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PARTIAL CROSSED PRODUCTS AS
EQUIVALENCE RELATION ALGEBRAS

VIVIANE M. BEUTER AND DANIEL GONÇALVES

ABSTRACT. For a free partial action of a group in a
set we realize the associated partial skew group ring as an
algebra of functions with finite support over an equivalence
relation and we use this result to characterize the ideals in
the partial skew group ring. This generalizes, to the purely
algebraic setting, the known characterization of partial C∗-
crossed products as groupoid C∗-algebras. For completeness
we include a new proof of the C∗ result for free partial
actions.

1. Introduction. The groupoid approach to C∗-algebras given by
Renault in [18] is one of the main concepts in the modern theory
of operator algebras, as an ever growing number of C∗-algebras may
be realized and studied as groupoid C∗-algebras (AF algebras, Cuntz
and Cuntz-Krieger algebras, tilings C∗-algebras are just a few we can
mention, see [1, 8, 9]). Fourteen years after the work of Renault,
the notion of partial actions was introduced by Exel (see [4]) and
McClanahan (see [14]), and, as many C∗-algebras were expressed
and studied as partial crossed products (AF algebras, Cuntz-Krieger
algebras of infinite matrices. Bunce-Deddens algebras are one of a few
examples we can mention (see [1]). Due to these researchers, the theory
grew in importance. In 2004, Abadie (see [1]) established that every
partial crossed product of a commutative C∗-algebra can be seen as a
groupoid C∗-algebra. In 2005, Dokuchaev and Exel (see [3]) started
the study of purely algebraic partial actions and their associated partial
skew group rings, providing a new insight into the theory of partial
actions, which was followed by a broadening of the knowledge in the
field, see [2, 3, 5, 7, 12, 19], for example.
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It is interesting to note that many results in the theory of C∗ par-
tial crossed products have equivalent versions in the purely algebraic
setting and, as the theory develops, the interaction between the areas
increases. Although the study of partial skew group rings is still un-
derdeveloped when compared with its C∗-counterpart, we can mention
a few examples where the interaction between the areas seems to be
beneficial to both. For example, Proposition 2.1 of [6] (where partial
actions of countable groups are characterized over second countable,
compact spaces whose envelope space is Hausdorff) can be obtained,
see [6, Remark 2.2], from the algebraic version described in [3]. Also,
conditions for simplicity of skew group rings and applications to topo-
logical dynamics (and hence to the associated C∗-algebras) have been
studied in [15, 16]. Some of these results have recently been general-
ized to partial skew group rings, with applications to partial actions on
compact sets (see [10, 13]).

In this paper, we intend to give purely algebraic versions of some
known results in the theory of C∗- partial crossed products. In
particular, to give the reader some motivation, we start with a simpler,
and algebraic in flavor, proof of Abadie’s characterization of C∗-partial
crossed products as groupoid algebras, for the case of free partial
actions of countable groups acting on commutative C∗-algebras. In
this case the groupoid can be seen as an étale equivalence relation and,
as a consequence, the construction of the groupoid C∗-algebra falls
within reach of a much bigger audience. In the second part of the
paper we generalize the well-known relation between partial dynamical
systems and C∗-partial dynamical systems to the purely algebraic level.
We then proceed to generalize, to the algebraic level, Abadie’s result,
that is, we show that the partial skew group ring associated to a free
algebraic partial action on a set is isomorphic to an algebra of functions
with finite support over an equivalence relation. We finish the paper
showing how to use the characterization just mentioned to obtain a one-
to-one correspondence between ideals and R-invariant subsets. In light
of recent results characterizing Leavitt path algebras as partial skew
group rings, see [12], it is interesting to note that one can use this
last correspondence to derive the known ideal structure (see [20]) of
Leavitt path algebras associated to finite graphs with no cycles. Before
we proceed, we recall, for the reader’s convenience, some key definitions
below.
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Definition 1.1. A partial action of a group G on a set Ω is a pair
θ = ({∆t}t∈G, {ht}t∈G), where, for each t ∈ G, ∆t is a subset of Ω and
ht : ∆t−1 → ∆t is a bijection such that:

(1) ∆e = Ω and he is the identity in Ω;
(2) ht(∆t−1 ∩∆s) = ∆t ∩∆ts;
(3) ht(hs(x)) = hts(x), x ∈ ∆s−1 ∩∆s−1t−1 .

If Ω is a topological space, we also require that each ∆t be an open
subset of Ω and that each ht be a homeomorphism of ∆t−1 onto ∆t.

Analogously, a pair θ = ({Dt}t∈G, {ht}t∈G) is a partial action of G
on an algebra A if each Dt is a closed two-sided ideal and each ht is an
isomorphism of Dt−1 onto Dt. In the case where A is a C∗-algebra we
also require that each ht be a *-isomorphism.

