a cogenerator of

finite injective dimension, then (ex Ã, (ex Ã)⊥) is a cotorsion pair. This
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is also true if we assume instead that C has enough injective objects.
Dually, if either A contains a generator of finite projective dimension

or C has enough projective objects, then (⊥(ex B̃), ex B̃) is a cotorsion
pair in Ch (C).

Considering the trivial cotorsion pair (P0,RMod ) in RMod , we

have two cotorsion pairs (dw P̃0, (dw P̃0)
⊥) and (ex P̃0, (ex P̃0)

⊥) in the
category Ch (RMod). In [4], the authors show that these two pairs
are cogenerated by sets. Concerning the former pair, they prove in [4,

Theorem 4.4] that if P ∈ dw P̃0 and if S is a set of representatives of
complexes with all terms countably generated projective modules, then
P has an S-filtration. For the latter pair, if κ is an infinite cardinal with

κ > Card (R), then every P ∈ ex P̃0 has a (ex P̃0)
≤κ-filtration (see [4,

Theorem 4.6]). It follows by Proposition 2.5 that (dw P̃0, (dw P̃0)
⊥)

and (ex P̃0, (ex P̃0)
⊥) are complete cotorsion pairs. In [4] it is also

proven that these pairs are compatible. So it follows by Hovey’s
correspondence the existence of a model structure on Ch (RMod),
which shall be referred to as the degreewise projective model structure,
where the (trivial) cofibrations are the monomorphisms with cokernels

in dw P̃0 (in ex P̃0), the (trivial) fibrations are the epimorphisms with

kernels in (ex P̃0)
⊥ (in (dw P̃0)

⊥), and the weak equivalences are quasi-
isomorphisms (see [4, Theorem 5.5]).

We generalize the arguments given in [4] to any projective dimen-
sion. In other words, we shall prove that every (exact) degreewise
n-projective complex is filtered by some set and then shall conclude
that the two cotorsion pairs

(ex P̃n, (ex P̃n)
⊥) and (dw P̃n, (dw P̃n)

⊥)

are compatible and complete, in order to obtain the following result:

Theorem 5.1. The two compatible and complete cotorsion pairs

(A,B ∩W) = (dw P̃n, (dw P̃n)
⊥)

and

(A ∩W,B) = (ex P̃n, (ex P̃n)
⊥)
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give rise to a unique Abelian model category structure on Ch (RMod),

called degreewise n-projective model structure, such that A = dw P̃n,

B = (ex P̃n)
⊥ and W = E are the classes of cofibrant, fibrant and

trivial objects, respectively.

We first need to note that, by [10, Proposition 3.2], we have two

cotorsion pairs (dw P̃n, (dw P̃n)
⊥) and (ex P̃n, (ex P̃n)

⊥).

Definition 5.2. We say that a chain complex X in Ch (RMod) is

degreewise n-projective if X ∈ dw P̃n.

The proof of [4, Theorem 4.4] is based on the following result by
Kaplansky on projective modules. Recall that a left R-module is said
to be countably generated if it is generated as a module by a countable
subset.

Theorem 5.3 (see [18]). If P is a projective module, then P is the
direct sum of countably generated projective modules.

So, when one thinks of a possible generalization of the degreewise
projective model structure for n-projective modules, a good question
would be whether it is possible to generalize Kaplansky’s theorem for
such modules.

LetM ∈ Pn be an n-projective module, so we can choose a projective
resolution of length n, say

0 −→ Pn −→ · · · −→ P1 −→ P0 −→ M −→ 0.

By Kaplansky’s theorem, we can write

Pk =
⊕
i∈Ik

P i
k,

where P i
k is a countably generated projective module, for every i ∈ Ik

and every 0 ≤ k ≤ n. Then we can rewrite the previous resolution as

0 −→
⊕
i∈In

P i
n −→ · · · −→

⊕
i∈I1

P i
1 −→

⊕
i∈I0

P i
0 −→ M −→ 0.
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From now on, we shall write any projective resolution of length n by
using such direct sum decompositions. We shall denote by Pℵ0

n the
class of all modules, M , having a projective resolution as above, where
Ik is a countable set for each 0 ≤ k ≤ n.

We shall prove that (dw P̃n, (dw P̃n)
⊥) is a cotorsion pair cogener-

ated by a set of representatives of the class dw P̃ℵ0
n , by showing that

every complex in dw P̃n is dw P̃ℵ0
n -filtered. We need the following ex-

tension of Kaplansky’s theorem for n-projective modules.

Proposition 5.4 (Kaplansky’s theorem for n-projective modules). Let
R be a Noetherian ring. Let M ∈ Pn, and let N ⊆ M be a countably
generated submodule of M . Then there exists a Pℵ0

n -filtration of M ,
(Mα : α < λ) with λ > 1, such that M1 ∈ Pℵ0

n and N ⊆ M1.

Proof. Let M ∈ Pn exist with a finite projective resolution where
each projective term Pk is written as a direct sum

⊕
i∈Ik

P i
k of count-

ably generated projective modules, for every 0 ≤ i ≤ n. We shall
construct a Pℵ0

n -filtration (Mα : α < λ) of M , with N ⊆ M1, by using
the zigzag procedure described in the proof of Lemma 3.24.

Set M0 = 0. To construct M1, consider a countable set G of
generators of N . Since f0 is surjective, for every g ∈ G, we can choose

yg ∈
⊕
i∈I0

P i
0

such that g = f0(yg). Consider the set

Y = {yg : g ∈ G}.

Since Y is a countable subset of⊕
i∈I0

P i
0,

we have that ⟨Y ⟩ is a countably generated submodule of P0. Choose a

countable subset I1,00 ⊆ I0 such that

⟨Y ⟩ ⊆
⊕
i∈I1,0

0

P i
0.
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Then f0(⟨Y ⟩) ⊆ N . Consider

Ker (f0|⊕
i∈I

1,0
0

P i
0
).

Since
⊕

i∈I1,0
0

P i
0 is countably generated and Ker (f0|⊕

i∈I
1,0
0

P i
0
) is a

submodule of
⊕

i∈I1,0
0

P i
0, we have that the kernel Ker (f0|⊕

i∈I
1,0
0

P i
0
) is

also countably generated, since R is Noetherian.

Let B be a countable set of generators of Ker (f0|⊕
i∈I

1,0
0

P i
0
). Let

b ∈ B. Then f(b) = 0 and, by exactness of the above sequence, there
exists

yb ∈
⊕
i∈I1

P i
1

such that b = f1(yb). Let Y ′ = {yb : b ∈ B}. Note that Y ′ is a
countable subset of

(f1)
−1(Ker (f0|⊕

i∈I
1,0
0

P i
0
)).

Then ⟨Y ′⟩ is a countably generated submodule of
⊕

i∈I1
P i
1. Hence,

there exists a countable subset I1,01 ⊆ I1 such that⊕
i∈I1,0

1

P i
1 ⊇ ⟨Y ′⟩.

Thus,

f1

( ⊕
i∈I1,0

1

P i
1

)
⊇ f1(⟨Y ′⟩) ⊇ Ker (f0|⊕

i∈I
1,0
0

P i
0
).

