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POSITIVE EXISTENTIAL DEFINABILITY
OF PARALLELISM IN TERMS OF BETWEENNESS
IN ARCHIMEDEAN ORDERED AFFINE GEOMETRY

FRANZ KALHOFF AND VICTOR PAMBUCCIAN

ABSTRACT. We prove that one can define the relation |,
with ab || cd to be read as ‘a = b or ¢ = d or ab and cd are
parallel lines (or coincide)’ positively existentially in Lyjw in
terms of # and the ternary relation B of betweenness, with
B(abc) to be read as ‘b lies between a and ¢’ in Archimedean
ordered affine geometry. We also show that a self-map of
an Archimedean ordered translation plane or of a flat affine
plane which preserves both B and —B must be a surjective
affine mapping.

1. Introduction. There is a large literature on what came to be
called characterizations of geometric transformations under mild hy-
potheses, in which classical geometric transformations are character-
ized as mappings (which may be required to be one-to-one or onto or
both) required to preserve only a certain geometric notion, which was
thought to be too weak to characterize the geometric transformation in
question. The better known among these surprising characterizations
are:

e (Carathéodory’s characterization of Mobius or conjugate Mobius
transformation as one-to-one self-maps of the closed complex plane that
map circles (real circles or lines) onto circles (real circles or lines);

e The Mazur-Ulam theorem, stating that surjective isometries of real
normed spaces are affine (i.e., map lines onto lines);

e The Beckman-Quarles theorem, stating that self-maps of finite-
dimensional real Euclidean spaces which map points at unit distance
into points at unit distance must be isometries;

e The Alexandrov-Zeeman theorem, characterizing elements of the
orthochronous inhomogeneous Lorentz group with dilations as self-
transformations of the real Minkowski space that preserve causality.
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All such theorems can be rephrased as purely logical statements
inside a formalized geometric theory, asserting the definability of a
geometric notion in terms of another geometric notion. Rephrasings
of a large class of characterizations of geometric transformations under
mild hypotheses as definability statements, in which explicit definitions
are provided, can be found in [4, 13-21, 25, 26].

The reason why one expects that such rephrasings as definability
statements ought to exist for such theorems is encapsulated in the
following combination of Beth’s definability, Lyndon’s preservation
theorem, and Keisler’s extension thereof (see [8], [5, Theorem 6.6.4,
Exercise 6.6.2]), which can be transferred from first-order logic to Ly, w,
a logic in which one can form countably infinite conjunctions (and
disjunctions) of first-order formulas (cf. [9, 12], [1, Chapter 8]):

Preservation and definability theorem. Let L C LT be two
first order or L., languages containing a sign for an identically
false formula, T a theory in LY, and ¢(X) an LT-formula in the
free variables X = (Xi,...,X,). Then the following assertions are
equivalent:

(i) there is a positive (positive existential; positive existential with

negated equality allowed) L-formula 1¥(X) such that T F ¢(X) < ¢ (X);

(i) for any A,B € Mod(T), and each L-epimorphism (L-homo-
morphism; L-monomorphism) f : A — B, the following condition is
satisfied:

if c €A™ and A = ¢(c), then B = o(f(c)).

This theorem tells us that, for every characterization of a geomet-
ric transformation under mild hypotheses, i.e., for all statements of
type (ii), there must be a definition of the notions preserved by the
transformation, i.e., a statement of type (i). One can ask whether
there is any legitimate reason for preferring one of the two equivalent
variants over the other. Given that the proof of the above theorem
is not constructive, in the sense that it does not provide a method
for finding (X)) in case we know that (ii) holds, finding the actual
definition is preferable to proving theorems regarding mappings. One
may know that (ii) is true but still not know of any definition ¥ (X),
whereas whenever we have a definition satisfying the required syntactic
conditions, the inference to (ii) is immediate.
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An interesting theorem of type (ii) was proved recently in [6]. It states
that a self-map of an Archimedean ordered affine Pappian plane which
preserves both the betweenness and the non-betweenness relation (i.e.,
both B and —B) must be an affine mapping and thus onto.!

