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CLASSICAL SOLUTIONS OF
HYPERBOLIC DIFFERENTIAL SYSTEMS
WITH STATE DEPENDENT DELAYS

WOJCIECH CZERNOUS

ABSTRACT. We consider the generalized Cauchy problem
for a system of quasilinear partial functional differential equa-
tions of the first order

n
Orzi(t,x) + E pij (t,z,V (251, @) Ou; 2i(t, x)
=1
=Gi(t,z,V(z;t,z)), 1<i<m,
where V' is a nonlinear operator of Volterra type, mapping
bounded (with respect to seminorm) subsets of the space of

Lipschitz-continuously differentiable functions, into bounded
subsets of this space.

Using the method of bicharacteristics and the fixed-point
theorem we prove the local existence, uniqueness and contin-
uous dependence on data of classical solutions of the problem.

This approach covers systems of the form

n
6t2i(t, E) + Z Pij (tvmv Zzp(t,z,z(t,z)))amj Z’i(t’ x)
j=1

= Gi(tazvzd)(t,z,z“‘m)))a 1<i:<m,

where (t,z) — z(4,5) is the Hale operator, and all the com-
ponents of 1 may depend on (t,z,Z(t,z)). More specifically,
problems with deviating arguments and integro-differential
systems are included.

1. Introduction. We formulate the functional differential problem.
Let a > 0, hg € Ry, Ry = [0,+00), and h = (hy,... ,h,) € R} be
given. We define the family of sets

E, = [~ho,t] x R", te0,q]
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and the sets
E:Ea\Eo, D= [—ho,O] X [—h,h]

For k, | arbitrary positive integers, we denote by My ; the class of all
k x [ matrices with real elements, and we choose the norms in RF and
My to be oo-norms: [|y|| = [|y||oc = maxi<i<k |y:| and [|A[| = [|Al|ec =
maxj<i<k Es':l |(Lij|, respectively, where A = [aij]i:L___ =1, 1+ The
product of two matrices is denoted by “x.” For U C R'*™ and a normed
space Y, equipped with the norm || - ||y, we define C'(U,Y) to be the
set of all continuous functions w : U — Y; this space is equipped with
the usual supremum norm ||w||c,y) = suppey ||w(P)|ly. We write it
simply C'(U) when no confusion can arise.

Put X = C(D,R™). Let V : C(E,,R™) x E — X, in variables
(z;t, ), be a nonlinear Volterra operator. By the Volterra property we
mean that, for z, Z € C(E,,R™) and ¢ € [0, a],

z(r,z) =Z(r,z) for T <t
implies that
V(zir,z) =V (Z;7,2) form <t.

Let
Pijs Gi :Q— R and ©; : Ey; —)R,
I<i<m,1<j<mn,
be given, where Q stand for £ x X and Ey; = E,,, 0 < a; < a,
1 <7 < m. We consider the hyperbolic functional differential system

Orzi(t, ) + Y pij(t, 3, V(zit,2))0n, 2i(t, x) = Gi(t, z, V (23, 2))
j=1
1< <m,

augmented with the initial conditions
(2) zi(t,z) = i(t,z) on Ep; 1<i<m.
A function 7 € C*(E,,R), where @ < ¢ < a, @ = max{a; : 1 <i < m},

is a classical solution of (1) and (2) if condition (2) holds and, for each
1 < i < m, the ith equation in (1) is satisfied on [a;,c] x R™.
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The theory of ordinary differential equations with state dependent de-
lays was prior to investigations of partial equations of this type. Among
major works in this field are [14] with two consecutive companion pa-
pers, on limiting profiles of periodic solutions, and [19], in which the
general theory of invariant manifolds was developed. Further bibliog-
raphy may be found in [5].

Existence results for abstract partial differential equations with state
dependent delay are given in [6]. A new class of nonlocal equations with
state-selective delay was introduced in [16]. Discrete state dependent
delay for partial equations was investigated in [15].