Repeat the same argument until a countable subset I1,0n ⊆ In can be
found such that

fn

( ⊕
i∈I1,0

n

P i
n

)
⊇ Ker

(
fn−1|⊕

i∈I
1,0
n−1

P i
n−1

)
.

Now,

fn

( ⊕
i∈I1,0

n

P i
n

)
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is a countably generated submodule of⊕
i∈In−1

P i
n−1.

Then choose a countable subset I1,0n−1 ⊆ I1,1n−1 ⊆ In−1 with

fn

( ⊕
i∈I1,0

n

P i
n

)
⊆
⊕

i∈I1,1
n−1

P i
n−1.

Continue this zigzag procedure infinitely many times, and set

I1k =
∪
m≥0

I1,mk ,

for every 0 ≤ k ≤ n. By construction, we get an exact sequence,

0 −→
⊕
i∈I1

n

P i
n −→ · · · −→

⊕
i∈I1

1

P i
1 −→

⊕
i∈I1

0

P i
0 −→ M1 −→ 0,

where

x ∈ M1 := CoKer

(⊕
i∈I1

1

−→
⊕
i∈I1

0

P i
0

)
⊆ M

and N ⊆ M1. We take the quotient of the resolution of M by the
resolution of M ′ and get a sequence

0 −→
⊕

i∈In−I1
n

P i
n −→ · · · −→

⊕
i∈I1−I1

1

P i
1 −→

⊕
i∈I0−I1

0

P i
0 −→ M

M1
−→ 0,

which is exact since the class of exact complexes is thick. Hence,
we have a projective resolution of length n for M/M1. The rest
of the proof follows by using an argument similar to the proof of
Proposition 3.25. �

Lemma 5.5. If R is a Noetherian ring, then every chain complex in

dw P̃n has a dw P̃ℵ0
n -filtration.

Proof. Let

X =
(
· · · −→ Xk+1

∂k+1−→ Xk
∂k−→ Xk−1 −→ · · ·

)
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be a complex in dw P̃n. For each k, one has a projective resolution of
Xk of length n:

0 −→
⊕

i∈In(k)

P i
n(k) −→ · · · −→

⊕
i∈I0(k)

P i
0(k) −→ Xk −→ 0,

where the modules appearing in the direct sums are countably gen-
erated and projective. It suffices to construct a nonzero subcomplex
X ′ ⊆ X such that each X ′

k has a projective resolution:

0 −→
⊕

i∈I′
n(k)

P i
n(k) −→ · · · −→

⊕
i∈I′

0(k)

P i
0(k) −→ X ′

k −→ 0,

where I ′i(k) is countable for every 0 ≤ i ≤ n, and such that X/X ′ ∈
dw P̃n.

Fix m ∈ Z. Let S be a countably generated submodule of Xm. By
Lemma 5.5, there exists a submodule

Pℵ0
n ∋ X ′

m ⊆ Xm

such that S ⊆ X ′
m. Note that X ′

m is also countably generated. Then
∂m(X ′

m) is a countably generated submodule of Xm−1, and so there
exists

Pℵ0
n ∋ X ′

m−1 ⊆ Xm−1

such that ∂m(X ′
m) ⊆ X ′

m−1. Repeat the same procedure infinitely
many times in order to obtain a subcomplex

X ′ = · · · −→ X ′
k+1 −→ X ′

k −→ X ′
k−1 −→ · · ·

of X such that X ′
k ∈ Pℵ0

n for every k ∈ Z (we are setting X ′
k = 0

for every k > m). Hence, X ′ ∈ dw P̃ℵ0
n . Note from the proof of the

previous lemma that the quotient X/X ′ is in dw P̃n. We have, for every
k ≤ m, the following projective resolutions of length n for Xk/X

′
k:

0 −→
⊕

i∈In(k)−I′
n(k)

P i
n(k) −→ · · · −→

⊕
i∈I0(k)−I′

0(k)

P i
0(k) −→

Xk

X ′
k

−→ 0.

The rest of the proof follows by transfinite induction. �

It follows by Lemma 5.5 and Proposition 2.5 that the pair

(dw P̃n, (dw P̃n)
⊥)
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is complete and cogenerated by a set of representatives of the class

dw P̃ℵ0
n , provided R is a Noetherian ring. Under this hypothesis, it is

easy to show that the pair

(ex P̃n, (ex P̃n)
⊥)

is also complete using Proposition 4.3, as long as we show that it is

compatible with (dw P̃n, (dw P̃n)
⊥).

We know by [9, Theorem 3.12] that the cotorsion pairs

(dg Ã, B̃) and (Ã, dg B̃)

are compatible if the inducing pair (A,B) is hereditary. The author

does not know if the same holds for the cotorsion pairs (dw Ã, (dw Ã)⊥)

and (ex Ã, (ex Ã)⊥).

Consider the case C = RMod . Since

dg P̃0(C) ⊆ dw Ã and ex Ã ⊆ dw Ã,

we have

(dw Ã)⊥ ⊆ (dg P̃0(C))⊥ = E and (dw Ã)⊥ ⊆ (ex Ã)⊥,

and so
(dw Ã)⊥ ⊆ (ex Ã)⊥ ∩ E .

Similarly,
⊥(dw B̃) ⊆ ⊥(ex B̃) ∩ E .

The next result provides a relationship between completeness of
these degreewise cotorsion pairs and the remaining inclusions.

Proposition 5.6. Let (A,B) be a cotorsion pair in Ch (RMod).

(i) If the pair (dw Ã, (dw Ã)⊥) is complete, then

(dw Ã)⊥ = (ex Ã)⊥ ∩ E .

(ii) If the pair (⊥(dw B̃), dw B̃) is complete, then

⊥(dw B̃) = ⊥(ex B̃) ∩ E .
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Proof. We only prove the first statement. By the comments above,
it suffices to show that

(ex Ã)⊥ ∩ E ⊆ (dw Ã)⊥.

Let Y ∈ (ex Ã)⊥ ∩ E . Since (dw Ã, (dw Ã)⊥) is complete, there is a
short exact sequence

0 −→ Y −→ X −→ A −→ 0,

with X ∈ (dw Ã)⊥ and A ∈ dw Ã. Note that A ∈ dw Ã ∩ E , since
X ∈ (dw Ã)⊥ ⊆ E , Y ∈ E and E is thick. It follows that Ext1(A, Y ) = 0
and that the previous sequence splits. We have that Y is a direct

summand of X ∈ (dw Ã)⊥, and hence, Y ∈ (dw Ã)⊥ since (dw Ã)⊥ is
closed under direct summands. �

The previous result implies that the pairs

(dw P̃n, (dw P̃n)
⊥) and (ex P̃n, (ex P̃n)

⊥)

are compatible, and so (ex P̃n, (ex P̃n)
⊥) is complete, provided R is a

Noetherian ring. Using Hovey’s correspondence, Theorem 5.1 follows.
Note in its statement that we are not assuming R to be Noetherian. In
fact, it is possible to give a proof of this result that does not depend
on this assumption. Such a proof consists of constructing, for every

complex in ex P̃n, a filtration by the class (ex P̃n)
≤κ, for a fixed infinite

cardinal κ > Card (R).