The aim of this paper is to provide a purely geometric proof of
this result, to slightly generalize this result to flat affine planes, as
well as to isolate the main reason why the result and the algebraic
characterization of such maps given in [6] holds, which is better than
one would expect (for, by our Preservation and Definability theorem,
the equivalent reformulation, as in (i), would ensure only an existential
definition in terms of B), the positive existential definability of the
parallelism relation in terms of betweenness and #.

Main references for the theory of ordered affine planes (in terms of
betweenness relations) and the theory of ordered projective planes (in
terms of separation relations) are [24, Chapter 9], [28, Chapter 5] and
[33]. For logical matters relevant to this paper one should consult [1,
Chapter 8] and [5].

2. Positive existential definition of parallelism in terms of
betweenness and #. Ordered affine geometry can be expressed, with
only one sort of variables, standing for points, in two different languages:

e one in which the only predicate is the ternary predicate B, with
B(abc) standing for ‘point b is between a and ¢ (or coincides with a or
with ¢’, and

e one with two predicates, B and ||, with ab || ¢d to be read as ‘the
lines determined by (a,b) and (c,d) are parallel or coincide, or a = b,
orc=d.’

Axiom systems of the first type can be obtained in the two-dimensional
case by adding the Euclidean parallel axiom, stating the existence and
uniqueness of a parallel from a point to a line, to an axiom system
for ordered planes, i.e., one with linear order axioms stating that the
order is dense and unending, and the Pasch axiom (in the form that
implies two-dimensionality, stating that a line which meets one of the
sides of a triangle, must meet another side of that triangle as well). In
the higher-dimensional or the dimension-free case (in the latter there is
only a lower-dimension axiom, stating that there are three non-collinear
points, but no upper-dimension axiom), one obtains an axiom system
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of the first type by replacing every occurrence of L(zyz) (which stands
for ‘z,y0 and z are collinear points (not necessarily different points)’)
in an L-based axiom system for affine geometry (such as that presented
n [11]) by B(zyz)V B(yzx)V B(zzy), as well as adding the axioms for
dense, unending linear orders and the outer form of the Pasch axiom
(see [32, page 12]).

Axiom systems of the second type were presented, for the plane case,
in [33] and, for the dimension-free case with dimension > 3, in [10]
(order axioms, including the invariance of betweenness under parallel
projections, in the form of axiom oPasch in [33, page 148] (see Al13
in the Appendix), need to be added to the axiom system in terms of
|| presented in [10] to get an axiom system for ordered affine spaces of
dimension > 3).

It was shown in [33, 4.6] and in [32, Satz 6.62] that axiom systems
of the first type cannot consist entirely of V3-statements (i.e., of state-
ments all of whose universal quantifiers (if any) precede all existential
quantifiers (if any) when written in prenex form), whereas the axiom
systems of the second type from both [10, 33] (together with the or-
der axioms) consist of V3-statements. We conclude that an existential
definition of || in terms of B cannot exist, for, if there were such a def-
inition, we could replace it for || in the V3 axiom systems for ordered
affine geometry of the second type to get a V3-axiom system of the first
type.

However, there exists a positive definition of || in first-order logic in
terms of L (and thus, a fortiori, in terms of B, as we can consider
all occurrences of L(uvw) in the definiens to be abbreviations of
B(uvw) V B(vwu) V B(wuv)), the definition being valid in all ordered
affine planes. It can be formulated as the following V3-statement:

ab || ed <= (Vaxyz)(3uv) [(L(abc) A L(abd))
Ve=dV (L(abx) A L(aby))
V (L(cdz) A L(edy)) V L(zyz) V (((L(zyu) A L(zyv))
V (L(zzu) A L(zzv))) Au # v A L(abu) A L(cdv))].