Definition 1.2. A partial action ({∆t}t∈G, {ht}t∈G) is said to be free
if, for all x ∈ Ω, ht(x) = x implies that t = e, where e is the group
unit.

It is well known that the category of partial actions on a Hausdorff
locally compact space X is equivalent to the category of partial actions
on the C∗-algebra of the continuous functions vanishing at infinity
C0(X) (see [1, Proposition 1.5], for example). In our work, we will
use that, given a partial action ({Xt}t∈G, {ht}t∈G) of G on X, then
({C0(Xt)}t∈G, {αt}t∈G), where αt : C0(Xt−1) → C0(Xt), given by
αt(f) = f ◦ h−1

t , is a partial action of G on C0(X). Next we recall
the definition of the partial crossed product.

Definition 1.3. Let θ = ({Dt}t∈G, {αt}t∈G) be a partial action of G
on the C∗-algebra A. Then the partial crossed product of A by G,
denoted by Aoα G, is the enveloping C∗-algebra of L, where L is the
normed *-algebra of all finite sums of the form

L =

{∑
t∈G

atδt : at ∈ Dt

}
⊆ l1(G,A),

where, for a = (at)t∈G ∈ L and b = (bt)t∈G ∈ L, multiplication,
involution and norm are defined by (a ∗ b)γ =

∑
t∈G αt(αt−1(at)bt−1γ),

(a∗)γ = αγ(a
∗
γ−1) and ∥a∥ =

∑
t∈G ∥at∥.
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Another key definition we need to recall is that of an étale equiv-
alence relation. In the language of [18] this is an r-discrete groupoid
with counting measure as a Haar system. In our context, an étale
equivalence relation R ⊆ X×X, where X is locally compact Hausdorff,
is one that can be equipped with two maps, called range and source,
defined by r(x, y) = x and s(x, y) = y such that R is σ-compact,
∆ = {(x, x) ∈ R : x ∈ X} is an open subset of R and, for all (x, y) ∈ R,
there exists a neighborhood U of (x, y) in R such that r restricted to U
and s restricted to U are homeomorphisms from U onto open subsets
of X, see also [17].

Finally, given an étale equivalence relation R over a locally com-
pact set X, the groupoid algebra associated to it is obtained as the
completion, over a certain norm (see [8, 18]), of the *-algebra of the
continuous functions with compact support in R, Cc(R), where the
*-algebra operations are defined, for f, g ∈ Cc(R), as

f ∗ g(x, z) =
∑
y∈[x]

f(x, y)g(y, z)

and
f∗(x, y) = f(y, x),

where [x] denotes the equivalence class of x.

2. C∗-algebra level. Let ({Xt}t∈G, {ht∈G}) be a free partial action
of a countable group G on a locally compact Hausdorff space X such
that Xt is σ-compact for every t. In this section, we prove that the
partial crossed product C0(X) oα G associated to the corresponding
partial action ({C0(Xt)}t∈G, {αt}t∈G) (as defined in the introduction)
is isomorphic to the full groupoid C∗-algebra C∗(R), where R is defined
below.

Definition 2.1. We say that x is equivalent to y, x ∼ y, if there exists
t ∈ G such that x ∈ Xt−1 and ht(x) = y.

Remark 2.2. Notice that the elements of R are of the form (x, ht(x))
and, since the action is free, for each (x, y) ∈ R, there exists one and
only one t ∈ G such that (x, y) = (x, ht(x)).
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Of course, we are still missing the key ingredient before we can
proceed. That is the topology of R. We stress that this is not the
topology inherited from the product topology of X × X. Instead, to
obtain an étale equivalence relation, we give R the inherited topology
from X×G (with the product topology) via the map (x, ht(x)) ∈ R 7→
(x, t) ∈ X×G. Notice that, since the action is free, this map is injective.
So, a sequence {(xn, htn(x)} converges to (x, ht(x)) ∈ R if and only if
{xn} converges to x in X and tn are eventually all equal to t. With
this topology, we can now prove that R is étale.

Proposition 2.3. R is an étale equivalence relation.

Proof. Before we show that R is étale we should prove that R is an
equivalence relation. It is straightforward to check that R is symmetric
and reflexive. We show that R is transitive below.

If x ∼ y and y ∼ z, then there exist t, s ∈ G such that x ∈ Xt−1 ,
y ∈ Xt ∩Xs−1 , z ∈ Xs, ht(x) = y and hs(y) = z. This implies that

x ∈ h−1
t (Xt ∩Xs−1) ⊆ X(st)−1 ,

z ∈ hs(Xs−1 ∩Xt) = Xs ∩Xst

and

z = hs(y) = hs(ht(x)) = hst(x).

Taking r = st, we have that x ∈ Xr−1 , z ∈ Xr and hr(x) = z. We
conclude that x ∼ z.