Note that different models of the functional dependence in partial
equations are used in the literature. The first group of results is
connected with initial problems for equations

(3) Ox(t,z) = G(t,z, z,0.2(t, x))

where the variable z represents the functional argument. This model
is suitable for differential functional inequalities generated by initial
problems considered on the Haar pyramid. Existence results for (3)
can be characterized as follows: theorems have simple assumptions and
their proofs are very natural (see [17, 18]). Unfortunately, a small class
of differential functional problems is covered by this theory. There are
a lot of papers concerning initial value problems for equations

(4) Oz(t,x) = H(t,z, W[z](t,x), 0,2(t, x))

where W is an operator of Volterra type and H is defined on the
finite-dimensional Euclidean space. The main assumptions in existence
theorems for (4) concern the operator W. They are formulated ([1, 9])
in terms of inequalities for norms in some functional spaces.

A new model of a functional dependence is proposed in [7, 8]. Partial
equations have the form

(5) 0i2(t,x) = F(t,x, 24 z), 0 2(t, )
where z(; ) is a functional variable. This model is well known for

ordinary functional differential equations (see, for example, [4, 12,
13]). It is also very general since equations with deviating variables,
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integral differential equations, and equations of forms (3) and (4) can
be obtained from (5) by specifying the operator F'. In the paper we use
the model (5). In existence results [11], concerning partial differential
equations with state dependent delays, Carathéodory solutions were
considered and the functional variable was

Z(d)O (t) ;1/)’ (t7xvz(t,z) )) ‘

We deal in this paper with a slightly wider class of deviating functions,
admitting functional variables of the form

Z(wo(t7zyz(t,z))ﬂpl(tvz‘:z(t,w)))’

and we consider classical solutions of the respective problem.

Cases of more (or less) complicated deviating functions are also
covered by our operator formulation.

Delay systems with state dependent delays occur as models for the
dynamics of diseases when the mechanism of infection is such that the
infectious dosage received by an individual has to reach a threshold
before the resistance of the individual is broken down and as a result
the individual becomes infectious. A prototype of such model was
proposed in [2].

The aim of this paper is to prove a theorem on the existence and con-
tinuous dependence of classical solutions to (1), (2). Apart from classi-
cal solutions, there are two types of generalized solutions to non-linear
partial functional differential problems of the first order. Solutions in
the Cinquini-Cibrario sense are close to classical solutions: assuming
continuity in time, instead of measurability and upper-boundedness
by an integrable function, makes Cinquini-Cibrario solutions turn into
classical ones. In the case of existence results for Carathéodory solu-
tions, which are investigated in [11], there is no refinement of assump-
tions leading to classical solutions, so a new proof is necessary.

To prove existence of classical solutions, one may replace the spatial
derivative of z by a new unknown function u and solve an equivalent,
functional integral system for (z,u) by constructing the sequence of
successive approximations (z(m), u(m)) with the property 0,2z(™) =
u(™); sending m to infinity, we obtain a solution. Alternatively, one may
construct a functional integral problem of the form z = F'z, equivalent
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to the original one; then, the main difficulty lies in finding a closed
subset X of a Banach space, such that F' maps it into itself and is a
contraction. Such an obtained fixpoint of F' is a classical solution of
our quasilinear problem. Our existence proof goes along these lines.

The paper is organized as follows. In Section 2 we prove a result
on the existence and regularity of bicharacteristics, having assumed
our conditions on the operator V. In the next section, the method of
bicharacteristics is used to transform the Cauchy problem into a system
of integral equations. A fixed-point equation is constructed. Section 4
contains the main result. An application of our approach to the systems
with state dependent delays is described in the last section.