(1)

That the definiens holds when ab || ¢d is seen by noticing that the cases
a = b, ¢ = d, or the coincidence of the lines ab and cd are part of
the definiens, and if ab and cd are two different parallel lines, and zy
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FIGURE 1. The positive definition of ab || ¢d in terms of L.

and zz are two different lines (i.e., if =L(zyz)), then at most one of zy
and zz can be parallel to ab (and cd), so at least one must intersect
the lines ab and cd in two different points v and v.

That the definiens does not hold when ab |f cd, i.e., when ab and cd
are two different lines and there is a point p with L(abp) and L(edp),
can be seen by choosing x to be p and y and z to be two points, not on
the lines ab or cd, such that =L(zyz). In this case, the lines zy and zz
intersect both ab and cd in the point x, so there are no different points
u and v on one of the lines xy and xz, such that one lies on ab and the
other one lies on cd.

That the u # v which appears in (1) can be positively defined in
terms of L (and thus in terms of B) has been shown, for all affine
spaces of finite dimension > 2, in [13], and thus the definiens in (1)
can be rephrased as a positive statement in L.

The Archimedean nature of an order relation cannot be expressed in
first-order logic (if it could, then so would Archimedean ordered fields,
which is impossible, as they are isomorphic to subfields of R, and, by
the Lowenheim-Skolem theorem, any first-order theory with infinite
models must have models of any infinite cardinality), but it can be
expressed, with L := Lg, in L, (see [1, Chapter 8] for a definition
and for the main properties of this logic), in weak second order logic
L(IIy) (that allows quantification over finite sets, see [31]), in logic
with the Ramsey quantifier Q? (see [2]), as well as in deterministic
transitive closure logic L(DT'C') (see [3, 8.6] for a definition).

We will choose to express our positive existential definition of || in
terms of B in L[, ,, where L' := Lpg). The definition itself is valid in
the theory aziomatized by (a V B)A Arch, where by « we have denoted
the conjunction of the L’-axioms for ordered affine planes (from [33]),
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by B the conjunction of the L’-axioms for ordered affine spaces of
dimensions > 3 (from [10], together with the order axioms), and by
Arch the Archimedean axiom, which in affine ordered geometry, with
no configuration theorems (minor or major Desargues, Pappus) among
the axioms, will be stated by using the defined notions Z and o, which
are defined by

v c b a
FIGURE 2. The definition of o(abcuvw).

Z(abc) :<= B(abc) Aa #bAb#c,
o(abcuvw) <= (Jzy) [B(bzu) A B(azw) A B(vyzx)
A B(byw) A B(uyc) A B(bev)].

The meaning of Z is plain: it stands for strict betweenness. To have
some intuition of what o stands for, let us note that, if we think of
the line vu as the line at infinity, then o(abcuvw) stands for the fact
that the point ¢ is the reflection of a in b, and o(abcuvw) can thus be
thought of as asserting that c¢ is (a projective geometry view of) the

‘reflection’ of a into b, constructed with the help of u,v,w,z,y.
We are now ready to state the Archimedean axiom, which states that,

given two points a; and as, a point p on the ray aﬁz, and a line uw
(which we may think of as the ‘line at infinity’) meeting the ray ards
in a point v (which we may think of as ‘at infinity’), which is such that
p is strictly between as and v, the sequence of points a;, obtained by
iterating the ‘reflection’ operation, first ‘reflecting’ a; in as to get as
(by means of o(ajazazuvw)), then ay in a3 to get a4, and so on, will
eventually move past p, i.e., for some n, we will find p lying between
a2 and anya.
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v P g a5 Qa4 a3 a9 ay

FIGURE 3. The Archimedean axiom.