Given a projective module P written as a direct sum decomposition
of countably generated projective modules P =

⊕
i∈I Pi, note that P

is κ-small if, and only if, Card (I) ≤ κ.

Definition 5.7.

(i) Given M ∈ Pn with a projective resolution,

(∗) =
(
0 −→

⊕
i∈In

P i
n −→ · · · −→

⊕
i∈I1

P i
1 −→

⊕
i∈I0

P i
0 −→ M −→ 0

)
,

we shall say that a projective resolution

(∗∗) =
(
0 −→

⊕
i∈I′

n

P i
n −→ · · · −→

⊕
i∈I′

1

P i
1 −→

⊕
i∈I′

0

P i
0 −→ N −→ 0

)
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is a nice subresolution of (∗) if (∗∗) is a subcomplex of (∗) such
that I ′k ⊆ Ik for every 0 ≤ k ≤ n.

Let κ be an infinite cardinal satisfying κ > Card (R).

(ii) We shall denote by Pn(κ) the class of n-projective modules M
with a projective resolution (∗) such that Card (Ik) ≤ κ for
every 0 ≤ k ≤ n. Note that Pn(κ) ⊆ (Pn)

≤κ.
(iii) If we consider the resolutions (∗) and (∗∗) above, then we say

that (∗∗) is a nice κ-small subresolution of (∗) if each I ′k is a
κ-small subset of Ik.

Lemma 5.8. Let κ be an infinite regular cardinal satisfying κ >
Card (R). Let M ∈ Pn with a projective resolution be given by (∗).
For every κ-small submodule N ⊆ M , there exists a nice κ-small
subresolution

(∗ ∗ ∗) =
(
0 −→

⊕
i∈I′′

n

P i
n −→ · · · −→

⊕
i∈I′′

1

P i
1 −→

⊕
i∈I′′

0

P i
0 −→ N ′ −→ 0

)
of (∗) such that N ⊆ N ′. Moreover, if N has a nice κ-small subresolu-
tion (∗∗) of M , then (∗ ∗ ∗) can be constructed in such a way that (∗∗)
is a subresolution of (∗ ∗ ∗).

Proof. Using the zigzag procedure in a similar way as in Proposi-
tion 5.4, it is possible to construct N ′ as described in Lemma 5.8. Now
suppose that N has a nice κ-small subresolution

(∗∗) =
(
0 −→

⊕
i∈I′

n

P i
n −→ · · · −→

⊕
i∈I′

1

P i
1 −→

⊕
i∈I′

0

P i
0 −→ N −→ 0

)
of (∗). Take the quotient of (∗) by this resolution and get

0 −→
⊕

i∈In−I′
n

P i
n −→ · · · −→

⊕
i∈I1−I′

1

P i
1 −→

⊕
i∈I0−I′

0

P i
0 −→ M

N
−→ 0.

Consider the κ-small submodule ⟨z + N⟩, with z /∈ N , and apply the
zigzag procedure to get a projective subresolution of the previous one,

0 −→
⊕

i∈I′′
n−I′

n

P i
n −→ · · · −→

⊕
i∈I′′

1 −I′
1

P i
1 −→

⊕
i∈I′′

0 −I′
0

P i
0 −→ N ′

N
−→ 0,
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where each set I ′′k − I ′k is a κ-small set. Finally, note that

(∗ ∗ ∗) =
(
0 −→

⊕
i∈I′′

n

P i
n −→ · · · −→

⊕
i∈I′′

1

P i
1 −→

⊕
i∈I′′

0

P i
0 −→ N ′ −→ 0

)
is a nice κ-small subresolution of (∗) containing (∗∗). �

Lemma 5.9. Let κ be an infinite regular cardinal satisfying κ >

Card (R). Let X ∈ dw P̃n and Y a κ-small and bounded above
subcomplex of X. Then there exists a (bounded above) subcomplex Y ′

of X such that Y ⊆ Y ′ and Y ′ ∈ dw P̃n(κ).

Proof. Since Y is a complex bounded from above, there exists m ∈ Z
such that Yk = 0 for every k > m. We obtain the following commutative
diagram where the vertical arrows are monomorphisms:

..

..Y = · · · ..0 ..Ym ..Ym−1 ..· · ·

..X = · · · ..Xm+1 ..Xm ..Xm−1 ..· · ·

.

∂m

.
∂m+1

.
∂m

Since Xm is an n-projective module, we have a projective resolution

0 −→
⊕

i∈In(m)

P i
n(m) −→ · · · −→

⊕
i∈I0(m)

P i
0(m) −→ Xm −→ 0.

By Lemma 5.9, there exists a submodule Y ′
m of Xm containing Ym,

along with a nice κ-small subresolution

0 −→
⊕

i∈I′
n(m)

P i
n(m) −→ · · · −→

⊕
i∈I′

0(m)

P i
0(m) −→ Y ′

m −→ 0.

Note that
Card (∂m(Y ′

m) + Ym−1) ≤ κ

and
Ym−1 ⊆ ∂m(Y ′

m) + Ym−1 ⊆ Xm−1.

Now choose a submodule Y ′
m−1 ⊆ Xm−1 with

∂m(Y ′
m) + Ym−1 ⊆ Y ′

m−1
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and Y ′
m−1 has a nice κ-small subresolution of a fixed resolution ofXm−1.

Repeat this process infinitely many times in order to obtain a chain
complex,

Y ′ = · · · −→ 0 −→ Y ′
m −→ Y ′

m−1 −→ · · · in dw P̃n(κ),

such that Y ⊆ Y ′ ⊆ X. �

Theorem 5.10. Every complex X ∈ ex P̃n has an ex P̃n(κ)-filtration.

Proof. Let m ∈ Z be arbitrary and T1 ⊆ Xm a κ-small submodule of
Xm. Fix, for Xm, a projective resolution of length n. By Lemma 5.8,
there exists a κ-small submodule Y 1

m of Xm such that T1 ⊆ Y 1
m and

Y 1
m has a nice κ-small projective subresolution of the given resolution

of Xm. Note that ∂m(Y 1
m) is a κ-small submodule of Xm−1, so there

exists a submodule Y 1
m−1 ofXm−1 such that ∂m(Y 1

m) ⊆ Y 1
m−1 and Y 1

m−1

has a nice κ-small projective subresolution of the given resolution of
Xm−1. Keep repeating this argument infinitely many times. We obtain
a subcomplex,

Y 1 = (· · · −→ 0 −→ Y 1
m −→ Y 1

m−1 −→ · · · ) ⊆ X,

in dw P̃n(κ). Note that Y 1 is not necessarily exact.

We shall construct a complex X1 from Y 1 such that

X1 ⊆ X and X1 ∈ ex P̃n(κ).

The rest of this proof uses an argument similar to the one in [4, Theo-
rem 4.6]. Fix any p ∈ Z. Then Card (Y 1

p ) ≤ κ and so Card (Zp(Y
1)) ≤

κ. Since X is exact and Card (Zp(Y
1)) ≤ κ, there exists a submodule

U ⊆ Xp+1 with Card (U) ≤ κ such that

Zp(Y
1) ⊆ ∂p+1(U).

