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DING PROJECTIVE MODULES WITH RESPECT
TO A SEMIDUALIZING BIMODULE

CHUNXIA ZHANG, LIMIN WANG AND ZHONGKUI LIU

ABSTRACT. Let R and S be rings and SCR a faithfully
semidualizing bimodule. A left S-module M is called Ding
C-projective if there exists an exact sequence of C-projective
left S-modules

X = · · · → C⊗RP1 → C⊗RP0 → C⊗RP 0 → C⊗RP 1 → · · ·
such that M ∼= Coker (C ⊗R P1 → C ⊗R P0) and the
complexes HomS(C ⊗R P,X) and HomS(X,C ⊗R F ) are
exact for any projective left R-module P and any flat left R-
module F . The properties of Ding C-projective modules and
dimensions are given. Among others, the Foxby equivalences
between some subclasses of the Auslander class and the Bass
class are also investigated.

Introduction. Throughout this work, R and S are fixed associated
rings with identity and all R- and S-modules are understood to be
unitary left R- and S-modules. Right R- and S-modules are identified
with left modules over the opposite rings Rop and Sop. Also, C = SCR

is a fixed faithfully semidualizing bimodule, cf., Definition 1.1 below.

In basic homological algebra, projective, injective and flat modules
play an important and fundamental role. Over a commutative Noe-
therian ring, Holm and Jørgensen [9] introduced the C-Gorenstein pro-
jective and C-Gorenstein injective modules using semidualizing mod-
ules and their associated projective and injective classes, and they con-
nected the study of semidualizing modules to associated Auslander and
Bass classes for semidualizing modules, AC(R) and BC(R), which are
subcategories of the category of R-modules. White [17] further con-
sidered these modules when R is a commutative ring, and she called
C-Gorenstein projective modules as GC-projectives and C-Gorenstein
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injective modules as GC-injectives. In particular, many results about
the Gorenstein projectivity and Gorenstein injectivity in [3, 8, 10] were
generalized in [17]. Recently, Liu et al. [11] extended these modules to
arbitrary associative rings; also, they have proved that many results for
Auslander and Bass classes associated to a semidualizing module over a
commutative Noetherian ring can be extended to arbitrary associative
rings.

For a faithfully semidualizing bimodule SCR, denote by GP(R),
GI(S), GPC(S) and GIC(R) the classes of Gorenstein projective,
Gorenstein injective, GC-projective and GC-injective modules, respec-
tively. From [11, Theorem 4.6], we have the following Foxby equiva-
lence diagram:

AC(R) ∩ GP(R)
C⊗R−

∼
//

� _

��

BC(S) ∩ GPC(S)
HomS(C,−)

oo � _

��
AC(R)

C⊗R−
∼

// BC(S)
HomS(C,−)

oo

AC(R) ∩ GIC(R)
C⊗R−

∼
//?�

OO

BC(S) ∩ GI(S).
HomS(C,−)

oo
?�

OO

On the other hand, Ding et al. [2, 13] considered two special cases
of the Gorenstein projective and Gorenstein injective modules using
projective, flat classes and injective, FP-injective classes, which they
called strongly Gorenstein flat and Gorenstein FP-injective modules,
respectively. The same modules were studied by Gillespie [6] with the
different names: Ding projective and Ding injective modules, respec-
tively. By DP(R) and DI(S), we denote the classes of Ding projec-
tive and Ding injective modules, respectively. Thus, for a faithfully
semidualizing bimodule SCR, a natural question arises: What are the
counterparts to the Ding projective and Ding injective modules under
Foxby equivalence? So, the motivation of this article is the “?” and
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“??” in the following Foxby equivalence diagram:

AC(R) ∩ DP(R)
C⊗R−

∼
//

� _

��

?
HomS(C,−)

oo � _

��
AC(R) ∩ GP(R)

C⊗R−
∼

//
� _

��

BC(S) ∩ GPC(S)
HomS(C,−)

oo � _

��
AC(R)

C⊗R−
∼

// BC(S)
HomS(C,−)

oo

AC(R) ∩ GIC(R)
C⊗R−
∼

//?�

OO

BC(S) ∩ GI(S)
HomS(C,−)

oo
?�

OO

??
C⊗R−

∼
//?�

OO

BC(S) ∩ DI(S).
HomS(C,−)

oo
?�

OO

We shall introduce the notions of Ding C-projective and Ding C-
injective modules which play the roles of “?” and “??”.

In Section 2, we define and study Ding C-projective and Ding C-
injective modules. An S-module M is called Ding C-projective if there
exists an exact sequence of C-projective S-modules

X = · · · −→ C ⊗R P1 −→ C ⊗R P0 −→ C ⊗R P 0 −→ C ⊗R P 1 −→ · · ·

such that M ∼= Coker (C ⊗R P1 → C ⊗R P0) and the complexes
HomS(C ⊗R P,X) and HomS(X,C ⊗R F ) are exact for any projective
R-module P and any flat R-module F . An R-module N is called Ding
C-injective if there exists an exact sequence of C-injective R-modules

X = · · · −→ HomS(C, I1) −→ HomS(C, I0)

−→ HomS(C, I
0) −→ HomS(C, I

1) −→ · · ·

such that N ∼= Coker (HomS(C, I1) → HomS(C, I0)) and the complexes
HomR(X, HomS(C, I)) and HomR(HomS(C,E), X) are exact for any
injective S-module I and any FP-injective S-module E. We prove that
the class of Ding C-projective (Ding C-injective) modules is closed
under extensions and direct summands.