(Vajasuvwpz) {—L(ajvw) A Z(ayzw) A Z(agzu)
A Z(vwu) A Z(arazv) A Z(azpv)

— [ \/ ((Eag S Qpg2) /\ o(a;a;10i2uvw) A B(agpanﬁ))] }

n=1

To improve the readability of the definition of || in terms of B, to be
stated later, we define further abbreviations:

n—1
(P g; 1, 8,u,v) <= (Jag - - anus - - uy) [B(rvas) A /\ B(ru;ait1)
=3
A B(uvu;) A B(su;a;) A B(pga;)],
Y(m,n,p,q) <= (Jeuruzzy) [Z(nep) A Z(meq) A Z(muqp)
A Z(nuaq)
A B(uguiz) A B(nmaz) A B(yuzui) A B(ygp)

[eS) oo
A /\Sai(manapaqaulaua)/\ /\ Sai(qapanamau%ul)]-
=4 n=4

We are now ready to state our first result:

Theorem 1. The relation || is positively existentially definable in
terms of B and #. The definition, a statement of L, ,, is
(2)

aias || biba <— (a1 = a2 V by = by V (a1, az, b1, b2) V(ai,az,ba, by1)).
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Yy q p
FIGURE 4. v¥(m,n,p,q) states that the process described in the picture can be
continued indefinitely.
Proof. To see that this definition is a theorem of (a V B)A Arch, we
first notice that the definiens holds whenever a;jas || b1b2 holds.

The cases a1 = ag or by = bs are taken care of by being part of the
definiens. If a; # a2 and by # be, and the lines determined by (a1, a2)
and (b1, bs) coincide, then all the points that have to exist, as required
by the definitions of ¥ and ¢, can be chosen to be any points lying on
the line determined by (a1, as), which satisfy the required betweenness
relations. Given that the order is dense, such points always exist, and
thus the definiens holds.

If the lines determined by (a1,a2) and (by,bs) are parallel (and
thus do not coincide), then ay and by either lie on the same side of
the line determined by (aj,b1) in the plane m determined by (a1, a2)
and (b1, b2), or they lie on different sides of (a1,b1). If they lie on
the same side of (a1,b1), then 9(a1,az, b1, b2), which can be seen by
choosing ¢ to be the intersection point of segments asb; and aqbs,
uy to be any point with Z(aju1by),  any point with Z(agsaiz), the
intersections of line xu; with lines asbs and b1by to be us and y. That
vi(ar,az,by,ba, ur, uz) holds for all i > 4 can be seen by noticing that
the u; are points that lie inside the strip determined by the lines a;as
and b1b and in the halfplane determined by asb; in which bs lies, and
thus that byu;, not being parallel to ajas, must intersect it, and their
point of intersection a;y; must be, given the position of u;, such that
Z(ayaza;11); uiyy is defined as the point of intersection of ujug with
baa;11 (this point must exist, given that by and a;y1 lie on different
sides of the line zy (which coincides with the lines ujus)). For similar
reasons, @;(ba, by, as, a1, us,uq) holds for all i > 4.

To see that the definiens does not hold when ajasy |f byba, notice first
that, if a1, as, b1, b2 are not all different, but they are not all collinear,
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ie., if ay # ag, by # by, =(L(ajazby) A L(ajazby)), (Ju) L(ajazu) A
L(bybou), and [{a1,az2,b1,be}| < 4, then there is no ¢ such that one of
Z(ageby) A Z(ayrchbs) and Z(aicby) A Z(azcebe) holds; thus, neither can

as

a2
a

us

Y by by e

FIGURE 5. If lines ajaz and b1 by intersect in e with Z(a2ai€e) and Z(bab1e), then

the process required by (a1, az,b1,b2) breaks at some point (i.e., there are only

finitely many a;’s.) In the picture, a3 exists, but a4 does not, given that u3 lies on
—

the same side of b1 f (the parallel from b; to ex) as y, so ray buz cannot intersect

—
ray ec.

¥(a1,az,b1,b2) or ¥(ay,az,bs,b1) hold. Suppose now that the points
ai, as, by, be are all different and that ajas |f biby. If the segments ajas
and bybs intersect, then again, there can be no point ¢ such that one of
Z(ageby) A Z(archbz) and Z(aichy) A Z(azcbe) holds, and we are done.