Now we prove that R is étale. By hypothesis, we have that Xt is
σ-compact for all t ∈ G. Then, for each t, there exists a countable
family of compact subsets of Xt, {Kt

n}n∈N, such that

Xt =
∪
n∈N

Kt
n.

We conclude that the sets

Ut,n := {(x, ht(x)) : x ∈ Kt
n}

are compact and

R =
∪
t∈G
n∈N

Ut,n
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is σ-compact. That the diagonal △ = {(x, he(x)) : x ∈ X} = Ue is
open in R is clear. Finally, if (x, ht(x)) ∈ R, then Ut := {(z, ht(z)) :
z ∈ Xt−1} is an open neighborhood of (x, ht(x)) and the range r : Ut →
Xt−1 and source s : Ut → Xt maps are homeomorphisms. �

Remark 2.4. Notice that, since the partial action ({Xt}t∈G, {ht∈G})
is free, the map (x, y) 7→ (y, t, x), where t is the unique element of G
such that ht(x) = y, is an isomorphism from R onto G, where G is the
groupoid constructed in [1].

We can now consider C∗(R) and show that it is isomorphic to
C0(X) oα G. Our proof relies on the theory of core sub-algebras, so
that, by [6, Proposition 3.4], it is enough to show that L and Cc(R)
are dense core sub-algebras of C0(X) oα G and C∗(R), respectively,
and that they are isomorphic *-algebras. For the reader’s convenience,
we recall the definition of a core sub-algebra below.

Definition 2.5. Let A be a C∗-algebra, and let B ⊆ A be a (not
necessarily closed) *-subalgebra. We say that B is a core subalgebra of
A when every representation1 of B is continuous relative to the norm
induced from A.

As a consequence of our next result we obtain that L is a core sub-
algebra of C0(X)oα G. For the analogous result concerning Cc(R) we
refer the reader to [6, 18].

Proposition 2.6. Let ({Dt}t∈G, {αt∈G}) be a partial action of a
discrete group G over the C∗-algebra A. Then L is a core sub-algebra
of Aoα G.

Proof. Let λ be a representation of (L, |∥ · ∥|). We have to show that
∥λ(a)∥ ≤ |∥a∥| for all a ∈ L, where

|∥a∥| = sup
π
{∥π(a)∥ :π is a representation such that ∥π(a)∥≤∥a∥l1}.

Notice that A0 = {aδ0 ∈ L : a ∈ A}, equipped with the L operations,
is a C∗-algebra (isomorphic to A) and so ∥λ(aδ0)∥ ≤ ∥aδ0∥l1 for all
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aδ0 ∈ L. It follows that

∥λ(atδt)∥2 = ∥λ(atδt)λ∗(atδt)∥ = ∥λ((atδt)(atδt)∗)∥
= ∥λ((atδt)αt−1(a∗t )δt−1)∥ = ∥λ(ata∗t δ0)∥
≤ ∥ata∗t δ0∥ = ∥ata∗t ∥ = ∥at∥2 = ∥atδt∥2,

and hence ∥λ(atδt)∥ ≤ ∥atδt∥l1 for all atδt ∈ L.
Now let

a =
∑
t∈G

atδt ∈ L.

Then

∥λ(a)∥ =

∥∥∥∥λ(∑
t∈G

atδt

)∥∥∥∥ ≤
∑
t∈G

∥λ(atδt)∥ ≤
∑
t∈G

∥atδt∥

=
∑
t∈G

∥at∥ = ∥a∥l1 ,

and so ∥λ(a)∥ ≤ ∥a∥l1 , for all a ∈ L.
We conclude that λ is one of the representations over which the sup

in the definition of |∥a∥| is taken, and hence ∥λ(a)∥ ≤ |∥a∥| for all
a ∈ L. �

Remark 2.7. The idea presented above can also be used to show
that l1(G,A) is a core sub-algebra of the full crossed product A oα G
associated to an action of G on A.

Now that we have established that L is a core sub-algebra of
C0(X) oα G, all we are left to do, by [6, Proposition 3.4], is to show
that L is isomorphic to Cc(R).

Theorem 2.8. Let ({Xt}t∈G, {ht∈G}) be a free partial action of a
countable group G over a locally compact Hausdorff space X such that
Xt is σ-compact for every t, ({C0(Xt)}t∈G, {αt}t∈G) the corresponding
partial action (as defined in the introduction) and R the equivalence
relation defined above. Then L and Cc(R) are isomorphic as *-algebras.

Proof. To define a *-homomorphism ρ : L → Cc(R), we begin
defining it as elements of the form ftδt (ft ∈ C0(Xt)) and then we
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extend it linearly to L. More precisely, for ftδt ∈ L and (x, hs(x)) ∈ R,
let

ρ̃(ftδt)(x, hs(x)) =

{
ft(x) if s = t−1

0 otherwise,

and denote the linear extension of ρ̃ to L by ρ.