Section 3 is devoted to investigating the Ding C-projective (Ding
C-injective) dimensions of modules. We give functorial descriptions of
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these dimensions in Theorem 3.3.

In Section 4, we prove that the subcategories of Ding projective R-
modules in the Auslander class AC(R) (Ding injective S-modules in the
Bass class BC(S)) and Ding C-projective S-modules (Ding C-injective
R-modules) are equivalent under Foxby equivalence.

1. Preliminaries. In this section, we shall recall some notions and
definitions which we need in the later sections.

The study of semidualizing modules over commutative Noetherian
rings was initiated independently (with different names) by Foxby [4],
Golod [7], and Vasconcelos [16].

Definition 1.1. Let R and S be rings. Following [10], an (S,R)-
bimodule SCR is semidualizing if

(1) SC admits a degreewise finite S-projective resolution.
(2) CR admits a degreewise finite Rop-projective resolution.

(3) The homothety map SSS
Sγ→ HomR(C,C) is an isomorphism.

(4) The homothety map RRR
γR→ HomS(C,C) is an isomorphism.

(5) Ext>1
S (C,C) = 0.

(6) Ext>1
Rop(C,C) = 0.

A semidualizing bimodule SCR is faithfully semidualizing if it satis-
fies the following conditions for all modules SN and MR:

(1) If HomS(C,N) = 0, then N = 0.
(2) If HomRop(C,M) = 0, then M = 0.

Let C = SCR be a semidualizing bimodule. We set PC(S) to be
the subcategory of modules C ⊗R P where P is R-projective, FC(S)
to be the subcategory of modules C ⊗R F where F is R-flat, IC(R) to
be the subcategory of modules HomS(C, I) where I is S-injective and
FIC(R) to be the subcategory of modules HomS(C,E) where E is S-
FP-injective. Modules in PC(S), FC(S), IC(R) and FIC(R) are called
C-projective, C-flat, C-injective and C-FP-injective, respectively. By
setting SCR = RRR in the definitions above we see that PR(R), FR(R),
IR(R) and FIR(R) are the classes of ordinary projective, flat, injective
and FP-injective R-modules, respectively, which we denote by P(R),
F(R), I(R) and FI(R).
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Note that all semidualizing modules are faithfully semidualizing over
a commutative ring (see [10, Proposition 3.1]).

Definition 1.2. Let SCR be a semidualizing bimodule.

The Auslander class AC(R) with respect to C consists of all R-
modules M satisfying

(1) TorR>1(C,M) = 0 = Ext>1
S (C,C ⊗R M), and

(2) the natural evaluation homomorphism µM : M → HomS(C,C ⊗R

M) is an isomorphism (of R-modules).

The Bass class BC(S) with respect to C consists of all S-modules
N satisfying

(1) Ext>1
S (C,N) = 0 = TorR>1(C,HomS(C,N)), and

(2) the natural evaluation homomorphism νN : C ⊗R HomS(C,N) →
N is an isomorphism (of S-modules).

The following notions were introduced by Holm and Jørgensen [9]
over commutative Noetherian rings and by White [17] for commutative
rings.

Definition 1.3. A complete PPC-resolution is a complex X of R-
modules satisfying the following conditions:

(1) X is exact and HomR(−,PC(R))-exact; and
(2) Xi is projective for i ≥ 0 and Xi is C-projective for i < 0.

An R-module M is GC-projective if there exists a complete PPC-
resolution X such that M ∼= Coker(∂X

1 ), and in this case X is called a
complete PPC-resolution of M . Set

GPC(R) = the subcategory of GC-projective R-modules.

In the case C = R we use the more common terminology “complete
projective resolution” and “Gorenstein projective module” and the
notation GP(R).

A complete ICI-resolution is a complex Y of R-modules such that:

(1) Y is exact and HomR(IC(R),−)-exact; and
(2) Yi is injective for i ≤ 0 and Yi is C-injective for i > 0.
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An R-module N is GC-injective if there exists a complete ICI-
resolution Y such that N ∼= Ker(∂Y

0 ), and in this case Y is called a
complete ICI-resolution of N . Set

GIC(R) = the subcategory of GC-injective R-modules.

In the case C = R, we use the more common terminology “complete in-
jective resolution” and “Gorenstein injective module” and the notation
GI(R).

Definition 1.4. An R-module M is called Ding projective if there
exists an exact sequence of projective R-modules

· · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · ·

with M = Coker(P1 → P0) and which remains exact after applying
HomR(−,F(R)). Set

DP(R) = the subcategory of Ding projective R-modules.

An S-module N is called Ding injective if there exists an exact
sequence of injective S-modules

· · · −→ I1 −→ I0 −→ I0 −→ I1 −→ · · ·

with N = Coker(I1 → I0) and which remains exact after applying
HomS(FI(S),−). Set

DI(S) = the subcategory of Ding injective S-modules.