Suppose that the segments asb; and a;bs intersect in ¢, and the
lines ajaz and biby intersect in a point e with Z(agaie) A Z(babie).
Let f be the point with Z(zfy) and by f || ex. Given Arch, there
must be an index n such that B(u,fy), and thus a,;; required by
¥(ay, az, by, be) to exist (¢¥(ay, az, ba, b1) cannot hold, since there is a ¢
such that Z(azcby) A Z(ajcbz)) cannot exist. By a similar argument,
we find that the sequence of a,’s cannot be infinite, for the case in
which the intersection point e of lines ajas and bybs is in the position
Z(ayaze) A\ Z(bibee), as well as for the case in which the segments a;b;
and asby intersect. m]
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One may wonder whether || is existentially definable (without the
restriction that the definiens be positive as well) in terms of B by
means of a first-order formula, with the definition being valid in, say,
affine planes over Archimedean ordered fields. That the answer is
negative can be seen from the fact that such an existential definition §
(an existential Lp-formula), with ab || cd <> d(abed) true in all affine
planes over Archimedean ordered fields, would have to hold in all affine
planes over arbitrary ordered fields as well, given that its field-theoretic
counterpart, an V3-statement in the theory of ordered fields, must be
true in all ordered fields if it is true in all Archimedean ordered fields
(as the V3-theory of Archimedean ordered fields coincides with the V3-
theory of ordered fields, given that, when written in prenex disjunctive
normal form, an V3-sentence amounts to the statement that one of a
finite set of systems of equations and inequalities has a solution, and
the existence of solutions for such systems does not depend on the
Archimedean nature of the order). However, as noted earlier, we know
from [33, 4.6] that such a § cannot exist for ordered affine planes.

Corollary. Let 2 be an Archimedean ordered affine plane admitting
a subplane A" which is ordered with respect to the induced ordering.
Then A’ carries the parallelism of A | i.e., the relation || of A’ is a
restriction of the relation || of .

Proof. The relation || in 2’ can be defined by the positive existential
definition (2) in terms of B, and we will refer to it only as the relation
defined by the definiens in (2).

If ab ||ov cd, then there are points in the plane 2’ for which the
definiens of (2) is satisfied. These points belong to 2 as well, so the
definiens holds in 2, and thus, by (2), ab ||o cd.

Suppose now a, b, ¢, d are points belonging to the universe of 2’ , and
that ab ||y cd. Were ab ||/ cd not to hold, then we would have a # b,
¢ #d, a,b,c,d are not all on one line, and there would exist a point p
in the universe of 2 with L(abp) and L(cdp). Since the point p belongs
to the universe of 2 as well, we couldn’t have ab ||o cd. O

To show that this corollary does make a point, we present examples
of Pappian ordered affine planes 2 admitting an affine subplane 21’ ,



PARALLELISM IN TERMS OF BETWEENNESSM 1511

which is ordered with respect to the induced ordering and which carries
a parallelism distinct from that of 2.

Lemma. Let P be an ordered projective plane, let A = P\ U and
A" =P\ W be affine restrictions of P with respect to two distinct lines
U and W of B, and let A" be an affine subplane of A" carrying the
parallelism of A”. Endow 2 and A" with the betweenness relations B
and B" respectively, induced by the ordering of 3. If U does not contain
any point lying between (with respect to B") two points of A, then A
is also a subplane of A, and thus carries the betweenness relation of A
(i.e., B and B" coincide on '), but has a distinct parallelism.

Proof. By the setting above, 20 and 21" are affine planes, which have
U and W as their lines at infinity, have the points of B \ (U U W) in
common, and in which three points are collinear, if and only if they are
collinear in 8. In particular, we have 2" C P\ (UUW) C 2. Since two
projective lines are parallel in an affine restriction if and only if they
meet on the associated line at infinity, any two lines that are parallel
in 2 are not parallel in 2" and vice versa, unless they meet in U N W.