Let C1 be a κ-small subcomplex of X such that

U ⊆ Cp+1, Cj = 0 for every j > p+ 1,

and such that each Cj with j ≤ p has a nice κ-small projective
subresolution of a given resolution of Xj . Since Y

1+C is a subcomplex
bounded above by X, by Lemma 5.2 there exists a κ-small subcomplex
Y 2 of X such that Y 1 + C ⊆ Y 2 and such that each Y 2

j has a nice



HOMOLOGICAL DIMENSIONS 991

κ-small projective subresolution of a given resolution of Xj . Note that
Zp(Y

1) ⊆ ∂p+1(Y
2
p+1).

Construct Y 3 from Y 2 as Y 2 was constructed from Y 1, and so on,
making sure to use the same p ∈ Z at each step. Set

X1 =

∞∪
j=1

Y j ⊆ X.

Note that X1 is exact at p. Repeat this argument to get exactness at
any level. So we may assume that X1 is an exact complex. Every X1

k

has a nice κ-small projective subresolution of the given resolution of
Xk:

0 −→
⊕

i∈In(k)

P i
n(k) −→ · · · −→

⊕
i∈I0(k)

P i
0(k) −→ Xk −→ 0.

Indeed, for every j, one has a projective subresolution of the form

0 −→
⊕

i∈Ij
n(k)

P i
n(k) −→ · · · −→

⊕
i∈Ij

0(k)

P i
0(k) −→ Y j

k −→ 0,

where
I1l (k) ⊆ I2l (k) ⊆ · · · for every 0 ≤ l ≤ n,

by Lemma 5.8. If we take the union of all of the previous sequences,
we obtain the following exact sequence:

0 −→
⊕

i∈
∪

j≥i I
j
n(k)

P i
n(k) −→ · · · −→

⊕
i∈

∪
j≥1 Ij

0(k)

P i
0(k) −→

∪
j≥1

Y j
k −→ 0,

where ∪
j≥1

Ijl (k) ⊆ Il(k) for every 0 ≤ l ≤ n,

and ∪
j≥1

Y j
k = X1

j .

Therefore, X1 ∈ ex P̃n(κ). Moreover, note that X/X1 ∈ ex P̃n. The
rest of the proof follows by using transfinite induction. �
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It follows by Proposition 2.5 that (ex P̃n, (ex P̃n)
⊥) is a cotorsion

pair cogenerated by a set of representatives of the class ex P̃n(κ), and
so it is complete by Eklof and Trlifaj’s theorem.

Degreewise n-projective model structures are not monoidal in gen-
eral. However, we shall see at the end of the next section that the
degreewise projective model structure is monoidal if R is a commuta-
tive ring with weak dimension ≤ 1.

We conclude this section by presenting the dual of the degreewise
n-projective model structure. Consider the class In of n-injective
modules.

Theorem 5.11. The two compatible and complete cotorsion pairs,

(A,B ∩W) = (⊥(ex Ĩn), ex Ĩn)

and

(A ∩W,B) = (⊥(dw Ĩn), dw Ĩn),

give rise to a unique Abelian model category structure on Ch (RMod),
called the degreewise n-injective model structure, such that A = ⊥

(ex Ĩn), B = dw Ĩn and W = E are the classes of cofibrant, fibrant
and trivial objects, respectively.

Given a Grothendieck category C with a generator G, consider the
class S of all disk complexes Dm(C) with C ∈ Ωn(G/J) and J running

over the set of subobjects of G. If Dm(C) ∈ S and Y ∈ dw Ĩn(C), using
[9, Lemma 3.1 (5)] we have

Ext1Ch (C)(D
m(C), Y ) ∼= Ext1C(C, Ym).

On the other hand,

Ext1C(C, Ym) ∼= Extn+1
C (G/J, Ym) = 0,

since Ym is n-injective. Then, Dm(C) ∈ ⊥(dw Ĩn(C)). This implies

dw Ĩn(C) ⊆ S⊥.
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The other inclusion follows in the same way, and so dw Ĩn(C) = S⊥.

It follows that (⊥(dw Ĩn), dw Ĩn) is complete. By Propositions 4.3, 5.6
and Hovey’s correspondence, Theorem 5.11 follows.

6. n-flat and degreewise n-flat model structures. For n > 0,
let Fn denote the class of left n-F0-modules of RMod , where F0

denotes the class of flat modules. We shall say that M ∈ Ob (RMod )
is n-flat if M ∈ Fn. It is known that (Fn, (Fn)

⊥) is a hereditary and
complete cotorsion pair (see [11, Theorem 4.1.3]). It follows by [9,
Corollary 3.8, Theorem 3.12] that we have two compatible cotorsion
pairs

(F̃n, (F̃n)
⊥) and (dg F̃n, (dg F̃n)

⊥).

On the other hand, by [10, Propositions 3.2, 3.3], we have two cotorsion
pairs

(dw F̃n, (dw F̃n)
⊥) and (ex F̃n, (ex F̃n)

⊥).

The goal of this section is to construct filtrations for the classes F̃n and

ex F̃n by the sets (F̃n)
≤κ and (ex F̃n)

≤κ, respectively, based on early
investigations developed by Aldrich, et al., [1] for the case n = 0. After
obtaining those results, we deduce the completeness of the previous
pairs and then the existence of the following two model structures:

Theorem 6.1. The two compatible and complete cotorsion pairs,

(A,B ∩W) = (dg F̃n, (dg F̃n)
⊥)

and

(A ∩W,B) = (F̃n, (F̃n)
⊥),

give rise to a unique Abelian model category structure on Ch (RMod),

called the n-flat model structure, such that A = dg F̃n, B = (F̃n)
⊥

and W = E are the classes of cofibrant, fibrant and trivial objects,
respectively.

Theorem 6.2. The two compatible and complete cotorsion pairs,

(A,B ∩W) = (dw F̃n, (dw F̃n)
⊥)



994 MARCO A. PÉREZ

and

(A ∩W,B) = (ex F̃n, (ex F̃n)
⊥),

give rise to a unique Abelian model category structure on Ch (RMod),

called the degreewise n-flat model structure, such that A = dw F̃n,

B = (ex F̃n)
⊥ and W = E are the classes of cofibrant, fibrant and

trivial objects, respectively.

For the case n = 0, the completeness of the pairs

(F̃0, (F̃0)
⊥) and (dg F̃0, (dg F̃0)

⊥)

was proven by Gillespie in [9], using the notions of pure and dg-
pure subcomplexes. The compatibility of these two pairs and Hovey’s
correspondence allowed Gillespie to find a unique monoidal Abelian
model structure on Ch (RMod), called the flat model structure, where
the weak equivalences are quasi-isomorphisms, the (trivial) cofibrations
are injections with (exact) dg-flat cokerels and the (trivial) fibrations
are surjections with (exact) dg-cotorsion kernels (see [9, Corollary 5.1]).

The cotorsion pair (F0, (F0)
⊥) was proven to be complete by Enochs.

His argument consists of showing that every flat module is filtered by
the class of κ-small flat modules, with κ an infinite regular cardinal
satisfying κ > Card (R). Enoch’s arguments allow us to construct
filtrations for the class Fn by the class (Fn)

≤κ. Regarding this matter,

Lemma 6.4 shall help us to construct filtrations for F̃n and ex F̃n,
mentioned above.