Note that every Ding projective (respectively, Ding injective) module
is Gorenstein projective (respectively, Gorenstein injective), and if R is
Gorenstein, then every Gorenstein projective (respectively, Gorenstein
injective) module is Ding projective (respectively, Ding injective).

Definition 1.5. Let X be a class of R-modules and M an R-module.
An X -resolution of M is a complex of R-modules in X of the form

X = · · · −→ Xn −→ Xn−1 −→ · · · −→ X1 −→ X0 −→ 0

such that H0(X) ∼= M and Hn(X) = 0 for n ≥ 1, and the following
exact sequence is the augmented X -resolution of M associated to X:

X+ = · · · −→ Xn −→ Xn−1 −→ · · · −→ X1 −→ X0 −→ M −→ 0.
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The X -projective dimension of M is the quantity

X -pdR(M) = inf{sup{n ≥ 0 | Xn ̸= 0} | X is an X -resolution of M}.

In particular, one has X -pdR(0) = −∞. The modules of the X -
projective dimension 0 are the nonzero modules of X . We set

X = the subcategory of R-modules with X -pdR(M) < ∞.

An X -resolution X of M is proper if the augmented resolution X+

is HomR(X ,−)-exact.

We define (proper) X -coresolution and X -injective dimension dually.
And the X -injective dimension of M is denoted X -idR(M).

Fact 1.6. Let SCR be a semidualizing bimodule. The Auslander class
AC(R) contains every projective and C-injective R-module, and the
Bass class BC(S) contains every injective and C-projective S-module;
see [10, Lemmas 4.1 and 5.1]. These classes also satisfy the two-of-
three property by [10, Corollary 6.3]. Hence, AC(R) contains the R-
modules of finite projective dimension and those of finite IC-injective
dimension, and BC(S) contains the S-modules of finite injective dimen-
sion and those of finite PC-projective dimension. From [5, Lemma 3.9]
we know that an S-module M is in BC(S) if and only if HomS(C,M)
is in AC(R), and that M ∈ AC(R) if and only if C ⊗R M ∈ BC(S).

Let C be a class of modules. We define, for i > 1,

⊥C =
∞∩
i=1

⊥iC, where ⊥iC = {X | Exti(X,C) = 0 for all C ∈ C},

C⊥ =
∞∩
i=1

C⊥i , where C⊥i = {X | Exti(C,X) = 0 for all C ∈ C}.

2. Ding C-projective modules. The Ding projective modules of
interest in this paper are built from semidualizing modules and their
associated C-projective and C-flat classes.
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Definition 2.1. A complete D(PC)-resolution is an exact sequence of
C-projective S-modules

X = · · ·C ⊗R P1 −→ C ⊗R P0 −→ C ⊗R P 0 −→ C ⊗R P 1 −→ · · ·

such that X is HomS(PC(S),−)- and HomS(−,FC(S))-exact.

An S-moduleM is called Ding C-projective if there exists a complete
D(PC)-resolution X with M ∼= Coker (C ⊗R P1 → C ⊗R P0).

A complete D(IC)-resolution is an exact sequence of C-injective R-
modules

Y = · · · −→ HomS(C, I1) −→ HomS(C, I0)

−→ HomS(C, I
0) −→ HomS(C, I

1) −→ · · ·

such that Y is HomR(FIC(R),−)- and HomR(−, IC(R))-exact.

An R-module N is called Ding C-injective if there exists a complete
D(IC)-resolution Y with N ∼= Coker (HomS(C, I1) → HomS(C, I0)).
We set

D(PC) = D(PC(S))

= the subcategory of Ding C-projective S-modules,

D(IC) = D(IC(R))

= the subcategory of Ding C-injective R-modules.

Note that, when SCR = RRR, the definitions above correspond to
the definitions of Ding projective and Ding injective modules.

Remark 2.2. In the following, we shall only deal with the results
concerning Ding C-projective modules. But it should be pointed out
that all of the obtained results have Ding C-injective counterparts by
using dual arguments.

Fact 2.3.

(1) It is clear that every C-projective S-module is Ding C-projective.
(2) The class D(PC) is closed under direct sums by definition.
(3) If X = · · · → C ⊗R P1 → C ⊗R P0 → C ⊗R P 0 → C ⊗R P 1 → · · ·

is a HomS(PC(S),−)- and HomS(−,FC(S))-exact sequence of C-
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projective S-modules, then, by symmetry, all the images, the kernels
and the cokernels of X are Ding C-projective.

(4) By [5, Proposition 3.6], we have D(PC) ⊆ BC(S) ∩ GPC(S).

Notation 2.4. Let SCR be a semidualizing bimodule. We use the
following abbreviations.

pdR(−)=P(R)-pd(−) idS(−)=I(S)-id(−)

PC-pdS(−)=PC(S)-pd(−) IC-idR(−)=IC(R)-id(−)

FC-pdS(−)=FC(S)-pd(−) FIC-idR(−)=FIC(R)-id(−)

DpdR(−)=DP(R)-pd(−) DidS(−)=DI(S)-id(−)

D(PC)-pdS(−)=D(PC(S))-pd(−) D(IC)-idR(−)=D(IC(R))-id(−).