Notice that, since L consists of finite sums, the set {s ∈ G :
ρ(
∑
ftδt)(x, hs(x)) ̸= 0} is finite, and hence ρ is well defined (that

is, ρ(
∑
ftδt) is a continuous function with compact support).

Next we check that ρ is *-multiplicative. By linearity, it is enough
to check this for elements of the form ftδt ∈ L. So, let ftδt, gsδs ∈ L
and (x, hr(x)) ∈ R. Then,

ρ(ftδtgsδs)(x, hr(x)) = ρ(αt(αt−1(ft)gs)δts)(x, hr(x))

=

{
ft(x)gs(ht−1(x)) if r = (ts)−1

0 otherwise,

=

{
ft(x)ρ(gsδs)(ht−1(x), hr(x)) if r = (ts)−1

0 otherwise,

=
∑

u:x∈Xu−1

ρ(ftδt)(x, hu(x))ρ(gsδs)(hu(x), hr(x))

= ρ(ftδt) ∗ ρ(gsδs)(x, hr(x)),

and

ρ((fgδg)
∗)(x, hr(x)) = ρ(αg−1(f∗g )δg−1)(x, hr(x))

=

{
αg−1(f∗g )(x) if r = g

0 otherwise,

=

{
fg(hr(x)) if r = g

0 otherwise,

= ρ(fgδg)(hr(x), x)

= (ρ(fgδg))
∗(x, hr(x)).

So ρ is a *-homomorphism.

Finally, notice that ρ is also a bijection, since it has an inverse
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ρ−1 : Cc(R) → L given by ρ−1(f) =
∑
ftδt, where

ft(x) =

{
f(x, ht−1(x)) if (x, ht−1(x)) ∈ R

0 otherwise. �

Remark 2.9. Notice that, since an action of a group on an algebra
can be seen as a partial action, the above result is also valid in the
context of actions of countable groups over compact spaces.

Corollary 2.10. C0(X)oα G is isomorphic to C∗(R).

Proof. Follows from the above theorem and [6, Proposition 3.4]. �

3. The purely algebraic setting. In this section, we generalize
to the purely algebraic setting the results of the previous section and
the correspondence between partial dynamical systems and partial C∗-
dynamical systems.

Let K be a field and X a set. By an algebra, we mean an associative
K-algebra, not necessarily unital. Let F0(X) denote the algebra of all
functions f : X → K that vanish eventually, that is, f ∈ F0(X) if and
only if f(x) = 0 for all but a finite number of x ∈ X (f has finite
support), equipped with pointwise operations. Notice that we can see
F0(X) as the direct sum of K over X, but we will keep the function
notation due to its resemblance to the C∗-setting. Our first goal is to
show that there exists a bijective correspondence between X and the
set of all non zero homomorphisms from F0(X) to K, where each x ∈ X
is taken to the homomorphism ϵx : F0(X) → K, given by ϵx(f) = f(x),
which we call evaluation at x.

Proposition 3.1. There exists a bijective correspondence between a

set X and F̂0(X) given by :

X −→ F̂0(X)

x 7−→ ϵx,

where F̂0(X) denotes the set of all non zero homomorphisms from
F0(X) to K.
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Proof. Given x ∈ X, let δx denote the characteristic function of the
set {x}. Then {δx}x∈X is a K-basis of F0(X) and f =

∑
x∈X f(x)δx,

for all f ∈ F0(X).

First we will prove that there is a bijective correspondence between
K-linear maps from F0(X) to K and functions from X to K. For this,
notice that, if ϕ : F0(X) → K is a K linear map and f ∈ F0(X), then

ϕ(f) =
∑
x∈X

f(x)ϕ(δx) =
∑
x∈X

f(x)φ(x) =
∑
x∈X

φ(x)ϵx(f),

where φ : X → K is defined by φ(x) = ϕ(δx), for all x ∈ X. Conversely,
every function φ : X → K defines a K-linear map ϕ : F0(X) → K via
ϕ(f) =

∑
x∈X φ(x)ϵx(f), and it is clear that the correspondence ϕ↔ φ

is a bijection.

Now, notice that every evaluation ϵx is a nonzero homomorphism.
Suppose, conversely, that ϕ : F0(X) → K is a nonzero homomorphism.
Then we have that φ(x)φ(y) = ϕ(δx)ϕ(δy) = ϕ(δxδy) = δx,yφ(x). Then
φ(x)φ(y) = 0 if x ̸= y and φ(x)2 = φ(x) for all x ∈ X. Hence, there is
exactly one x ∈ X such that φ(x) ̸= 0, so φ = ϵx. �

Our next goal is to show that there is a biunivocal correspondence
between partial actions ({Xt}t∈G{ht}t∈G) of a group G in a set X and
partial actions ({Dt}t∈G, {αt}t∈G) of G in F0(X). Before we do this,
we need a few results.