2. Bicharacteristics. Let U C R!*", and let k£ be a positive
integer. For z: U — R* and (t,z) € U, denote

0z2(t,x) = [0z, 2i(t, x)i=1,... k, € Mpxn

=1, n
and
0z(t,z) = [8zjzi(t,$)]i':1,...-,k, € Mix (n+1),
where 0., = 0;.
For a fixed p € R, we consider the space

C'[p](U,R*) = {w € C(U,RF) : w is continuously differentiable
and |w|c(w) < p}-

Similarly, for p = (p1,p2) € R3, we define
CI'L[p](U, Rk) = {U) € Cl[pl](U, Rk) : |8’w|co.L(U) < pz},

where |2|co.L(y) = SUPp_p.ppep [12(P) — 2(P)|| - ||P — P||~t. We are
now able to define the function space, in which we seek solutions to
(1), (2). Given p € R%, ¢; € C1L[p|(Ep.i,R), 1 <i<m, and d € R%
such that d; > p;, 7 = 1,2, we set

C;l,'_l(‘;[d] ={z e CI'L[d](EC,Rm) iz =p;on Ey,;, 1 <i<m}.
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We prove that, under suitable assumptions on p, G, v;, on the param-
eters p, d, and for sufficiently small @ € (0,a), ¢ € (@, a], there exists a
solution Z of problem (1), (2) such that z € C}Z[d].

Let Y stand for C(D, My, (nt1)). Write p; = (pi1y--- s pin), 1 <
1 < m. For the convenience of calculations, we consider m Fréchet
derivatives 0, pi(t,z,w) € L(X,R"), 1 < i < m, rather than mn
Fréchet derivatives Oy p;j(t,z,w), 1 < i < m, 1 < i < n. We are
interested in estimating it in the norm || - ||y, ), since we use
the notation

(6)
8wpi(t7 z, w)(s = <8wpi(t7 z, U})(S(), .. 76wpi(t7 z, w)6n> S Mnx(nJrl)

nX(n+1)

for 6 €Y, 8 = (0o,...,0n), 6; € X, 0 < j < n. The symbol Q™ is
short for E x C1-L(D,R™).

Assumption H [p]. Suppose that p : Q@ — M,,«, in the variables
(t,z,w), is continuous and

1) the derivatives: 9, p;(t, z, w) and the Fréchet derivative 0, p;(t, z, w)
exist for (¢,z,w) € QYL 1 <i<m,

2) for 1 <i < m, d,p; and d,,p; are continuous in t on QL,

3) there is a non-negative constant A such that, for 1 <i < m,

||p1(t,x,w)\|, Hampl(tawi)) Hawpi(tawi)HL(Y,MnX(nJrl)) S A

on Ql.L

and

||8zpi(t;waw) - 8zpi(t’f’w)“’
|0wpi(t, z, w) — Owpi(t, T, E)HL(Y:MnX(nH))
< A(llz — z| + [lw — @ x)

for (t,z,w), (t,Z,w) € QL.

Assumption H [V]. The operator V' : C(E,,R™) x E — X is such
that for every d € R% there are d € R, L € Ry such that:
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1) for z € C[d;](E.,R™), (t,z) € E,

||8V(Z,t,l‘)“y S Ela

2) for z € C1-L[d|(E,,R™), (t,z) € E,

10V (z:t,2)ly < di, [|0V(23t,2) = OV (231, T)|ly < daflz — ],

3) for every z, z € C'[d1](E,, R™) and (¢,z) the following holds

V(zt,2) = V(Zt )l x < Lilz = Zllows,)-

Suppose that p; € CF[p](Eo.4,R), 1 <i < m, and z € CL[d]. For
1 < i< m, and a point (¢,z) € [a;,c] X R™, we consider the Cauchy
problem

(7) n'(r) = pi(r,n(7), V(2 7,n(7))), n(t) ==,

and denote by gi[z]('a i x) = (gil[z]('a i, .’E), s 7gin[z]('a i, .’E)) its classi-
cal solution. This function is the bicharacteristic of the ith equation of
(1), corresponding to z. Write

Qi[z](r, t,z) = (7, 9:[2] (7, t, x), V(2; 7, gi[2] (7, £, T))).

We prove a lemma on bicharacteristics.