The following proposition is immediate by definition.

Proposition 2.5. An S-module M is Ding C-projective if and only if :

(1) M ∈ ⊥FC ∩ P⊥
C ,

(2) M has a proper PC-resolution,
(3) M has a HomS(−,FC)-exact PC-coresolution.

Remark 2.6. If L is an S-module with FC-pdS(L) < ∞, then
L ∈ D(PC)

⊥ by dimension shifting.

Theorem 2.7. The class D(PC) is closed under extensions.

Proof. Just use Proposition 2.5 and the “Horseshoe lemma” ([3,
Lemma 8.2.1] and [8, (1.7)]). �

Theorem 2.8. The class D(PC) is closed under direct summands.

Proof. Let M ⊕ N be a Ding C-projective S-module. Then there
is a HomS(PC ,−)- and HomS(−,FC)-exact sequence of C-projective
S-modules

X = · · · → C ⊗R P1 → C ⊗R P0 → C ⊗R P 0 → C ⊗R P 1 → · · ·
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with M ⊕ N = Coker (C ⊗R P1 → C ⊗R P0). Consider the following
pushout diagram:

0

��

0

��
0 // M // M ⊕N

��

// N

��

// 0

0 // M // C ⊗R P 0

��

// L

��

// 0

K

��

K

��
0 0.

Note that the exactness of 0 → N → L → K → 0 gives the exact
sequence 0 → M ⊕ N → M ⊕ L → K → 0, since M ⊕ N and K are
Ding C-projective, M ⊕ L is also Ding C-projective by Theorem 2.7.
Thus, L is also a direct summand of a Ding C-projective module, and
so L ∈ ⊥FC . By repeating the above process, we get a HomS(−,FC)-
exact PC-coresolution of M . Dually, M has a proper PC-resolution.
Note that M ⊕ N ∈ P⊥

C ∩ ⊥FC . Then M ∈ P⊥
C ∩ ⊥FC . Thus, M is

Ding C-projective by Proposition 2.5. �

3. Ding C-projective dimensions of modules. In this section,
we investigate some properties of the Ding C-projective dimensions of
modules.

Proposition 3.1. Let M be an S-module. Then M has a PC(S)-
resolution if and only if M has a D(PC)-resolution.

Proof. It is sufficient to show the “if” part. Let 0 → N → D0 →
M → 0 be an exact sequence with D0 ∈ D(PC) and N having a D(PC)-
resolution. Since D0 is Ding C-projective, there exists a short exact
sequence of S-modules 0 → D′ → C ⊗R P0 → D0 → 0 with P0 ∈ P(R)
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and D′ ∈ D(PC). Consider the following pullback diagram:

0

��

0

��
D′

��

D′

��
0 // H //

��

C ⊗R P0

��

// M // 0

0 // N

��

// D0

��

// M // 0

0 0.

And, we have the following pullback diagram:

0

��

0

��
K

��

K

��
0 // D′ // L

��

// D1
//

��

0

0 // D′ // H

��

// N //

��

0

0 0,

where K has a D(PC)-resolution and D1 ∈ D(PC). So L ∈ D(PC)
by Theorem 2.7, and then H has a D(PC)-resolution. Note that
0 → H → C ⊗R P0 → M → 0 is exact from the first diagram.
By repeating the preceding process, we have that M has a PC(S)-
resolution. �

Remark 3.2. Let M be an S-module with D(PC)-pdS(M) = n ≥ 1,
and let 0 → N → D0 → M → 0 be an exact sequence withD0 ∈ D(PC)
and D(PC)-pdS(N) = n − 1. By the proof of the proposition above,
we have an exact sequence 0 → H → C ⊗R P0 → M → 0 such that P0

is projective and D(PC)-pdS(H) = D(PC)-pdS(N).
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The main result of this section gives both functorial descriptions
of Ding C-projective dimensions of modules and some criteria for
computing Ding C-projective dimensions of modules.

Theorem 3.3. Let M be an S-module with finite Ding C-projective
dimension and n a nonnegative integer. Then the following are equiv-
alent :

(1) D(PC)-pdS(M) ≤ n.
(2) There is an exact sequence 0 → D → C ⊗R Pn−1 → · · · →

C ⊗R P1 → C ⊗R P0 → M → 0 with Pi ∈ P(R) for 0 6 i 6 n− 1
and D ∈ D(PC).

(3) M has a proper D(PC)-resolution of length n.
(4) There is an exact sequence 0 → C ⊗R Pn → C ⊗R Pn−1 → · · · →

C ⊗R P1 → D → M → 0 with Pi ∈ P(R) for 1 6 i 6 n and
D ∈ D(PC).

(5) There is an exact sequence 0 → C ⊗R Pn → · · · → C ⊗R Pi+1 →
D → C ⊗R Pi−1 · · · → C ⊗R P0 → M → 0 with Pj ∈ P(R) for
1 6 j 6 n, j ̸= i, 0 6 i 6 n and D ∈ D(PC).

(6) ExtiS(M,C ⊗R F ) = 0 for all i > n and all flat R-modules F .
(7) ExtiS(M,L) = 0 for all i > n and all S-modules L with FC-pdS(L) <

∞.
(8) Extn+1

S (M,L) = 0 for all S-modules L with FC-pdS(L) < ∞.

