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ON 2-SG-SEMISIMPLE RINGS

DRISS BENNIS, KUI HU AND FANGGUI WANG

ABSTRACT. In this paper, we investigate 2-SG-semisimple
rings which are a particular kind of quasi-Frobenius rings
over which all modules are periodic of period 2. Namely,
we show that local 2-SG-semisimple rings are the same as
the known Artinian valuation rings. Also, a relation between
Dedekind domains and 2-SG-semisimple rings is established.

1. Introduction. Throughout this paper, all rings are commutative
with identity element and all modules are unital. It is convenient to
use m-local or (simply) local to refer to not necessarily Noetherian
rings with a unique maximal ideal m. We assume that the reader is
familiar with the Gorenstein homological algebra (some references are
[9, 10, 12]).

For a ring R and a positive integer n ≥ 1, an R-module M is said
to be n-strongly Gorenstein projective (n-SG-projective for short), if
there exists an exact sequence of R-modules

0 −→ M −→ Pn −→ · · · −→ P1 −→ M −→ 0,

where each Pi is projective, such that HomR(−, Q) leaves the sequence
exact whenever Q is a projective R-module (see [6]). The 1-SG-
projective module is simply called strongly Gorenstein projective (SG-
projective for short) (see [5]). An extension of these kinds of modules
was given in [3]. Namely, we have, for integers n ≥ 1 and m ≥ 0,
a module M is called (n,m)-SG-projective if there exists an exact
sequence of modules,

0 −→ M −→ Qn −→ · · · −→ Q1 −→ M −→ 0,
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where pd(Qi) ≤ m for 1 ≤ i ≤ n, such that Exti(M,Q) = 0 for any
i > m and for any projective module Q. A general study of rings over
which every module is (n,m)-SG-projective was done in [4], and such
rings are called (n,m)-SG. Thus, as in classical homological dimension,
the (n,m)-SG rings with small integers n and m would be of interest.
Let us call by n-SG-semisimple, for an integer n ≥ 1, the (n, 0)-SG
rings. From [4, Corollary 2.8], n-SG-semisimple rings are a particular
kind of quasi-Frobenius rings. In [8], it was proved that a local ring is
1-SG-semisimple if and only if it contains a unique non-trivial ideal.

The aim of this paper is to study 2-SG-semisimple rings. We prove
that 2-SG-semisimple is the same as the well-known Artinian serial
rings (see Corollary 2.7). Recall that a ring is called serial if it is a
finite direct product of valuation rings, where a ring (not necessarily
a domain) is called valuation if the lattice of all its ideals is linearly
ordered under inclusions (see, for example, [11, pages 10 and 11]).
Namely, we prove that a local ring is 2-SG-semisimple if and only if
it is an Artinian valuation ring (see Theorem 2.6). Also, a relation
between Dedekind domains and 2-SG-semisimple rings is established
in Proposition 2.9.

Before starting, we need to recall some useful results about quasi-
Frobenius rings (for more details about these kinds of rings, see, for
example, [14]). The quasi-Frobenius rings have several characteriza-
tions, and here, we only need the following ones:

Theorem 1.1 ([14], Theorems 1.50, 7.55 and 7.56). For a ring R, the
following are equivalent :

(i) R is quasi-Frobenius;
(ii) R is Artinian and self-injective;
(iii) every projective R-module is injective;
(iv) every injective R-module is projective;
(v) R is Noetherian and, for every ideal I, Ann (Ann (I)) = I, where

Ann (I) denotes the annihilator of I.

For the local case, we have the following result:

Theorem 1.2 ([13], Theorems 221). Let R be an m-local and zero-
dimensional Noetherian ring. The following are equivalent :
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(i) R is quasi-Frobenius;
(ii) Ann (m) is a principal ideal.

We have the following structural characterization of quasi-Frobenius
rings.

Proposition 1.3. A ring R is quasi-Frobenius if and only if R =
R1 × · · · ×Rn, where each Ri is a local quasi-Frobenius ring.

