Open Access
2014 Computing local constants for CM elliptic curves
Sunil Chetty, Lung Li
Rocky Mountain J. Math. 44(3): 853-863 (2014). DOI: 10.1216/RMJ-2014-44-3-853


Let $E/k$ be an elliptic curve with CM by $\Oc$. We determine a formula for (a generalization of) the arithmetic local constant of [{\bf5}] at almost all primes of good reduction. We apply this formula to the CM curves defined over $\q$ and are able to describe extensions $F/\q$ over which the $\Oc$-rank of $E$ grows.


Download Citation

Sunil Chetty. Lung Li. "Computing local constants for CM elliptic curves." Rocky Mountain J. Math. 44 (3) 853 - 863, 2014.


Published: 2014
First available in Project Euclid: 28 September 2014

zbMATH: 1347.11050
MathSciNet: MR3264485
Digital Object Identifier: 10.1216/RMJ-2014-44-3-853

Rights: Copyright © 2014 Rocky Mountain Mathematics Consortium

Vol.44 • No. 3 • 2014
Back to Top