Lemma 2.1. Suppose that Assumptions H[p|, H[V] are satisfied,
and let ¢;, p; € C*V[pl(Eoi,R) such that |l¢; — Billo(r, ) < +o0,
1 <i<m,and z € C L[], Z € C%f[d], be given. Then, for
1 < i < m, the solutions g;[z](-,t,z) and g¢;[Z](-,t,x) exist on the
interval [a;,c] and are unique. Moreover, the estimates

10gi[z)(7,t, z)[| < C,

®  oallr b e) — 0 =(r L) < Qmax{(t — T, = — )

and

9 lglel(mt ) — gslZ] (7 8, 2)|| < A /; Iz = Zlle.) ds



78 W. CZERNOUS

hold for T € |a;, ¢], (t,z), (£, T) € [a;, c] x R™, where

C=(A+1)eB,
10) Q=[1+0C)B + (T*]ecB_,
C = C?*cA[(1+ d1)* + da],
B=A(1+d)
and
A= ALeP

and d = (d1,d2) € R2 is the parameter from Assumption H[V],
corresponding to d.

Proof. Let z € C’L},'_f [d]. The existence and uniqueness of solutions of
(7) follow from the theorem on classical solutions of initial problems.
From another classical theorem on differentiation of solutions with
respect to the initial data it follows that the derivative 0g;[z](s,t, )
exists and fulfills the integral equations

0gi](m,t,x) = [— pi(t,z, V(z;t,x)) | I]
+ [ [oerntQuel(oitia)

+ 0upi(Qul2)(5,1,))0V (255, 6il] (5,1, )|
* 0g;[2](s,t,z) ds

(11)

where [—p;(t,z,V(z;t,z)) | I] denotes concatenation of the matrix
—pi(t,z, V(z;t,x)) with the identity matrix. It follows from (11), from
Assumptions H|[p|, H[V] that 0g;[z](-,t,x) satisfy integral inequalities

)

10gilz]( ¢, 2)| < A+ 1 +B‘/ 10gi[2](s, t, x)|| ds
t

and from the Gronwall lemma we get the first estimate in (8). Hence
we derive the inequality

18g:]z](T, t, x) — Bg;[2](T, ¢, f)ﬂ
< (B + C)max{[t — ¥, ||z — Z||} + CBJt — |

+ B‘ /t 19gs12](s, £, ) — Bgil2](s, E, 7| ds
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which, by the Gronwall lemma, implies that

10gi(2](7, t, ) — Ogil2] (7, £, )|
< Qumax{|t — 1|, |z — Z||} + Qolt — 7|
< (Qo + Q1) max{|t — |, |z — |},

with Qo = CBexp(cB) and Q1 = (C + B) exp(cB), yielding the second
estimate in (8).

We now prove (9). The function g;[2](7,¢, ) satisfies the following
relation:

gi[z](Tv t,Q}‘) =T+ / pi(sagi[z](svtax)v V(Za S,Qi[Z](S,t,I))) ds.
t
This leads to

lgi[2](7; ¢, ) = gi[2](7, ¢, @)

<5 [ g, t.2) — galZ] (s, )] ds

L AL / Iz - Zllogs,ds
t

Again, from the Gronwall inequality we obtain

o1 1,2) =~ il 2] < AL exp(eB)| [l = Fleqe, d
t

This completes the proof. a

3. Functional integral system. Let W stand for L(C(D, My, xx),
M «y). The expression 9,G;(t,z,w)d for § € C(D, Mpxy) is to be
interpreted in a way analogous to (6); for the sake of simplicity of
calculations, we use || - [ (rather than ||-|1(x,r)) for measuring the
values of 0,,G;.