Definition 6.3. Recall that a submodule S of a left R-module M is
pure if the sequence 0 → N ⊗R S → N ⊗R M is exact, for every right
R-module N . If M is an n-flat module and N ⊆ M is a submodule,
we say that N is an n-pure submodule of M if there exist an exact
sequence,

0 −→ Fn −→ · · · −→ F1 −→ F0 −→ M −→ 0,

with each Fk flat and a commutative diagram with exact rows
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..
..0 ..Sn ..· · · ..S1 ..S0 ..N ..0

..0 ..Fn ..· · · ..F1 ..F0 ..M ..0

such that each Sk → Fk is an inclusion with Sk a pure submodule.

Lemma 6.4. Let κ be an infinite regular cardinal satisfying κ >
Card (R), M ∈ Fn, with a flat resolution

(1) =
(
0 −→ Fn

fn−→ Fn−1 −→ · · · −→ F1
f1−→ F0

f0−→ M −→ 0
)
,

and let N be a κ-small submodule of M . Then there exists an n-pure
submodule N ′ of M containing N with a resolution,

0 −→ S′
n −→ · · · −→ S′

1 −→ S′
0 −→ N ′ −→ 0,

such that S′
k is a κ-small and pure submodule of Fk, for every 0 ≤ k ≤

n. Moreover, if N is an n-pure submodule of M with a resolution,

0 −→ Sn −→ · · · −→ S1 −→ S0 −→ N −→ 0,

as in Definition 6.3, then the above resolution of N ′ can be constructed
in such a way that it contains the given resolution of N .

Proof. For every x ∈ N , there exists yx ∈ F0 such that x = f0(yx).
Consider the set

Y := {yx : x ∈ N and f0(yx) = x}

and the submodule ⟨Y ⟩ ⊆ F0. Since ⟨Y ⟩ is κ-small, there exists a
κ-small pure submodule S0(1) ⊆ F0 such that ⟨Y ⟩ ⊆ S0(1), by [7,
Lemma 5.3.12]. Note that f0(S0(1)) ⊇ N . The rest of the proof follows
by applying the zigzag procedure as in the proof of Lemma 3.24. Next,
we have for each 0 ≤ k ≤ n a collection of modules (Sk(i) : i ≥ 0) such
that each Sk(i) is a pure submodule of Fk and such that

(2) = (0 −→ S′
n −→ S′

n−1 −→ · · · −→ S′
1 −→ S′

0 −→ N ′ −→ 0),

is exact, where

S′
k =

∪
i≥0

Sk(i)



996 MARCO A. PÉREZ

is a κ-small and pure submodule of Fk (and so it is flat) and Q =
CoKer (f1|S′

1
) ⊆ M . If we take the quotient of (1) by (2), we get a flat

resolution of M/N ′ of length n (note that the quotient of a flat module
by a pure submodule is also flat). The rest of the statement follows as
in Lemma 5.8. �

Regarding the class Fn, the pair (Fn, (Fn)
⊥) is perfect. A cotorsion

pair (A,B) in an Abelian category C is said to be perfect if A is a
covering class and B is an enveloping class, i.e., every module has an
A-cover and a B-envelope. A map f : A → X is said to be an A-cover
of X if A ∈ A and if the following conditions are satisfied:

(1) If f ′ : A′ → X is another map with A′ ∈ A, then there exists a
map h : A′ → A (not necessarily unique) such that f ′ = f ◦ h.

(2) If A′ = A and f ′ = f in (1), then every map h : A → A
satisfying the equality f ′ = f ◦ h is an automorphism of A.

The notion of B-envelope is dual. In [11, Corollary 5.32], the
authors prove that if (A,B) is a complete cotorsion pair such that A is
closed under direct limits, then (A,B) is perfect. Since the bi-functors

TorRi (−,−) preserve filtered colimits, it follows that the class Fn is
closed under direct limits, and hence, we can conclude that every left
R-module has an n-flat cover (the case n = 0 was known as the flat
cover conjecture until 2000 when it was proven to be true by Bican, El
Bashir and Enochs in [3]). We shall see that this result is also valid in
the category Ch (RMod) of chain complexes of modules.

First, we need to show that (F̃n, (F̃n)
⊥) is complete. In [8, Def-

inition 4.1.2], flat chain complexes are defined as those complexes
F ∈ Ob (Ch (RMod)) such that F is exact and Zm(F ) is a flat mod-
ule for every m ∈ Z, or equivalently, those F such that the functor
−⊗F : Ch (ModR) → Ab is left exact (see [8, Proposition 5.1.2]). As
shown in Proposition 3.6, a chain complex X is n-flat if, and only if, it
is exact and Zm(X) ∈ Fn, for every m ∈ Z.

In [1, Proposition 3.1], the authors prove that each element of a flat
chain complex F is contained in a κ-small flat subcomplex L ⊆ F such
that the quotient F/L is also flat. Using the procedure in [1], along
with Lemma 6.4, we obtain Theorem 6.5.
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Theorem 6.5. Let κ be an infinite regular cardinal satisfying κ >

Card (R). For any n-flat complex X ∈ F̃n and any element x ∈ X,
i.e., x ∈ Xk for some k ∈ Z, there exists an exact subcomplex L ⊆ X
with x ∈ L such that Zm(L) is a k-small and n-pure submodule of
Zm(X), for every m ∈ Z.

Note that if L is the complex provided by the previous result, we
have a short exact sequence 0 → L → X → X/L → 0 in Ch (RMod).
Note that X/L is exact, since L and X are exact and the class of exact
complexes is thick. By Lemma 3.5, we have the short exact sequence

0 −→ Zn(L) −→ Zn(X) −→ Zn(X/L) −→ 0.

It follows that
Zn(X/L) ∼= Zn(X)/Zn(L),

which is n-flat since Zn(X) is n-flat and Zn(L) is an n-pure submodule

of Zn(X). Therefore, X/L ∈ F̃n. By Proposition 3.25, F̃n is filtered

by the class (F̃n)
≤κ. So Propositions 2.5, 3.25 and Eklof and Trlijaf’s

theorem imply that the pair (F̃n, (F̃n)
⊥) is complete.

We have that

(dg F̃n ∩ E , (F̃n)
⊥) and (dg F̃n, (F̃n)

⊥ ∩ E)

are compatible cotorsion pairs where the former is complete: by Propo-
sition 4.3, the latter is also complete. Therefore, Theorem 6.1 follows.
As in the n-projective model structure, note that we can use [9, Corol-
lary 3.8] to describe the fibrant objects as those chain complexes Y
such that each Ym is right orthogonal to the class Fn and such that
every chain map X → Y is homotopic to 0 whenever X is an n-flat
complex.

For n = 0, the flat model structure is monoidal, as proved by
Gillespie in [9, Corollary 5.1]. For n > 0, the n-flat model structure
is not monoidal in general. The same counterexample used for the
projective case works.

Let Tori(−,−) be the left derived functors of −⊗−. For every fixed
chain complexX ∈ Ob (Ch (ModR)), the functor Tor1(X,−) preserves
direct limits. This is a consequence of [8, Proposition 4.2.1 5]. It

follows that the class F̃n is closed under direct limits, and hence the
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pair (F̃n, (F̃n)
⊥) is perfect by [11, Corollary 5.32]. Hence, we obtain

the following result.