Consequently, the Ding C-projective dimension of M is determined
by the formulas:

D(PC)-pdS(M) = sup{i ∈ N0 | ∃L ∈ FC(S) : Ext
i
S(M,L) ̸= 0}

= sup{i ∈ N0 | ∃Q ∈ FC(S) : Ext
i
S(M,Q) ̸= 0}.

Proof. We first prove the equivalences of (1)–(5). The case n = 0 is
trivial. Now, we assume that n ≥ 1.

(1) ⇒ (2). By (1), there exists an exact sequence 0 → N → D0 →
M → 0 with D0 ∈ D(PC) and D(PC)-pdS(N) ≤ n−1. By Remark 3.2,
we have an exact sequence 0 → H → C ⊗R P0 → M → 0 such that
D(PC)-pdS(H) = D(PC)-pdS(N). By repeating this process, we have
an exact sequence 0 → Dn → C ⊗R Pn−1 → · · · → C ⊗R P1 →
C ⊗R P0 → M → 0 with Pi ∈ P(R) for all 0 6 i 6 n − 1 and
Dn ∈ D(PC).
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(2) ⇒ (3). Since D is Ding C-projective by (2), there is a
HomS(−,FC(S))-exact sequence 0 → D → C ⊗R P 0 → · · · →
C ⊗R Pn−1 → D′ → 0 with each P i ∈ P(R) and D′ ∈ D(PC). So
the diagram:

0 // D // C ⊗R P 0 //

��

· · · // C ⊗R Pn−1 //

��

D′ //

��

0

0 // D // C ⊗R Pn−1
// · · · // C ⊗R P0

// M // 0

can be completed to a commutative diagram by the comparison lemma
[8, Proposition 1.8]. Then the mapping cone 0 → D → D ⊕
(C ⊗R P 0) → C ⊗R (Pn−1 ⊕ P 1) → · · · → C ⊗R (P1 ⊕ Pn−1) →
(C⊗RP0)⊕D′ → M → 0 gives an exact sequenceX• = 0 → C⊗RP

0 →
C ⊗R (Pn−1 ⊕ P 1) → · · · → C ⊗R (P1 ⊕ Pn−1) → (C ⊗R P0) ⊕D′ →
M → 0. Note that each cokernel of X• except M has a finite PC(S)-
resolution. So X• is HomS(D(PC),−)-exact by Remark 2.6. It follows
that X• is just a proper D(PC)-resolution of M of length n.

(3) ⇒ (1), (4) ⇒ (1) and (5) ⇒ (1) are trivial.

(2) ⇒ (4). Note that X• in the proof of (2) ⇒ (3) is just the desired
exact sequence.

(1) ⇒ (5) is immediate by Remark 3.2, and the equivalence of (1)
and (4).

Next we show the equivalences of (1), (6), (7) and (8).

(1) ⇒ (6). By hypothesis, there exists an exact sequence 0 → Dn →
· · · → D1 → D0 → M → 0 with Di ∈ D(PC) for 0 6 i 6 n. So

Extn+j
S (M,C ⊗R F ) ∼= ExtjS(Dn, C ⊗R F ) = 0 for all j > 0 and all flat

R-modules F by Proposition 2.5.

(6) ⇒ (7) by the usual dimension shifting argument.

(7) ⇒ (8) is clear.

(8) ⇒ (1). By assumption, let D(PC)-pdS(M) = s < ∞. If s 6 n,
there is nothing to prove. So we assume s > n. Then there is an exact
sequence 0 → Ds → · · · → D1 → D → M → 0 with Di ∈ PC(S)
for 1 6 i 6 s and D ∈ D(PC) by the equivalence of (1) and (4). Let
Ki = Coker(Di+1 → Di) for 1 6 i 6 s− 1.

If n = 0, then Extn+1
S (M,K1) = 0 by (8) since FC-pdS(K1) < ∞.

Thus, the exact sequence 0 → K1 → D → M → 0 splits, and so
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M ∈ D(PC) by Theorem 2.8, as desired.

Let n > 1. Since FC-pdS(Kn+1) < ∞, we have that Ext1S(Kn,Kn+1)
∼= Extn+1

S (M,Kn+1) = 0 by (8). So the exact sequence 0 → Kn+1 →
Dn → Kn → 0 splits, and then Kn ∈ PC(S). Hence, (1) follows.

The last formulas in the theorem for determination ofD(PC)-pdS(M)
are a direct consequence of the equivalences between (1), (6) and
(7). �

Let X be any class of R-modules and M an R-module. An X -
precover of M is an R-homomorphism φ : X → M , where X ∈ X and

such that the sequence HomR(X
′, X)

HomR(X′,φ)−−−−−−−−−→ HomR(X
′,M) −→ 0

is exact for every X ′ ∈ X .

From the equivalence of (1) and (3) in Theorem 3.3, we immediately
have the following:

Corollary 3.4. Let M be an S-module with D(PC)-pdS(M) = n < ∞.
Then there is a surjective D(PC)-precover φ : N −→ M such that
K = Kerφ satisfies PC-pdS(K) = n − 1 (if n = 0, this should be
interpreted as K = 0).