Assumption H[p,G]. Assumption H][p] is fulfilled, G : @ — R™, in
the variables (¢, z, w), is continuous and, for 1 < i < m,
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1) the derivative 0,G(¢, z,w) and the Fréchet derivative 0,,G(¢, z, w)
exist for (¢, z,w) € QL]

2) for (¢, z,w), ({,z,w) € QL,
HG(t,:c,w)H, ||8EG(t,a:,w)||, HawGi(tvmvw)HW <A,
||Gi(t,$,’w) - Gi(Z,fvaw)H S A|t —ﬂ,
10,Gi(t, z, w) — 0,G;(t, Z,w)||,
100 Gi(t, ,w) — 0,Gi(t, 7, @) |w < A(|Jz — 2| + |w — @||x).

with the same constant A as in the Assumption H|[p].

We define the operator F = (Fy, ..., Fy) on C,L[d] by the formula

Fiz(t,z) = pi(ai, gi[z](ais t, 7)) + [ Gi(Qil2](s,t, 7)) ds

12 “
(12) for (t,z) € [as,c] x R, 1<i<m,

FiZE(,Di on EO.i: 1§z§m

Remark 3.1. The right-hand side of (1) is obtained in the following
way. We consider each equation of (1) along its bicharacteristic:
Orzi (Ta gi [Z] (T7 t, x)) + 0z2i (Tv gi [Z] (T’ t, l‘))
* Pi (Ta 9i [Z] (Ta i, 17), V(Z, T, 9i [Z] (Ta t, l’)))
= Gi (7—7 9gi [Z](T, tv ZU), V(Z, T, 9i [Z] (T7 tv CE)))
from which, using (7), we get
4.,
dr “i
By integrating the latter equation with respect to 7, we get a right-hand
side of (12).

(1,9i2](7,t, @) = Gi(T, 9:[2](7, ¢, 2), V (237, gi[2] (7, £, @) ).

Assumption Hlp,c,d,V]. Assumption H[V] is fulfilled, and the
constants a; > 0, 1 < i < m, and ¢ > max{a; : 1 <i < m} are small
enough so to satisfy, together with d and p,

(13) di >p1C+ A+ cCB,
(14) dy > B+ p1Q + p2C? + B(C + ¢Q) + C,
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with constants B, C, C , Q defined in (10). Moreover, the compatibility
condition
(15)
Orpi(ai, ) + 0z pi(as, @) * pi(ai, z, V(25 ai, ) = Gi(ai, , V(25 a4, 7)),
1< <m,

holds for any z € R", z € CL[d].

Lemma 3.2. Suppose that Assumptions H|p,G] and H[p,c,d,V]
are satisfied. Then the operator F maps CLL[d] into itself.

Proof. Let z € CLL[d]. From (12) it follows that

OF;2(t,x) = Oppi(as, 9i[2](ai, t,x)) * Og;[2](ai, t, x)
+ [Gi(t,x,V(z;t,m)) | O]

(16 + [ i@l )

i

+ 0uGi(Qil2] (5,8, )0,V (2; 5, g: 2] (5, ¢, m))]
* 0g;[2](s, t, z) ds,

where [Gi(t,z,V(zt,2)) | 0] = (Gi(t,z,V(2t,2)),0,...,0) € RM™,
and 0,,G;(Q;)0.V (z;7,y) is to be interpreted column-wise. It follows
that [|0Fz(t,z)|| < p1C + CBc + A on E., which, by Assumption
Hlp,c,d, V], implies that |0Fz||c(g,) < di. Furthermore, for 1 <1i <
m and for (¢,z), (£,T) € [ai,c] X R™,

|0F;2(t, &) — OF;2(t,7)||
(

< ) 395% aiagi[z](aiatam) * agi[z](aiatam)

— 0upi @i, gil) (03,1, ) * 0gi[2] (a1, 7,3

+ ‘Gi(t,.’ﬂ, V(Za t,LE)) - Gl(ia fa V(Zaza f))‘

+/ 0.Gi(Qi[z](s,t,x)) * Dg;[2](s, t, x)