Corollary 6.6. Every chain complex in Ch (RMod) has an n-flat
cover.

The first approaches for complexes over a commutative Noetherian
ring with finite Krull dimension are given in [8, subsections 4.3, 4.4] in
the case n = 0.

We finish this section by giving a characterization of pure subcom-
plexes of flat complexes. We recall from [9, Definition 4.3] that a
complex S in Ch (RMod) is a pure subcomplex of a complex X if the
sequence

0 −→ Y⊗S −→ Y⊗X

is exact, for every Y ∈ Ob (Ch (ModR)).

Proposition 6.7. S is a pure subcomplex of a flat complex F if, and
only if, S is exact and Zm(S) is a pure submodule of Zm(F ), for every
m ∈ Z.

Proof. Suppose S is a pure subcomplex of F . Then S is flat by
[9, Lemma 4.7], and so it is exact. It suffices to show Zm(S) is a
pure submodule of Zm(F ). Let M be a right R-module. Consider
the sphere complex S0(M). Since S is a pure subcomplex of F , the
sequence

0 −→ S0(M)⊗S −→ S0(M)⊗F

is exact. At each m ∈ Z, we have that (S0(M) ⊗ X)m = M ⊗R Xm,
for every complex X ∈ Ob (Ch (RMod)).

Recall the boundary map ∂
S0(M)⊗X
m+1 is given by

y ⊗ x 7−→ y ⊗ ∂X
m+1(x)

on generators. It is easy to see that

M ⊗R Bm(X) = Bm(S0(M)⊗X).

Then it follows that the maps

M ⊗R Bm(X) −→ M ⊗R Xm
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are injective, so

(S0(M)⊗X)m =
(S0(M)⊗X)m
Bm(S0(M)⊗X)

=
M ⊗R Xm

M ⊗R Bm(X)
∼= M⊗R

Xm

Bm(X)
.

Since S and F are exact, we get

(S0(M)⊗S)m ∼= M ⊗R Zm−1(S)

and

(S0(M)⊗F )m ∼= M ⊗R Zm−1(F ).

For every m ∈ Z,

0 −→ (S0(M)⊗S)m −→ (S0(M)⊗F )m

is exact, and so is

0 −→ M ⊗R Zm(S) −→ M ⊗R Zm(F )

by the previous isomorphisms. Hence, Zm(S) is a pure submodule of
Zm(F ).

Now suppose S is an exact subcomplex of F such that Zm(S) is a
pure submodule of Zm(F ). Let A be a complex in Ch (ModR). We
want to show the sequence

0 −→ A⊗S −→ A⊗F

is exact. Since Zn−k(S) is a pure submodule of Zn−k(F ), we have that
the sequence

0 −→ Ak ⊗R Zn−k(S) −→ Ak ⊗R Zn−k(F )

is exact in RMod for all k, n ∈ Z. Since S and F are exact complexes,
we obtain the following commutative diagram where the top and the
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bottom rows are exact (recall Lemma 3.5):

..

. ..0 ..0

..0 ..Ak ⊗R Zn−k(S) ..Ak ⊗R Zn−k(F )

..0 ..Ak ⊗R Sn−k ..Ak ⊗R Fn−k

..0 ..Ak ⊗R Zn−k−1(S) ..Ak ⊗R Zn−k−1(F )

. ..0 ..0

The columns of this diagram are also exact since the cycles Zn−k(S)
and Zn−k(F ) are flat modules. Since the class of short exact sequences
is closed under extensions,

0 −→ Ak ⊗R Sn−k −→ Ak ⊗R Fn−k

is exact. It follows that

0 −→ (A⊗ S)n −→ (A⊗ F )n

is exact for every n ∈ Z. Then

0 −→ A⊗ S −→ A⊗ F

is an exact sequence of complexes, and so each

0 −→ Bn(A⊗ S) −→ Bn(A⊗ F )

is exact in RMod . Since the class of short exact sequences is thick, we
have that, for each n ∈ Z, the sequence,

0 −→ (A⊗ S)n
Bn(A⊗ S)

−→ (A⊗ F )n
Bn(A⊗ F )

,

is also exact in RMod . Hence,

0 −→ A⊗S −→ A⊗F

is exact in Ch (RMod). �
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Recall from Section 4 that the extension groups ExtiR(M,N) can be
computed by resolving M by the class of n-projective modules. The
arguments presented there carry over to the n-flat model structure, so
ExtiR(M,N) can be obtained by resolving M by n-flat modules, and N
by the class (Fn)

⊥.

Consider the class F0 of flat modules. In [1], it is proven that the

classes dw F̃0 and ex F̃0 are filtered by

(dw F̃0)
≤κ and (ex F̃0)

≤κ,

respectively. It follows that the pairs

(dw F̃0, (dw F̃0)
⊥) and (ex F̃0, (ex F̃0)

⊥)

are complete. Since these two cotorsion pairs turn out to be com-
patible by Proposition 5.6, we have a unique Abelian model structure
on Ch (RMod), which shall be referred to as the degreewise flat model
structure, where the (trivial) cofibrations are monomorphisms with cok-

ernels in dw F̃0 (in ex F̃0), the (trivial) fibrations are the epimorphisms

with kernels in (ex F̃0)
⊥ (in (dw F̃0)

⊥), and the weak equivalences are
quasi-isomorphisms. This model structure was discovered by Gillespie
[10].

To extend this model structure to n-flat modules, we show that the

induced cotorsion pairs (dw F̃n, (dw F̃n)
⊥) and (ex F̃n, (ex F̃n)

⊥) are
complete, applying a modified version of the zigzag procedure, which

also works to show the completeness of the pair (dw P̃n, (dw P̃n)
⊥),

without assuming R Noetherian as in Section 5.

In what follows, we shall focus on proving that every chain complex

in ex F̃n is filtered by the class (ex F̃n)
≤κ of κ-small exact degreewise

n-flat complexes. The proof of the following theorem is based on the
arguments given in [1, Proposition 4.1] (where the authors proved the
case n = 0).

Theorem 6.8. Let X ∈ ex F̃n and x ∈ X, i.e., x ∈ Xm for some
m ∈ Z. Then there exists an exact subcomplex Y of X with x ∈ Y such
that Ym is a κ-small and n-pure submodule of Xm, for every m ∈ Z.

Proof. Assume, without loss of generality, that x ∈ X0. Consider
the submodule ⟨x⟩ ⊆ X0. Since X0 ∈ Fn and ⟨x⟩ is κ-small, we can
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embed ⟨x⟩ into a κ-small and n-pure submodule Y 1
0 ⊆ X0 (Lemma 6.4).

We can construct a κ-small and exact subcomplex

L1 := (· · · −→ L1
2 −→ L1

1 −→ Y 1
0 −→ ∂0(Y

1
0 ) −→ 0 −→ · · · ),

since X is exact. The fact that ∂0(Y
1
0 ) is κ-small implies that it is

contained in a κ-small and n-pure submodule Y 2
−1 ⊆ X−1. As above,

we can construct a κ-small and exact subcomplex of the form

L2 := (· · · −→ L2
2 −→ L2

1 −→ L2
0 −→ Y 2

−1−→ ∂−1(Y
2
−1) −→ 0 −→ · · · ).