Recall that the ordering of I3, defined in terms of a separation relation
zy|uv (which stands for ‘the points z and y separate the points u and
v'), induces betweenness relations on 2" and 2 by

B (bac) :<=> aw|bc where w is the point of intersection
of the lines ab and W

B(bac) :<=> au|bc where u is the point of intersection
of the lines ab and U

turning A" and A into ordered affine planes (cf., [24] or [28]). Of
course, generally these two betweenness relations differ (given that the
corresponding parallelisms differ), but they coincide on 2. For, given
any three (distinct) collinear points a, b, ¢ in 2’ with w and u the points
of intersection of the lines ab with W and U, respectively, we have that
uwlbe is false (since U, W do not separate points of 2'), and so that
aw|bc is equivalent to au|be. o

Examples. To obtain concrete examples of affine planes as in the
above Lemma, we start with an extension K C L of ordered fields and
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an element ty € L such that ¢y > k, for all k € K. Let 2’ be the
ordered affine plane over K, 21" the ordered affine plane over L, and
B the projective closure of 2" where W denotes the associated line at
infinity.

By [24, 9.2], [28, 5.1] the ordering of A" uniquely extends to an
ordering of P (in terms of a separating relation; in the case of Pappian
planes we have zy|uv if and only if the cross ratio of the four points is
negative in the underlying field). We thus get the natural embeddings
A" C A" C P, the parallelism of 2 is a restriction of that of 2, and
the orderings of 2" and 21" are induced by that of B.

If we choose U to be the projective line whose affine part in 2"
is {(z,y) € L?> | * = ty}, the assumptions of the lemma above are
obviously fulfilled. Note that there exists a collineation ¢ of 3 with
e(U) = W (ie.,, ¢ € PGL(3,L) and thus order-preserving), which
means that 2 and " are isomorphic as ordered affine planes.

For concreteness’ sake, we present some examples of this construction:

(a) Take K := R, L := R((t)) to be the field of real Laurent series, fix
the unique ordering of L for which ¢ is positive, and let ¢y := ¢. By the
above construction, we get a Pappian ordered affine plane 2 admitting
an affine subplane 2’, which is even Archimedean ordered with respect

to the induced ordering, and which carries a parallelism distinct from
that of 2.

(b) Let I' := @2,Z be the N-fold direct sum of (Z,+), ordered
lexicographically, i.e., (z1,22,...) > (y1,Y2,...) & z; = y; for i =
1,...k—1 and z; > yi for some k € N. Let L := Q((T')) be the field of
formal power series over Q on I' (the elements of which are formal sums
f =73 cr fyt" with anti-well-ordered support s(f) := {y € T'|f, # 0},
with f, € Q, the sum and product of which are induced by the rules
Ft + g,t7 == (fy + g,)t" and 7 - t° := ¢779), and fix that ordering
of L in which all t7 are positive (i.e., f > 0 if and only if f, > 0 for
v :=max(s(f)) and f # 0), cf. [28, II, Section 5].

The order-preserving group monomorphism o : I' = T, (21, 23,...) —
(0,21,22,...) onto A := @®°,Z induces an order-preserving field
monomorphism @ : L — L, defined by the rule ¢t — t*(*) onto
K := Q((A)). Thus @ is an order-preserving isomorphism from L
onto a proper subfield K of L. Further, L admits an element ¢, with
to > k for all k € K, namely, to := t(10:0--) By the above construction
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we get a Pappian ordered affine plane 2l admitting an affine subplane
2A’, which is ordered with respect to the induced ordering, is even iso-
morphic to 2 as an ordered affine plane, but which carries a parallelism
distinct from that of 2.