— 0,:G;(Q;[2](s,t,T)) * Dg;[2](s, ¢, f)H ds
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+ / 0uwGi(Qil2](s,t, )0,V (2; s, gi[2](s, t, ) * Og;[2] (s, t, x)

i

— 0uGi(Qilz](5,1,7))0:V (23 5, gi[2] (s, 1, T))  Ogilz](s, £, E)‘

‘ /
t

+ 0, G (Qil2)(5,8,7)0:V (255, 0il#] (5, 5,0)) |  gil2)(s, f)H ds

ds

|0:Gu(@ul=) (s 7. 7))

From the above inequalities, Assumption H[p,G] and Lemma 2.1 it
follows that

|0F;2(t, x) — 0F;2(£,7)|| < (p1Q + p2C? + B + ¢BQ + C)
~max{|t — ¢, ||z — Z||} + BCJt — |,

for (¢,z), (t,Z) € |ai,c] X R™, which, in view of the second inequality
from the Assumption Hlp, c,d, V], gives |0F2|co..(g,) < da.

The fact that F;z are continuous extensions of ; is a simple conse-
quence of the definition (12); it remains to prove that this extension is
of class C'. From (11), (16), and from the compatibility condition (15)
we obtain

O0cFiz(a;, ) = Oppi(ai,x)
* 0rgi(z)(ai, ai, ©) + Gi(ai, z, V(25 ai, x))
= —0,pi(a;, ) * pi(ai, z, V(pi; ai, 7))
+ Gi(ai, z, V(pi; a;,x))
= Opi(as,z), 1<i<m.

By the same token we get

O0xFiz(ai, x) = Oppi(ai, @) * 0x9i(2](as, as, x)
= 0ppi(ai, x) * I = Oppi(ai,x), 1<i<m.

This completes the proof of Lemma 3.2. o
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4. Existence of solutions.

Theorem 4.1. Suppose that ¢; € C1L[p|(Ep;,R), 1 < i < m,
and Assumptions Hp,G], H[p,c,d,V] are satisfied. Then there exists
exactly one solution z € CLL[d] of problem (1), (2). Moreover, there is
a A, € Ry such that

17 v =2l < Ae [max les = Billome ), 0<t<ec,
for p; € CYL[p|(Ey4, R) satisfying ||o; — Pille(zy,) < +oo, 1 <i<m,

and T € C%'_I_’c[d] being a solution of (1) with the initial condition (2)
with @; replaced by p;, 1 < i< m.

Proof. We prove that there exists exactly one z € CLZ[d] satisfying
the equation z = F[z]. Lemma 3.2 shows that F : CLL[d] — CLL[d].
Note that the uniform boundedness of temporal derivatives implies the
finiteness of ||z — Z|¢(g,) for z, Z € C;Z[d]. From the definition (12) of
F, and from the Lipschitz continuity of g; with respect to z (see (9)),
the existence of an L* > 0 follows easily such that

t
(18) |Fiz(t, ) — F3z(t, 2)| < L*/ |z = Z||lc(g,) ds

for z, Z € CLLd], (t,2) € [ai,d] x R*, 1 < i < m. Let A > L*. We
define a metric in C}:2[d] by

dx(2,2) = sup{||(z — 2)(t,z)lle™™ : (t,x) € [0,¢] x R"}.
We now prove that a g € [0,1) exists such that
(19) dr(Fz, FZ) < qdx(z, 2).
According to (18),

t
IF=(t,2) — F3(t,2) < L* / Iz - Fles,) ds
0
t
= L*/ |2 = Zllo(m, e~ eMds
0
t L*
< L*d,\(z,Zv)/ Ads = = da( D) ~ 1)
0

*

L
< Td,\(z,ae)‘t
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for (¢t,x) € [0,¢] x R™. Then

*

~ L
|Fz(t,z) — FZ(t,z)|le” < TdA(z,E)
for all (t,z) € [0,c] x R",

which gives (19) with ¢ = L*A~1. By the Banach fixed point theorem,
there exists the unique fix-point of F'. Denoting this fix-point by z we
prove that it is a solution of equation (1). For (¢,z) € [a;, c] x R", there
is

Zi (tv ZU) = (pi(ah gi [E](aia tv CU))

+ / Gi(s, i[5, 1, 2), V(% 5, i [2](5, £, 7)) ds.