Note that it is possible to construct L2 containing L1. Now embed L2
0

into a κ-small and n-pure submodule Y 3
0 ⊆ X0. Again, construct a

subcomplex

..
..L3 := ( · · · ..L3

2 ..L3
1 ..Y 3

0 ..Y 2
−1 + ∂0(Y

3
0 )

. ..∂−1(Y
2
−1) ..0 ..· · · )

containing L2, which is κ-small and exact. Now let Y 4
1 be a κ-small

and n-pure submodule of X1 containing L3
1, and construct an exact

and κ-small complex L4 containing L3 of the form

..
..L4 := ( · · · ..L4

2 ..Y 4
1 ..Y 3

0 + ∂1(Y
4
1 ) ..Y 2

−1 + ∂0(Y
3
0 )

. ..∂−1(Y
2
−1) ..0 ..· · · )

Embed Y 3
0 + ∂1(Y

4
1 ) into a κ-small and n-pure submodule Y 5

0 ⊆ X0,
and construct an exact and κ-small subcomplex

..
..L5 := ( · · · ..L5

2 ..L5
1 ..Y 5

0 ..Y 2
−1 + ∂0(Y

5
0 )

. ..∂−1(Y
2
−1) ..0 ..· · · )

containing L4. In a similar way, construct κ-small and exact complexes

L6 :=
(
· · · −→ L6

1 −→ L6
0 −→ Y 6

−1 −→ ∂−1(Y
6
−1) −→ 0 −→ · · ·

)
and

L7 :=
(
· · ·−→ L7

1−→ L7
0−→ L7

−1−→ Y 7
−2−→ ∂−2(Y

7
−2)−→ 0 −→ · · ·

)
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such that Y 6
−1 is a κ-small and n-pure submodule of X−1 containing

Y 2
−1 + ∂0(Y

5
0 ), and Y 7

−2 is a κ-small and n-pure submodule of X−2

containing ∂−1(Y
6
−1).

Keep repeating this procedure, and set

Y :=
∪
n≥1

Ln, where Yi :=
∪
n≥1

(Ln)i.

It is clear that Y is an exact complex. We check that each Ym is a κ-
small and n-pure submodule of Xm. It suffices to show the case m = 0.
We have

Y0 = Y 1
0 ∪ L2

0 ∪ Y 3
0 ∪ (Y 3

0 + ∂1(Y
4
1 )) ∪ Y 5

0 ∪ · · ·
= Y 1

0 ∪ Y 3
0 ∪ Y 5

0 ∪ · · ·

is κ-small. Consider a left flat resolution of length n,

(1) = (0 −→ Fn −→ · · · −→ F1 −→ F0 −→ X0 → 0).

By Lemma 6.4, we can construct a subresolution

0 −→ S1
n −→ · · · −→ S1

1 −→ S1
0 −→ Y 1

0 −→ 0,

where ⟨x⟩ ⊆ Y 1
0 , and each S1

k is a κ-small and pure submodule of Fk.
As in the previous case, applying Lemma 6.4 infinitely many times, we
can get an ascending chain of subresolutions

0 −→ S1
n −→ · · · −→ S1

1 −→ S1
0 −→ Y 1

0 −→ 0,

0 −→ S3
n −→ · · · −→ S3

1 −→ S3
0 −→ Y 3

0 −→ 0,

0 −→ S5
n −→ · · · −→ S5

1 −→ S5
0 −→ Y 5

0 −→ 0, . . . .

Taking the union of these subresolutions yields an exact sequence

(2) =

(
0 −→

∪
j

Sj
n −→ · · · −→

∪
j

Sj
1 −→

∪
j

Sj
0 −→ Y0 −→ 0

)
,

where each
∪

j S
j
k is a κ-small and pure submodule of Fk (so it is

flat). �

If Y is the subcomplex of X given by the previous theorem, then we
have

Ym ∈ (Fn)
≤κ and Xm/Ym ∈ Fn.
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(Take the quotient of (1) by (2).) It follows that

Y ∈ (ex F̃n)
≤κ and X/Y ∈ ex F̃n.

Remark 6.9. The arguments given in the previous proof also show
that every exact degreewise n-projective complex has a filtration by

the class ex P̃n(κ). Proceed in the same way as in the previous proof,
using Lemma 5.8, until Y is constructed. Consider

(1) =

(
0 −→

⊕
i∈In

P i
n −→ · · · −→

⊕
i∈I1

P i
1 −→

⊕
i∈I0

P i
0 −→ X0 −→ 0

)
,

a projective resolution of X0 of length n, where each direct sum consists
of countably generated projective modules. By Lemma 5.8, we can
construct Y 1

0 containing ⟨x⟩ with a subresolution of the form

(2) =

(
0 −→

⊕
i∈I1

n

P i
n −→ · · · −→

⊕
i∈I1

1

P i
1 −→

⊕
i∈I1

0

P i
0 −→ Y 1

0 −→ 0

)
,

where each I1k ⊂ Ik is κ-small. Note that the quotient of (1) by (2)
yields a projective resolution of X0/Y

1
0 of length n, so X0/Y

1
0 ∈ Pn.

Using Lemma 5.8 again, we can construct a subresolution containing
(2), say,

(3) =

(
0 −→

⊕
i∈I3

n

P i
n −→ · · · −→

⊕
i∈I3

1

P i
1 −→

⊕
i∈I3

0

P i
0 −→ Y 3

0 −→ 0

)
,

such that X0/Y
3
0 ∈ Pn. Keep applying Lemma 5.8 to get an ascending

chain of subresolutions of (1):

0 −→
⊕
i∈I1

n

P i
n −→ · · · −→

⊕
i∈I1

1

P i
1 −→

⊕
i∈I1

0

P i
0 −→ Y 1

0 −→ 0,

0 −→
⊕
i∈I3

n

P i
n −→ · · · −→

⊕
i∈I3

1

P i
1 −→

⊕
i∈I3

0

P i
0 −→ Y 3

0 −→ 0,

0 −→
⊕
i∈I5

n

P i
n −→ · · · −→

⊕
i∈I5

1

P i
1 −→

⊕
i∈I5

0

P i
0 −→ Y 5

0 −→ 0, . . . .
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Now take the union of this ascending chain, and get the exact
complex

(4) =

(
0 −→

⊕
i∈

∪
j Ij

n

P i
n −→ · · · −→

⊕
i∈

∪
j Ij

0

P i
0 −→ Y0 −→ 0

)
.

Since each
∪

j I
j
k is a κ-small subset of Ik, we have that the previous

sequence is a nice κ-small projective subresolution of (1). Note also
that the quotient of (1) by (4) yields a projective resolution of X0/Y0 of
length n. Then Y0 ∈ Pn(κ). In a similar way, we have that Ym ∈ Pn(κ)
and Xm/Ym ∈ Pn, for every m ∈ Z.