The following result is the Ding C-projective version of [1, Lemma
2.17].

Corollary 3.5. Let M be an S-module with D(PC)-pdS(M) = n < ∞.
Then there exists an exact sequence 0 → M → H → D → 0, where D
is Ding C-projective and PC-pdS(H) = n.

Proof. If M is Ding C-projective, we take 0 → M → H → D → 0
to be the first short exact sequence in the “right half” of a complete
D(PC)-resolution of M .

Now assume that D(PC)-pdS(M) = n > 0. By Corollary 3.4, there
is an exact sequence 0 → K → D′ → M → 0, where D′ ∈ D(PC) and
PC-pdS(K) = n − 1. Since D′ is Ding C-projective, there exists an
exact sequence 0 → D′ → C ⊗R P → D → 0 such that P ∈ P(R) and
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D ∈ D(PC). Consider the pushout diagram:

0

��

0

��
K

��

K

��
0 // D′ //

��

C ⊗R P //

��

D // 0

0 // M //

��

H //

��

D // 0

0 0.

The bottom row of this diagram is the desired sequence. To see this,
we must argue that PC-pdS(H) = n. Clearly, PC-pdS(H) � n − 1.
If n = 1, then we must have PC-pdS(H) = 1; otherwise, M ∈ D(PC)
by Corollary 3.4. If n > 1, from the short exact sequence 0 → K →
C ⊗R P → H → 0, we have PC-pdS(H) = PC-pdS(K) + 1 = n
since PC-pdS(K) ̸= PC-pdS(C ⊗R P ). Then, in conclusion, we have
PC-pdS(H) = n. �

Corollary 3.6. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of
S-modules with M ∈ D(PC).

(1) If M ′ ∈ D(PC), then M ′′ ∈ D(PC) if and only if M ′′ ∈ ⊥1FC .

(2) If M ′′ ∈ D(PC), then M ′ ∈ D(PC) if and only if M ′ ∈ P⊥1

C .

Proof. (1) The necessity follows from Proposition 2.5. We now prove
the sufficiency. Since D(PC)-pdS(M

′′) ≤ 1, by Corollary 3.4, there is
an exact sequence 0 → C ⊗R P → D → M ′′ → 0, where P ∈ P(R)
and D ∈ D(PC). By assumption Ext1S(M

′′, C⊗RP ) = 0, this sequence
splits, and hence M ′′ is Ding C-projective by Theorem 2.8.

(2) The necessity follows from Proposition 2.5. Since M ′′ ∈ D(PC),
there is an exact sequence 0 → K → C ⊗R P0 → M ′′ → 0 with
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P0 ∈ P(R) and K ∈ D(PC). Consider the following pullback diagram:

0

��

0

��
K

��

K

��
0 // M ′ // L

��

// C ⊗R P0
//

��

0

0 // M ′ // M

��

// M ′′ //

��

0

0 0.

From the middle column, we get that L is Ding C-projective by
Theorem 2.7. Note that the middle row splits since Ext1S(C ⊗R

P0,M
′) = 0 by hypothesis, and hence, M ′ is Ding C-projective by

Theorem 2.8. �

Recall that a class of modules is called projectively resolving if it
is closed under extensions, kernels of surjections and it contains all
projective modules. By Corollary 3.6, we get that the class of Ding
projective modules is projectively resolving, which was proved in [18,
Theorem 2.6] and [12, Theorem 2.1].

When SCR = RRR, it was proved in [2, Lemma 2.4 (2)] that, if
M is a Ding projective R-module of finite flat dimension, then M is
projective. Naturally, it makes sense to give the relation between PC-
projective dimensions and D(PC)-projective dimensions.

Proposition 3.7. If M is an S-module of finite FC-projective dimen-
sion, then

D(PC)-pdS(M) = PC-pdS(M).

In particular, there is an equality of classes D(PC) ∩ FC(S) = PC(S).

Proof. Using Theorem 3.3, it suffices to show that if M is Ding C-
projective with FC-pdS(M) < ∞, then M is C-projective. To this end,
consider an exact sequence of the form

0 −→ K −→ C ⊗R P −→ M −→ 0,
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where P ∈ P(R) and FC-pdS(K) < ∞. By Theorem 3.3, Ext≥1
S (M,K)

= 0, so the above sequence splits, forcing M to be a summand of
C ⊗R P . Since the class of C-projectives is closed under summands by
[10, Proposition 5.5], M is C-projective, as desired. �

4. The Foxby equivalence. In this section, we will study the
Foxby equivalence between some subclasses of the Auslander class
AC(R) and the Bass class BC(S).

Lemma 4.1. If M ∈ BC(S), then M is Ding C-projective if and only
if HomS(C, M) is Ding projective.

Proof. ⇒. By Proposition 2.5, there exist projective R-modules
P 0, P 1, . . . together with an exact sequence

0 −→ M −→ C ⊗R P 0 −→ C ⊗R P 1 −→ · · · . (∗)

Furthermore, the complex HomS((∗), C ⊗R F ) is exact for all flat R-
modules F .