2. Main results. We aim to give an equivalent characterization of
2-SG-semisimple rings. The following leads us to restrict the study to
the case of local rings.

Lemma 2.1 ([4], Proposition 2.13). A ring R is 2-SG-semisimple if
and only if R = R1×· · ·×Rn, where each Ri is a local 2-SG-semisimple
ring.

Before giving the main result, we need the following lemmas.

The following result is a characterization of Artinian valuation local
rings.

Lemma 2.2 ([2], Proposition 8.8). Let R be an Artinian m-local ring.
Then the following assertions are equivalent :

(i) every ideal is principal ;
(ii) the maximal ideal m is principal ;
(iii) R is a valuation ring.

In this case every ideal I of R is of the form anR where a generates m.

The two results below investigate the 2-SG-projective modules over
local quasi-Frobenius rings.

Lemma 2.3. Let R be a local quasi-Frobenius ring and M a finitely
generated R-module. If M is 2-SG-projective, then there is an exact
sequence 0 → M → F2 → F1 → M → 0 where F1 and F2 are free and
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finitely generated R-modules. Furthermore, if M is an ideal of R, then
the exact sequence can be of the form:

0 −→ M −→ R −→ Rn −→ M −→ 0,

where n is a positive integer.

Proof. Let M be a finitely generated 2-SG-projective R-module.
Then, by [18, Theorem 3.14], there exists an exact sequence of R-
modules

0 −→ M −→ F2 −→ F1 −→ M −→ 0

with F1 and F2 are finitely generated projective R-modules. Notice
that R is local, so F1 and F2 are finitely generated free and the first
assertion follows.

Now, suppose that M is an ideal of R. Decomposing the exact
sequence 0 → M → F2 → F1 → M → 0 to get the short exact
sequences: 0 → M → F2 → K → 0 and 0 → K → F1 → M → 0. Since
R is quasi-Frobenius, F1 and R are injective R-modules. Then, we
can apply the dual of the horseshoe lemma [15, Note after Lemma
6.20] to the short exact sequences above with the canonical one,
0 → M → R → R/M → 0, to get the following commutative diagram
with exact columns and rows:

0 0 0
↑ ↑ ↑

0 → R/M → Q → M → 0
↑ ↑ ↑

0 → R → R⊕ F1 → F1 → 0
↑ ↑ ↑

0 → M → F2 → K → 0
↑ ↑ ↑
0 0 0

From the top horizontal sequence, Q is a Gorenstein projective and
finitely generated R-module. Then, using the middle vertical sequence,
Q has finite projective dimension. This shows, using [12, Proposition
2.27], that Q is projective and then free (since R is local). Then,
there is a positive integer n such that Q ∼= Rn. Finally, combining
the top horizontal sequence with the left vertical one to get the desired
sequence. �
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Corollary 2.4. Let R be a local quasi-Frobenius ring, and let a be a
zero-divisor element of R. If the principal ideal aR is 2-SG-projective,
then Ann (a) is also principal and there are exact sequences of the form:

0 −→ aR −→ R −→ R −→ aR −→ 0

0 −→ Ann (a) −→ R −→ R −→ Ann (a) −→ 0

0 −→ R/aR −→ R −→ R −→ R/aR −→ 0

Proof. By Lemma 2.3, we have an exact sequence of the form:

0 −→ R/aR −→ Rn −→ aR −→ 0

where n is a positive integer. By the Schanuel lemma [15, Theorem
9.4 (i)], the above exact sequence with the following canonical one:

0 −→ Ann (aR) −→ R −→ aR −→ 0

implies that Ann (a) ⊕ Rn ∼= R/aR ⊕ R. This shows that Ann (a)
must be principal and n = 1 which help to construct the desired
sequences. �

The structure of modules over Artinian serial rings is given by the
following well-known result.

Lemma 2.5 ([11], Theorems 5.6). Let R be an Artinian serial ring.
Then every R-module is a direct sum of cyclic modules.

Now we are in position to give the main result.

Theorem 2.6. An m-local ring R is 2-SG-semisimple if and only if it
is an Artinian valuation ring.