Proposition 3.2. Let X and Y be sets and h : X → Y a bijection.
Then the map ψh : F0(Y ) → F0(X), defined by ψh(f) = f ◦ h, is an
algebra isomorphism.

Proof. The proof of this proposition is straightforward. �

Proposition 3.3. If γ : F0(Y ) → F0(X) is an isomorphism, then there
exists a unique bijection, h : X → Y , such that γ = ψh, where ψh is as
in the previous proposition.

Proof. Let γ : F0(Y ) → F0(X) be an isomorphism. We need to
define h : X → Y . For this, notice that for all x ∈ X, ϵx ◦ γ
is a homomorphism from F0(Y ) to K. By Proposition 3.1, all such
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homomorphisms are evaluations, and hence there exists y ∈ Y such
that ϵx ◦ γ = ϵy. Define h(x) := y.

Notice that indeed γ = ψh, since for all f ∈ F0(Y ) and x ∈ X,
we have that ψh(f)(x) = f(h(x)) = f(y) = ϵy(f) = ϵx ◦ γ(f) =
ϵx(γ(f)) = γ(f)(x). Also, h is bijective, since we can define its inverse,
l : Y → X, in the following way: consider γ−1 : F0(X) → F0(Y ). Given
y ∈ Y , ϵy ◦γ−1 is a homomorphism from F0(X) to K and so there exists
x ∈ X such that ϵy ◦ γ−1 = ϵx. Define l(y) := x. Then, for x ∈ X,
l◦h(x) = l(y) = x0, where y is such that ϵx ◦γ = ϵy and x0 is such that
ϵy ◦γ−1 = ϵx0 . So, x0 is such that ϵx0 = ϵy ◦γ−1 = ϵx◦γ◦γ−1 = ϵx, and
hence x0 = x and l ◦ h = Id. Analogously, we can check tat h ◦ l = Id,
and hence l = h−1.

Finally we show that there is a unique h such that γ = ψh. For this,
suppose that there exist bijections h1 and h2 such that γ(f) = ψh1(f) =
ψh2(f) for all f ∈ F0(Y ). We then have that f ◦ h1(x) = f ◦ h2(x)
for all f ∈ F0(Y ), x ∈ X, which implies that h1(x) = h2(x) for all
x ∈ X, since if there exists x ∈ X such that h1(x) ̸= h2(x), then, for
f = δh1(x), we have that f(h1(x)) ̸= f(h2(x)). �

Proposition 3.4. There is a biunivocal correspondence between non
zero ideals of F0(X) and non empty subsets of X.

Proof. Let I be a non zero ideal in F0(X). Define A as the set of
all elements of X such that there exists a function f ∈ I such that
δx · f ̸= 0. Then I = F0(A), where F0(A) is included in F0(X), that is,
F0(A) = {f ∈ F0(X) : f(x) = 0, for all x /∈ A}. �

From the above propositions, we conclude that there is a bijective
homomorphism ψ between the set of all bijections from X to Y , which
we denote by Bij (X,Y ), and the set of all isomorphisms from F0(X)
to F0(Y ), which we denote by Iso (F0(X),F0(Y )), given by

ψ : Bij(X,Y ) −→ Iso (F0(X),F0(Y ))

h 7−→ ψh−1

We are now ready to prove the correspondence between partial
actions on a set X and partial actions on F0(X).
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Proposition 3.5. Let θ = ({Xt}t∈G, {ht}t∈G) be a partial action of a
group G in a set X, and let Dt = {f ∈ F0(X) : f(x) = 0 for all x /∈
Xt}, that is, Dt = F0(Xt). Define αt : Dt−1 → Dt by αt(f) = f ◦ht−1 .
Then α = ({Dt}t∈G, {αt}t∈G) is a partial action of G in F0(X), and
we say that α arises from θ.

Proof. It is clear that, for each t ∈ G, Dt is an ideal of F0(X) and, by
Proposition 3.2, αt is bijective. We show below that ({Dt}t∈G, {αt}t∈G)
satisfies the other axioms of the definition of a partial action.

• De = F0(X) and αe = Id. Since θ = ({Xt}t∈G, {ht}t∈G) is a
partial action, we have that Xe = X and he = Id which readily
implies that De = F0(X) and αe = Id.

• αt(Dt−1 ∩Ds) = Dt ∩Dts. First, we prove that αt(F0(Xt−1 ∩
Xs)) = F0(ht(Xt−1 ∩ Xs)). For this, let y = f ◦ ht−1 , for
some f ∈ F0(Xt−1 ∩ Xs). Now, if x /∈ ht(Xt−1 ∩ Xs),
then ht−1(x) /∈ Xt−1 ∩ Xs, and hence, f ◦ ht−1(x) = 0 and
y ∈ F0(ht(Xt−1∩Xs)). On the other hand, if f ∈ F0(ht(Xt−1∩
Xs)), then f ◦ht ∈ F0(Xt−1 ∩Xs) and αt(f ◦ht) = f as desired.