Since M and each C ⊗R P i are in BC(S), by [10, Theorem

1], the definition of BC(S) gives that both Ext≥1
S (C,M) = 0 and

Ext≥1
S (C,C ⊗R P i) = 0 for all i ≥ 0. Hence, the sequence (∗) stays

exact if we apply to it the functor HomS(C,−), and doing so we obtain
the exact sequence of R-modules

0 −→ HomS(C,M) −→ P 0 −→ P 1 −→ · · · . (∗∗)

By similar arguments, we see that if we apply C ⊗R − to the sequence
(∗∗), then we have (∗) back. Let F be any flat R-module. Then
F ∼= HomS(C,C ⊗R F ) since F ∈ AC(R). So we have:

HomR((∗∗), F ) ∼= HomR((∗∗),HomS(C,C ⊗R F ))

∼= HomS(C ⊗R (∗∗), C ⊗R F )

∼= HomS((∗), C ⊗R F )

is exact. Thus, (∗∗) is a HomR(−,F(R))-exact projective-coresolution
of HomS(C,M).

Next, we claim that Ext≥1
R (HomS(C,M), F ) = 0 for all flat R-

modules F . To this end, let P. → M be a proper PC-projective
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resolution of M . Then HomS(C,P.) is a proper projective resolution of
HomS(C,M) by [15, Lemma 2.1]. For every i > 0, we have:

ExtiR(HomS(C,M), F )
(a)
= Hi(HomR(HomS(C,P.),HomS(C,C ⊗R F )))

(b)∼= Hi(HomS(C ⊗R HomS(C,P.), C ⊗R F ))

(c)
= Hi(HomS(P., C ⊗R F ))

(d)
= ExtiPC

(M,C ⊗R F )

(e)∼= ExtiS(M,C ⊗R F )

= 0.

Here (a) and (c) follow from F ∈ AC(R) and P. ∈ BC(S) (see [10,
Lemma 4.1; Theorem 1]); (b) is by adjointness, (d) is by the definition
of relative cohomology modules [15, Lemma (1.5)] and (e) follows from
[15, Corollary 4.2]. Therefore, we have proved that HomS(C,M) is a
Ding projective R-module by [12, Proposition 2.1].

⇐. Assume that HomS(C,M) is a Ding projective R-module. It
follows from [12, Proposition 2.1] that there exist projective R-modules
P 0, P 1, . . . together with an exact sequence

0 −→ HomS(C,M) −→ P 0 −→ P 1 −→ · · · . (+)

Furthermore, the above exact sequence is HomR(−,F(R))-exact.

Since P 0, P 1, . . . and HomS(C,M) are in AC(R), it follows from
[10, Corollary 6.3] that every cokernel in (+) is also in AC(R). If

N ∈ AC(R), then TorR≥1(C,N) = 0, and consequently, the sequence
(+) stays exact when we apply to it the functor C ⊗R −, and we have
the following exact sequence:

0 −→ M −→ C ⊗R P 0 −→ C ⊗R P 1 −→ · · · . (♯)

Let F be any flat R-module. Then F ∼= HomS(C,C ⊗R F ) since
F ∈ AC(R). Now by adjointness, we see that

HomS((♯), C ⊗R F ) ∼= HomS(C ⊗R (+), C ⊗R F )

∼= HomR((+),HomS(C,C ⊗R F ))

∼= HomR((+), F )
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is exact. Furthermore, from the first part of this proof, for any flat
R-module F , we have

Ext≥1
S (M,C ⊗R F ) ∼= Ext≥1

R (HomS(C,M), F ) = 0.

Dually, we can prove that M has a proper PC-resolution and M ∈ P⊥
C .

Hence, M is Ding C-projective by Proposition 2.5. �

Proposition 4.2. There are equivalences of categories:

AC(R) ∩ DP(R)
C⊗R− // D(PC(S))

HomS(C,−)

oo .

Proof. By Fact 2.3 (4), Fact 1.6 and Lemma 4.1, it is obvious that
the functor HomS(C,−) maps D(PC(S)) to AC(R) ∩ DP(R). So it
suffices to show that the functor C ⊗R − maps AC(R) ∩ DP(R) to
D(PC(S)). To this end, let M ∈ AC(R)∩DP(R). Then there exists a
HomR(−,F(R))-exact sequence of R-modules

P = · · · ∂2−→ P1
∂1−→ P0

∂0−→ P 0 ∂0

−→ P 1 ∂1

−→ · · ·

with all Pi, P i ∈ P(R) and M ∼= Im ∂0. By [17, Lemma 4.1,
Corollary 6.3] and [2, Remark 2.2(3)], every kernel and cokernel in
P are in AC(R)∩DP(R). Then, applying the functor C⊗R− to it, we
have the following exact sequence of S-modules

C ⊗R P = · · · 1C⊗R∂2−−−−−→ C ⊗R P1
1C⊗R∂1−−−−−→ C ⊗R P0

1C⊗R∂0−−−−−→ C ⊗R P 0 1C⊗R∂0

−−−−−→ · · · .