By the previous result, we can use transfinite induction to show that

every complex in ex F̃n is filtered by the class (ex F̃n)
≤κ. The same

holds for the class Pn. Using Proposition 2.5 and Eklof and Trlifaj’s
theorem, we have that

(ex P̃n, (ex P̃n)
⊥) and (ex F̃n, (ex F̃n)

⊥)

are complete cotorsion pairs. In a similar way, one can prove that the
same holds for the pairs

(dw P̃n, (dw P̃n)
⊥) and (dw F̃n, (dw F̃n)

⊥).

Furthermore,

(dw F̃n, (dw F̃n)
⊥) and (ex F̃n, (ex F̃n)

⊥)

are compatible by Proposition 5.6. Therefore, Theorem 6.2 follows.
Similarly, we have another proof of Theorem 5.1.

Remark 6.10. There are many examples of rings R for which flat R-
modules have finite projective dimension. In some of these cases, the
n-projective model structures are related to the flat model structure,
in the sense that every cofibrant object in the latter model structure is
also cofibrant in the former one. This can be stated in a more formal
way using the notion of Quillen functors.

Let
F : C −→ D and G : D −→ C
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be a pair of functors between model categories C and D, and

φ : HomD(F (−),−) −→ Hom C(−, G(−))

a natural isomorphism, i.e., (F,G, φ) is an adjunction. The functor F is
a left Quillen functor if it preserves cofibrations and trivial cofibrations.
The adjunction (F,G, φ) is called a Quillen adjunction if F is a left
Quillen functor. Finally, a Quillen adjunction (F,G, φ) is called a
Quillen equivalence if, for all cofibrant X in C and fibrant Y in D,
a map

f : F (X) −→ Y

is a weak equivalence in D if and only if φ(f) : X → G(Y ) is a weak
equivalence in C.

(1) Let R be a left perfect ring. Then a module is projective if and
only if it is flat. In this case, the n-projective and n-flat model
structures coincide, for every non-negative integer n.

(2) Let R be a countable ring. By [17], every flat module has projective
dimension 1. Notice that this implies that every (differential
graded) flat complex is (differential graded) 1-projective. Set C
and D as the category Ch (RMod) equipped with the flat and 1-
projective model structures, respectively. It follows that, if we set
F and G as the identity on the objects and maps of Ch (RMod),
then (F,G) is a Quillen equivalence.

(3) The finitistic projective dimension of a ring R is defined as the
supremum

FPD(R) := {pd (M) : M has finite projective dimension}.

Let R be a ring such that FPD (R) is finite, and let n = FPD(R).
By [16], any R-module of finite flat dimension has finite projective
dimension, in this case ≤ n. Fix a non-negative integer k ≤ n.
Notice that every (differential graded) k-flat complex is (differential
graded) n-projective. It follows that the k-flat and n-projective
model category structures are Quillen equivalent.

We conclude this remark by noting that (1), (2), (3) and (4) are also
valid for the corresponding degreewise homological model structures.

Gillespie showed in [10, subsection 5.2] that the degreewise flat
model structure is not monoidal on (Ch (RMod),⊗) in general. He



HOMOLOGICAL DIMENSIONS 1007

considered the category of complexes over the ring Z4, where

Y = · · · −→ Z4
×2−→ Z4

×2−→ Z4 −→ · · ·

is an exact degreewise flat complex, but Y ⊗ Y /∈ ex F̃0, since it is
not even exact. This counterexample also works to show that the
degreewise n-flat model structure is not monoidal for every n > 0.

One problem with the ring Z4 considered by Gillespie is that Z4 has
infinite weak dimension. Z2 is a Z4-module with infinite flat dimension,
since TorZ4

k (Z2,Z2) ∼= Z2 ̸= 0 for every k ≥ 0 [20, Chapter 3, Example
9]. This “inconvenience”can be solved if we impose an extra condition
on R.

Proposition 6.11. Let R be a commutative ring with weak dimension
at most 1. Then the degreewise projective and degreewise flat model
structures are monoidal.

We know that (Ch (RMod),⊗) is a closed symmetric monoidal
category with unit S0(R). Flat objects in a monoidal category (C,⊗)
are defined as those X ∈ Ob(C) such that the functor −⊗X : C → C is
exact. Previously, we have considered flat objects in Ch (RMod) with
respect to ⊗. For the rest of this section, we shall say that a complex
F is flat with respect to ⊗ if the functor −⊗ F is exact.

We only prove Proposition 6.11 for the flat case (since the projective
case follows similarly). By [13, Theorem 4.2], it suffices to verify the
following conditions:

(1) Every complex in dw F̃0 is flat with respect to ⊗.

(2) If X,Y ∈ dw F̃0, then so is X ⊗ Y .

(3) If X,Y ∈ dw F̃0 and one of them is exact, then X⊗Y is exact.

(4) S0(R) ∈ dw F̃0.

Note that condition (4) is immediate, and (2) is easy to verify. To
show (1), we establish the following characterization.

Proposition 6.12. A chain complex X ∈ Ch (RMod) over a commu-
tative ring R is flat with respect to ⊗ if, and only if, it is degreewise
flat.
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Proof. Let Y be a chain complex such that −⊗Y is exact. Consider
an exact sequence

0 −→ A −→ B −→ C −→ 0 in RMod .

Then we obtain an exact sequence

0 −→ S0(A)⊗Y −→ S0(B)⊗Y −→ S0(C)⊗Y −→ 0 in Ch (RMod).

So, for each n ∈ Z, we have the short exact sequence

0 −→ A⊗R Yn −→ B ⊗R Yn −→ C ⊗R Yn −→ 0.

Now suppose Y ∈ dw F̃0. Consider a short exact sequence of chain
complexes

0 −→ A
α−→ B

β−→ C −→ 0,

and apply −⊗Y . We need to check that, for every n ∈ Z, the sequence

0 −→ (A⊗ Y )n
(α⊗Y )n−→ (B ⊗ Y )n

(β⊗Y )n−→ (C ⊗ Y )n −→ 0

is exact. In other words, we shall see

..
..(∗)=(0 ..

⊕
k∈Z Ak⊗R Yn−k

..
⊕

k∈Z Bk⊗R Yn−k ..
⊕

k∈Z Ck⊗R Yn−k ..0)

.⊕
k∈Z αk ⊗R Yn−k .

⊕
k∈Z βk ⊗R Yn−k

is exact. For every k ∈ Z, the sequence

0 −→ Ak ⊗R Yn−k
αk⊗RYn−k−→ Bk ⊗R Yn−k

βk⊗Yn−k−→ Ck ⊗R Yn−k −→ 0

is exact since Yn−k is flat. It follows (∗) is exact since the direct sum of
exact sequences is exact. (Recall that homology commutes with direct
sums.) �

It is only left to verify (3). If X and Y are degreewise flat chain
complexes over a commutative ring R with weak dimension at most 1,
then by [20, Theorem 9.16] we have the following Künneth exact
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sequence for every k ∈ Z:

..
..0 ..

⊕
i+j=k Hi(X)⊗Hj(Y ) ..Hk(X ⊗ Y )

. ..
⊕

i+j=k−1 Tor
R
1 (Hi(X),Hj(Y )) ..0

If, in addition, X or Y is exact, then it follows that X⊗Y is also exact.
Therefore, Proposition 6.11 follows.
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