For a given x € R", we put y = g¢;[z](ai,t,z). It follows from
Lemma 2.1 that ¢;[Z](s,t,z) = g¢:[2(s,a:,y) for s,t € [a;,c] and z =
9i[Z](t, a;,y). Then we get

(20)

Ei(tag[z](ta aivy)) = Sai(aia y)

t
+ / Gi(s, 6:[2)(5, air ), V' (Z: 8, :l7) (5, ai, v))) ds
1< <m.

Relations y = g;[Z](ai,t,x) and = = g;[Z](t,as,y) are equivalent for
z,y € R™. By differentiating (20) with respect to ¢ and again putting
z = ¢;[Z](¢, a;, y) we conclude that Z satisfies (1). Since Z satisfies initial
condition (2), it is a solution of our problem.

We now prove relation (17). The function ¥ satisfies integral func-
tional system
z(t,z) = Fz(t,x)

and initial condition (2) with @, instead of ;. It follows easily that
there is a A € R such that the integral inequality

t
v =Tllce,) < ax llpi = Pillom,.) + A/ lv— 7l c(e,) ds,
<i<m 0
0<t<ec,

is satisfied. Using the Gronwall inequality, we obtain (17) with A, =
exp(Ac). This proves the theorem. u]
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Remark 4.2. Inequalities (13), (14), given in Assumption H|p, ¢, d, V],
have the following impact on the conditions on operator V.

We indicate how to solve those inequalities. Put, for example, di =
A+2(1+ A)(1+ p1); condition 1) of Assumption H[V] then produces
a corresponding constant d; > 0. By performing easy calculations, one
can see that the condition ¢ < A~(1 4 d;)~'log2, on ¢, assures the
fulfilment of (13).

After the construction of d;, an example of a suitable value of ds, in
terms of di and of given constants, may be found using (14) (we shall
assume that cd, is appropriately bounded). Since at this stage d; and
dy are fixed, condition 2) of Assumption H[V] gives d2. This leads to
one more constraint on ¢, of which we assume the stronger one.

The above explained dependence of choice of dy on dy shows that
condition 2) of the Assumption being considered does not suffice for
solvability of inequalities from Assumption H|[p,c,d, V], but that con-
dition 1) has to be added.

5. Systems with state dependent delays. Suppose that z :
E, — Rand (t,z) € E are fixed. We define the function z(; ) : D — R
as follows

20y (T,6) = 2(t + 1,2 + &), (1,6) € D.
The function 2 . is the restriction of z to the set [t—ho, t|x [z —h, z+h],
and this restriction is shifted to the set D. For z: E, — R™,
2= (21,--+ ,Zm), wWrite 21 o) = ((21)(t,0)s - - - » (2m) (t,2))-

Let ;5 : Q' 5 R, 1<i<m,0< 7 < n, be given. Consider the

function

((zl)wl(t,z,w)a"' a(zm)d)m(t,z,w)) € X,
where ¢¥; = (i, .. ,%in), 1 <i<m, and z: E, — R™. We write it
2y(t,,w) for brevity. We show that the operator V, defined by

(21) V(zst, o) = 2y

6,2,2(¢,z))

satisfies Assumption H[V], provided that certain regularity conditions
on 1 are met.

Assumption H[y]. Deviating function ¥ : Q@ — My, (nq1) is
continuous and, for 1 < i < m,
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1) the inequality v; (¢, z,w) < ¢ holds on €,
2) derivatives: 91; and the Fréchet derivative 9,,1; exist on QL.

3) there is a non-negative constant A; independent of 7 and such that,
for (t,z,w), (t,z,w) € Q'L,

||8wl(ta €z, w)”? ||8ww1(ta Z, w)L(Y,M(n+1)X(n+1)) < Al

and

|03 (¢, z,w) — 0 (t, Z, W),
||8¢l(t7 z, ’U}) - 6wwi(t7f7 w)||L(Y,M(n+1)X(n+1))

are bounded from above by A;(||z — Z|| + [|lw — W||x).