We can now prove the desired partial action axiom below:

αt(Dt−1 ∩Ds) = αt(F0(Xt−1) ∩ F0(Xs))

= αt(F0(Xt−1 ∩Xs))

= F0(ht(Xt−1 ∩Xs))

= F0(Xt ∩Xts)

= F0(Xt) ∩ F0(Xts)

= Dt ∩Dts.

• αt(αs(f)) = αts(f) for all f ∈ Ds−1 ∩Ds−1t−1 . Let

f ∈ Ds−1 ∩Ds−1t−1 = F0(Xs−1 ∩Xs−1t−1)

and x ∈ Xs−1 ∩Xs−1t−1 . It follows that:

αt(αs(f))(x) = αt(f ◦ hs−1)(x)

= f ◦ hs−1 ◦ ht−1(x)

= f(hs−1(ht−1(x)))

= f(hs−1t−1)(x)

= αts(f)(x). �
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Proposition 3.6. If α = ({Dt}t∈G, {αt}t∈G) is a partial action of G
in F0(X), then there exists a partial action θ = ({Xt}t∈G, {ht}t∈G), of
G in a set X, such that α arises from θ.

Proof. Let α = ({Dt}t∈G, {αt}t∈G) be a partial action of G in
F0(X). By Proposition 3.4, we have that each ideal Dt is of the
form F0(Xt), for some subset Xt of X. Now, for each isomorphism
αt : F0(Xt−1) → F0(Xt), we let ht−1 be the unique bijection from
Xt to Xt−1 such that αt = ψht−1 (that is, αt(f) = f ◦ ht−1 as
described in Proposition 3.3). This way, we define a partial action
θ = ({Xt}t∈G, {ht}t∈G) such that α arises from θ. To finish the proof,
we need to we show that θ is indeed a partial action.

It is straightforward to check that θ satisfies the first axiom in the
definition of a partial action. To verify that ht(Xt−1 ∩Xs) = Xt ∩Xts,
notice that

αt(F0(Xt−1) ∩ F0(Xs)) = F0(Xt) ∩ F0(Xts) = F0(Xt ∩Xts),

and, since the left side on this last equality is equal to αt(F0(Xt−1 ∩
Xs)) = F0(ht(Xt−1 ∩Xs), we obtain the desired equality.

Finally, we prove that ht(hs(x)) = hts(x) for all x ∈ Xs−1∩Xs−1t−1 .
Since α is a partial action, we have that αt(αs(f)) = αts(f) for all
f ∈ F0(Xs−1 ∩ Xs−1t−1). But this implies that ψhts(f) = ψht◦hs(f)
for all f ∈ F0(Xs−1 ∩ Xs−1t−1), and hence hts = ht ◦ hs for all
x ∈ Xs−1 ∩Xs−1t−1 , as desired. �

We now focus on realizing the partial skew group ring F0(X)oα G,
associated to a partial action α of a group G in F0(X), as an algebra
from an equivalence relation.

For the reader’s convenience, we recall the definition of a partial
skew group ring, as defined in [3], below.

Definition 3.7. Let α be a partial action of the group G in the algebra
A. The partial skew group ring, AoαG associated to α is defined as the
set of all finite formal sums

∑
t∈G atδt where, for all t ∈ G, at ∈ Dt and

δt are symbols. Addition is defined in the usual way and multiplication
is determined by

(atδt)(bsδs) = αt(αt−1(at)bs)δts.
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Recall that, for every partial action in F0(X), there is a partial
action associated in X. The set level is what we need to define the
corresponding equivalence relation. So, let ({Xt}t∈G, {ht}t∈G) be a
free partial action of G in X. We define the equivalence relation R in
X as

R = {(x, ht(x)) ∈ X ×X : x ∈ Xt−1 , t ∈ G},

and equip F0(R) = {f : R → K : f eventually vanishes} with
operations defined by:

(kf + g)(x, ht(x)) = kf(x, ht(x)) + g(x, ht(x)),

(f ∗ g)(x, ht(x)) =
∑
s∈G

f(x, hs(x))g(hs(x), ht(x)),

for all f, g ∈ F0(R), k ∈ K and (x, ht(x)) ∈ R.

Theorem 3.8. If θ = ({Xt}t∈G, {ht}t∈G) is a free partial action of
a group G in a set X, and α = ({Dt}t∈G, {αt}t∈G) is the associated
partial action of G in F0(X), then the algebras F0(R) and F0(X)oαG
are isomorphic.