Clearly, C ⊗R M ∼= Im (1C ⊗R ∂0). Now by [10, Theorem 6.4], for any
flat R-module F , we see that

HomS(C ⊗R P, C ⊗R F ) ∼= HomR(HomS(C,C ⊗R P),
HomS(C,C ⊗R F ))

∼= HomR(P, F )
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is exact. And, for any projective R-module P , we have

HomS(C ⊗R Q,C ⊗R P) ∼= HomR(HomS(C,C ⊗R Q),

HomS(C,C ⊗R P))
∼= HomR(Q,P)

is exact. So C ⊗R P is a HomS(PC ,−)- and HomS(−,FC)-exact
sequence, and hence C ⊗R M ∈ D(PC(S)).

Finally, note that if M ∈ AC(R) ∩ DP(R) and N ∈ D(PC(S)),
then there exist natural isomorphisms M ∼= HomS(C,C ⊗R M) and
N ∼= C ⊗R HomS(C,N). Then the desired equivalences of categories
follow. �

Let n be a nonnegative integer. In the following, we denote by
DP(R)≤n (D(PC(S))≤n) the class of modules with Ding projective
(Ding C-projective) dimension at most n.

Theorem 4.3. There are equivalences of categories:

AC(R) ∩ DP(R)≤n

C⊗R− // D(PC(S))≤n
HomS(C,−)

oo .

Proof. Let M ∈ AC(R) ∩ DP(R)≤n. If n = 0, then C ⊗R M ∈
D(PC(S)) by Proposition 4.2. Now assume n ≥ 1. Then by [12,
Theorem 2.4], there exists an exact sequence of R-modules

0 −→ Dn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ M −→ 0

with Dn ∈ DP(R) and Pi ∈ P(R) for 0 ≤ i ≤ n− 1. By [10, Theorem
1, Corollary 6.3], every term and kernel in the above sequence are in
AC(R). So we have the following exact sequence of S-modules

0 −→ C ⊗R Dn −→ · · · −→ C ⊗R P1 −→ C ⊗R P0 −→ C ⊗R M −→ 0

with C ⊗R Dn and all C ⊗R Pi in D(PC(S)) by Proposition 4.2, which
means that C ⊗R M ∈ D(PC(S))≤n.

Conversely, let N ∈ D(PC(S))≤n. If n = 0, then HomS(C,N) ∈
AC(R) ∩ DP(R) by Proposition 4.2. Now assume n ≥ 1. Then by
Theorem 3.3, there exists an exact sequence of S-modules

0 −→ C ⊗R Pn −→ C ⊗R Pn−1 −→ · · · −→ C ⊗R P1 −→ D0 −→ N −→ 0
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with D0 ∈ D(PC(S)) and Pi ∈ P(R) for 1 ≤ i ≤ n. By [10, Corollaries
6.1, 6.3], every term and cokernel in the above sequence are in BC(S).
So, applying the functor HomS(C,−) to it, we have the following exact
sequence of R-modules

0 −→ Pn −→ Pn−1 −→ · · · −→ P1 −→ HomS(C,D0) −→ HomS(C,N) −→ 0

with HomS(C,D0) ∈ AC(R) ∩ DP(R) by Proposition 4.2. Hence,
HomS(C,N) ∈ AC(R) ∩ DP(R)≤n.

The rest of the proof is similar to that of Proposition 4.2. �

By assembling the information above and [11, Theorem 4.6], we have
the following extension of the Foxby equivalence from the introduction.

Theorem 4.4. (Foxby equivalence). Let n be a nonnegative integer,
and let P(R)≤n, PC(S)≤n, I(S)≤n and IC(R)≤n be the classes of mod-
ules with projective, C-projective, injective and C-injective dimension
at most n, respectively. Then there are equivalences of categories:

P(R)≤n

C⊗R−
∼

//
� _

��

PC(S)≤n

HomS(C,−)

oo � _

��
AC(R) ∩ DP(R)≤n

C⊗R−
∼

//
� _

��

D(PC(S))≤n

HomS(C,−)

oo � _

��
AC(R) ∩ GP(R)≤n

C⊗R−
∼

//
� _

��

BC(S) ∩ GPC(S)≤n

HomS(C,−)

oo � _

��
AC(R)

C⊗R−
∼

// BC(S)
HomS(C,−)

oo

AC(R) ∩ GIC(R)≤n

C⊗R−
∼

//?�

OO

BC(S) ∩ GI(S)≤n

HomS(C,−)

oo
?�

OO

D(IC(R))≤n

C⊗R−
∼

//?�

OO

BC(S) ∩ DI(S)≤n

HomS(C,−)

oo
?�

OO

IC(R)≤n

C⊗R−
∼

//?�

OO

I(S)≤n.
HomS(C,−)

oo
?�

OO

Remark 4.5. By the definition of GC-projective modules, one can
define DC-projective modules over a commutative ring S as follows:



1410 CHUNXIA ZHANG, LIMIN WANG AND ZHONGKUI LIU

An S-module M is called DC-projective if there exists an exact
sequence of S-modules

X = · · · → P1 → P0 → C ⊗S P 0 → C ⊗S P 1 → · · ·

with Pi, P
i projective for i ≥ 0, such that M ∼= Coker(P1 → P0) and

X is HomS(−,FC(S))-exact. Set

DPC(S) = the subcategory of DC-projective S-modules.

By Proposition 2.5, we have that D(PC(S)) = BC(S) ∩ DPC(S).
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