In view of Assumption H[¢], differentiation of (21) gives

8‘/2(2; t? x) = (8zi)wi(t,1},2(t,m))

* I:a’(lz'l(t, T, Z(t,z)) + 8w¢1(t7 T, Z(t,z))(az)(t,z):l on D?
and, consequently, for z € C,L[d] and (t,z) € [as,c] x R [|0Vi(z;t,
$)H0(D7M1X(n+l)) S d1A1(1 + dl) and

10Vi(z;5t, @) — OVi(23 8, @)l oD,y s n1y)
< Al[dldz + (]. + dl)z(dl + dQAl)] . ||$ — f”
Taking maximum (with respect to i) on the left-hand sides of these
estimates, we obtain conditions 1), 2) of Assumption H[V] with d; =
dlAl(]. + dl) and dy = Al[dldg + (1 + dl)z(dl + dQAl)] Fulfilment of
condition 3) of that assumption follows from the estimates
IVi(zit,2) = Vi(Zi t, 2)llcp) < (2w t200y) — (28) (b2, 7000 lo(D)
+ (2 — Ei)¢i(t,$,2(t,m))C(D)
< diAil|z = Zllos,) + llzi = Zillos,)
< (diAr + 1))z = Z|leE,), 1<i<m.

Thus we have proved the following

Theorem 5.1. Suppose that p; € C1-L[p|(Ey;,R) and Assumptions
Hp, G|, H[¢Y] are satisfied. Furthermore, assume that the inequalities
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(13), (14) hold, as well as the compatibility condition (15). Then there
exists exactly one solution z € ClL[d] of the system
(22)

n
0szi(t, ) + Zpij (t,z, zlp(t’z’Z(t,m)))azjzi(t, z) = Gi(t, z, Zzp(t,z,z(t,m)));
j=1
1< <m,

augmented with the generalized Cauchy condition (2). Moreover, there
is a A, € Ry such that the Lipschitz condition (17), with respect to
initial data, holds for

@ € Cl.L[p](EO.ivR)v ||()0Z - ¢l||C(EO7,) < +00, 1 S i S m,

and for v € C%'_g [d] being a solution of (22) with the initial condition
z=p; on By, 1 <i<m.

Assumption H[p,G]. Functions p: E x R™ — Myxn, G : E x
R™ — R™, in variables (¢, z,y), are continuous, uniformly bounded,
and

1) G is Lipschitz continuous in ¢,

2) the derivatives 0,p, 0,p, 0, G, (%@ exist on £ x R™, are continuous
in ¢, and uniformly bounded,

3) these derivatives are Lipschitz continuous in z and y.

Example 5.2. Suppose that Assumption H|[p, G| is satisfied, and
set

p(t, z,w) = p(t,z,w(0,0)), G(t,z,w) = G(t,z,w(0,0)).
Then Assumption H[p, G] is fulfilled and the system (22) takes the form
atzi(tu 33) + Z Pij (ta z, Z(w(tv €T, Z(t,w))))aﬂﬂjzi (tv :U)
j=1
:Gi(taxaZ(w(tamaz(t,z))))a 1 S ? Sma

that is, it becomes a system of equations with deviating argument where
the deviation is state dependent.
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Example 5.3. Suppose that Assumption H|[p,G] is satisfied, and

set
p(t,z,w) = ﬁ(t,x,/D &)dr df)
G(t,z,w) = @(t,m,/ w(r, §) de{).
D

Then Assumption Hlp, G] is fulfilled, and the system (22) takes the
form

ri(t,2) + Y05 (62 [ 2uitns (7€) AT dE)0u,(812)
=1 b

- Gi (t,CE,/ Z@b(t,z,Z(t,m))(Ta 5) dr dé.)a 1 < ? < m,
D

that is, it becomes a system of integro-differential equations, where the
domain of integration is state dependent.
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