Proof. If R is 2-SG-semisimple, then it is quasi-Frobenius (by [4,
Corollary 2.8]). Then, by Theorem 1.2, Ann (m) is principal. This
shows, using Corollary 2.4 and Theorem 1.1, that m = Ann (Ann (m))
is principal. Therefore, R is a valuation ring (by Lemma 2.2). Con-
versely, assume that R is an Artinian valuation ring. Obviously, R is
quasi-Frobenius with only principal ideals. Then, for every zero-divisor
element a of R, we have the exact sequences 0 → Ann (a) → R →
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aR → 0 and 0 → aR = Ann (Ann (a)) → R → Ann (a) → 0. Combin-
ing these sequences, we deduce that aR is 2-SG-projective. Then, from
Corollary 2.4, the cyclic module R/aR is also 2-SG-projective and so
are all cyclic modules including the free ones. Therefore, Lemma 2.5
with [3, Proposition 2.3] show that every module is 2-SG-projective
and therefore R is 2-SG-semisimple. �

From Lemma 2.1, the structure of 2-SG-semisimple rings is immedi-
ately deduced as follows.

Corollary 2.7. A ring R is 2-SG-semisimple if and only if it is an
Artinian serial ring.

To construct examples of 2-SG-semisimple rings, one can use the
well-known result that nontrivial factor rings of Dedekind domains
are principal Artinian serial rings, which means that nontrivial factor
rings of Dedekind domains are 2-SG-semisimple (see, for example, [17,
Corollary, page 278]). The following result (Proposition 2.9) shows that
the Dedekind domains is closely related to the 2-SG-semisimple rings in
the sense that the converse of the well-known result above holds true.
To prove this result, we use the following lemma.

Lemma 2.8. Let R be a domain and P a maximal ideal of R which is
finitely generated. Then P is invertible if and only if PP (i.e., PRP )
is a principal ideal of RP .

Proof. By [16, Theorem 8.4.2], P is invertible if and only if Pm is
principal for any maximal ideal m of R. Since P is maximal, Pm = Rm

for any maximal ideal m other than P . �

Proposition 2.9. A domain R is Dedekind if and only if every
nontrivial factor ring of R is 2-SG-semisimple.

Proof. If every nontrivial factor ring of R is 2-SG-semisimple, then,
by [13, Theorem 90], R must be one-dimensional and Noetherian.
So, by [1, Theorem 3], R must be a Dedekind domain. We give
a direct proof here. Let P be a maximal ideal of R, and let a be
an element in P which is not in P 2. Since R/P 2 is a QF-ring, by
Theorem 1.1, (a) = Ann (Ann (a)). Since (P/P 2)2 = 0, it can be seen
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that Ann (Ann (a)) = P/P 2. Therefore (a) = P/P 2. So Ra+ P 2 = P
and by the Nakayama lemma, PP = (a)P . Thus, by Lemma 2.8, P is
invertible, and this means that R is a Dedekind domain.

For the “only if” part, let I be a proper ideal of a Dedekind domain
R. Then I = P t1

1 P t2
2 · · ·P tn

n for some prime ideals P1, P2, · · · , Pn

and some integers t1, t2, · · · , tn. By the Chinese remainder theorem,
R/I ∼= R/P t1

1

⊕
R/P t2

2

⊕
· · ·

⊕
R/P tn

n . In order to show that R/I
is 2-SG-semisimple, we only need to prove that R/P ti

i is such a ring.
When ti = 1, the field R/Pi is certainly 2-SG-semisimple. Therefore,
we can assume that ti > 1. Since R/P ti

i is an Artinian local ring,
by Lemma 2.2 and Theorem 2.6, it suffices to prove that the maximal
ideal Pi/P

ti
i is principal. By [16, Corollary 9.8.7], we can choose an

element b ∈ P ti
i and an element c ∈ Pi such that Pi = (b, c). Therefore,

Pi/P
ti
i = (c+ P ti

i ) is principal. �
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