Proof. To prove the theorem, we will define an isomorphism Γ from
F0(X)oαG to F0(R). For elements of the form fδt ∈ F0(X)oα G, we

let Γ(fδt) = f̃ , where

f̃(x, y) =

{
f(x) if y = ht−1(x)

0 otherwise,

and we define Γ in F0(X)oα G by extending it linearly.

Notice that Γ is well defined since, if {xt1, · · · , xtnt
} is the finite

support of ft ∈ F0(X), then Γ(ftδt) has finite support given by the
set {(xt1, ht−1(xt1)), . . . , (x

t
nt
, ht−1(xtnt

))}.
Now we show that Γ is an isomorphism of K-algebras. For this, it is

enough to show that Γ is bijective and preserves the product, that is,

Γ(ftδtfgδg) = Γ(ftδt) ∗ Γ(fgδg),
for all ftδt, fgδg ∈ F0(X)oα G.

Notice that

Γ(ftδtfsδs)(x, y) = Γ(αt(αt−1(ft)fs)δts)(x, y)
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=

{
αt(αt−1(ft)fs)(x), if y = h(ts)−1(x),

0 otherwise,

=

{
ft(x)(fs)(ht−1(x)), if y = h(ts)−1(x),

0 otherwise,

and, on the other hand,

Γ(ftδt) ∗ Γ(fsδs)(x, y) =
∑
r∈G

Γ(ftδt)(x, hr(x)) ∗ Γ(fsδs)(hr(x), y),

= ft(x)Γ(fsδs)(ht−1(x), y),

=

{
ft(x)(fs)(ht−1(x)), if y = hs−1(ht−1(x)),

0 otherwise,

=

{
ft(x)(fs)(ht−1(x)), if y = h(ts)−1(x),

0 otherwise,

We conclude that Γ(ftδtfsδs) = Γ(ftδt) ∗ Γ(fsδs).
Next, we prove injectivity. For this, suppose that Γ(

∑
t∈G ftδt) = 0.

Notice that, since θ is a free, if Γ(ftδt)(x, y) ̸= 0, then Γ(fsδs)(x, y) = 0
for all s ̸= t. So,∑

t∈G

Γ(ftδt)(x, hs(x)) = 0, for all x ∈ Xs−1 , s ∈ G,

implies that fs−1(x) = 0 for all x ∈ Xs−1, s ∈ G. We infer that

ft ≡ 0 for all t ∈ G,

and hence, ∑
t∈G

ftδt = 0,

as desired.

Finally, we prove that Γ is surjective. For f ∈ F0(R), we define
ft(x) := f(x, ht−1(x)), for all x ∈ Xt. Notice that

n∑
i=1

ftiδti ∈ F0(X)oα G
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and

Γ

( n∑
i=1

ftiδti

)
= f,

so that Γ is surjective.

By the above exposition, we conclude that

F0(X)oα G and F0(R)

are isomorphic as K-algebras. �

Remark 3.9. Partial skew group rings similar to the ones considered
in the above theorem have appeared before, see [12].

One important issue that has to be handled when dealing with
partial skew group rings concerns the associativity question, as partial
skew group rings may or may not be associative, see [3]. In the case
of F0(X)oα G the answer is affirmative, that is, F0(X)oα G is always
associative, since all the ideals of F0(X) are idempotent (see [3, 19] for
associativity criteria). Below, we give a quick proof that F0(X)oαG is
always associative, one that does not depend on the theory developed
in [3, 19].

Proposition 3.10. F0(R) is an associative K-algebra.

Proof. Let f, g, l ∈ F0(R) and (x, ht(x)) ∈ R. Then:

(f ∗ g) ∗ l(x, ht(x))

=
∑
s∈G

(f ∗ g)(x, hs(x))l(hs(x), ht(x))

=
∑
s∈G

(∑
r∈G

f(x, hr(x))g(hr(x), hs(x))

)
l(hs(x), ht(x))

=
∑
s∈G

∑
r∈G

[f(x, hr(x))g(hr(x), hs(x))]l(hs(x), ht(x))

=
∑
s∈G

∑
r∈G

f(x, hr(x))[g(hr(x), hs(x))l(hs(x), ht(x))],

since K is associative
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=
∑
r∈G

f(x, hr(x))
∑
s∈G

g(hr(x), hs(x))l(hs(x), ht(x))

=
∑
r∈G

f(x, hr(x))
∑
s∈G

g ∗ l(hr(x), ht(x))

= f ∗ (g ∗ l)(x, ht(x)).

So
(f ∗ g) ∗ l = f ∗ (g ∗ l),

and F0(R) is associative. �

Corollary 3.11. F0(X)oα G is an associative K-algebra.

To finalize the paper, we use Theorem 3.8 to characterize the ideals
in F0(X)oα G in terms of R-invariant sets:

Definition 3.12. A subset Z ⊆ X is said to beR-invariant if, whenever
(z, x) ∈ R, with z ∈ Z, then x ∈ Z.

Proposition 3.13. Let I be an ideal in F0(R). Then there exists an
R-invariant set Z such that I = F0((Z × Z) ∩R).

Proof. First notice that, if f is a non zero function in I and
f(y, ht(y)) ̸= 0, then δ(y,ht(y)) ∈ I. This follows because

δ(y,ht(y)) = δ(y,y) ∗ f ∗ δ(ht(y),ht(y)).

Also notice that
δ(y,ht(y)) ∗ δ(z,hs(z)) = 0

if z ̸= ht(y) and

δ(y,ht(y)) ∗ δ(z,hs(z)) = δ(y,hst(y))

if z = ht(y).

With the above in mind, let I be an ideal in F0(R). Define

Z = {z ∈ X : there exists f ∈I and t∈G such that f(z, ht(z)) ̸= 0}.

We will prove first that Z is R-invariant. For this, let z ∈ Z and
(z, hs(z)) ∈ R. Then, by the definition of Z, there exists f ∈ I and
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t ∈ G such that f(z, ht(z)) ̸= 0 and, by the first paragraph in this
proof, we have that δ(z,ht(z)) ∈ I. But then

δ(z,ht(z)) ∗ δ(ht(z),hst−1 (z)) = δ(z,hs(z)) ∈ I.

We conclude that

δ(hs(z),z) ∗ δ(z,hs(z)) = δ(hs(z),hs(z)) ∈ I,

and hence, hs(z) ∈ Z, as desired.

Next, we prove that F0((Z × Z) ∩ R) ⊆ I. Notice that, for
this, it is enough to show that for each (x, ht(x)) ∈ (Z × Z) ∩ R
the associated delta Dirac function δ(x,ht(x)) belongs to I. So, let
(x, ht(x)) ∈ (Z × Z) ∩ R. Then, since x ∈ Z, there exists f ∈ I
and s ∈ G such that f(x, hs(x)) ̸= 0, and hence, δ(x,hs(x)) ∈ I. We
conclude that

δ(x,ht(x)) = δ(x,hs(x)) ∗ δ(hs(x),hts−1 (x))

belongs to I as desired.

Finally, I ⊆ F0((Z × Z) ∩ R) since, if f ∈ I and f((x, ht(x))) ̸= 0,
then z ∈ Z, and hence, by the R-invariance of Z, ht(z) ∈ Z. So the
support of f is contained in Z × Z. �

Remark 3.14. Notice that, if Z is an R-invariant subset, then F0((Z×
Z) ∩R) is an ideal of F0(R).

Remark 3.15. Recently, Leavitt path algebras of countable graphs
were characterized as partial skew group rings, see [12]. In the case
of finite graphs with no cycles, the partial skew group ring introduced
in [12] arises from a free partial action on a set. So, for these graphs,
one can apply the last result above to obtain the characterization of
the ideals of the associated Leavitt path algebras given by Tomforde in
[20]. We refrain from providing the details as this would require the
introduction of many notions not mentioned here.

ENDNOTES

1. By a representation of a *-algebra B we mean a multiplicative,
*-preserving, linear map π : B → B(H), where H is a Hilbert space.
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6. R. Exel, T. Giordano and D. Gonçalves, Enveloping algebras of partial actions
as groupoid C∗-algebras, J. Oper. Th. 65 (2011), 197–210.

7. M. Ferrero and J. Lazzarin, Partial actions and partial skew group rings, J.

Alg. 319 (2008), 5247–5264.

8. D. Gonçalves, New C∗-algebras from substitution tilings, J. Oper. Th. 57
(2007), 391–407.

9. , On the K-theory of the stable C∗-algebras from substitution tilings,
J. Funct. Anal. 260 (2011), 998–1019.

10. , Simplicity of partial skew group rings of abelian groups, Canad.
Math. Bull. 57 (2014), 511–519.
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15. J. Öinert, Simple group graded rings and maximal commutativity, Contemp.
Math. 503, American Mathematical Society, Providence, RI, 2009.

16. , Simplicity of skew group rings of abelian groups, Comm. Alg. 42
(2014), 831–841.

17. I.F. Putnam, A survey of recent K-theoretic invariants for dynamical sys-
tems, in The dynamics of Zd-actions, M. Pollicott and K. Schmidt, eds., Cambridge
University Press, Cambridge, 1996.

18. Jean N. Renault, A groupoid approach to C∗-algebras, Lect. Notes Math.
793, Springer-Verlag, New York, 1980.

19. B.T. Shourijeh and M.A. Faraji, Strong associativity of a group algebra,

Expo. Math. 24 (2006), 379–383.



104 VIVIANE M. BEUTER AND DANIEL GONÇALVES
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