(c) Examples where the (proper) affine subplane 2’ is isomorphic to
2 and carries the same parallelism, may be easier obtained by taking
L := R((t)), fixing again its ordering with ¢ > 0, and considering the
field monomorphism L — L defined by the rule ¢t — t2. It yields an
order-preserving isomorphism from L onto its subfield K := R((¢?)),
and thus an order-preserving isomorphism from the affine plane over L
onto its subplane, the affine plane over K.

Also notice that our Corollary does not simply follow from (1), as
there are instances of pairs of Pappian affine planes 21’ and 2, with
A" a subplane of 2, but such that the coordinatizing field K of 2 is
not embeddable in the coordinatizing field L of . If we denote by
2" the minimal affine plane (i.e., the affine plane over GF(2)), which
embeds into all affine planes, and thus into all (ordered) affine planes
2 over ordered fields L, 2’ is clearly not orderable, the corresponding
parallelisms differ, the projective closure of 2!’ , i.e., the Fano plane
(the projective plane over GF(2)), does not embed into the projective
closure of 2, and GF(2) does not embed into L. Further (non-
Desarguesian) examples along this line can be found in [7].

The following result will be used for a short proof of our next theorem,
and is of interest in its own right.

Proposition. Let P be an Archimedean ordered projective Pappian
plane, and let P’ be a subplane of P endowed with the induced ordering.
If B and P’ are isomorphic as ordered projective planes, then P = L.

Proof. Choosing a coordinatizing frame of 3’ we obtain Archimedean
ordered fields K’ C K, where K’ coordinatizes ' and K coordinatizes
B, and where the order-preserving isomorphism between P and ‘P’
induces an order-preserving isomorphism between K and K’', cf. [24,
4.1 and 9.3] and [28, V.4, Satz 12]. Now the usual proof, showing
that any order-preserving automorphism of an Archimedean field is
the identity, obviously goes over to order-preserving homomorphisms
a: K — K' C K: assuming a(k) # k, say a(k) < k, and choosing
an element ¢ of the prime field Q of K’ with a(k) < ¢ < k, leads to
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the contradiction ¢ < k = ¢ = a(g) < a(k). So we have K’ = K, and
therefore P = P’. O

We now turn to our main result, which is Theorem 4.5 of [6] (and
which, incidentally, provides an answer to a question raised by Peano
[23, page 144]), with an alternate wording, for which we provide a
purely geometrical proof.

Theorem 2. A map g : A — A, which satisfies B(abc) <
B(g(a)g(b)g(c)) for all a,b,c in A, where A is an Archimedean ordered
Pappian plane, must be surjective.

Proof. We will present two proofs for this theorem. Our first proof
will be purely geometric, while our second proof will use the above

Proposition.
1. Let f : N — {0,1}. We define

M, (amb) <= (Fu') [-L(abu) Aau' || ubAau || a’bAB(amb) AB(umu')],

to be read as ‘m is the midpoint of ab (u being an auxiliary point in
the construction of m),” as well as the formulas 6;(a?, a3, u, ), for all
n € N, defined by

n—1
67(a%, a9, u,z) ;= (Fmy---my_1al---alal - - ag‘)[ /\ M, (aim;ab)

=0

n

o . . -

A B(ajzay) A /\ Ay_p(iy = Mi—1 Ny 4q = a}(i)_H].
i=1

In Archimedean ordered Pappian planes, the following statement is
valid, stating that, given two segments, alad and 969, and a point z,
lying between af and a3, and being found in some sequence of nested
intervals, starting with [a, a3], the nth interval of the sequence being
the left or the right half of the (n — 1)st interval in the sequence (with
n > 2), depending on whether f(n) is 0 or 1, there is a point y between
b and b) having the same position with respect to the sequence of
nested intervals the function f defines on the interval [b9,59], i.e., for
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all f: N — {0,1}, we have:

3 Va?aJublbIvz) (Jy 65 (a2, a3, u, z) = 65 (69,09, v,9)|.
132u0107 n\01, Q3 n\01, b2

n=1

The truth of this statement is easily seen by choosing y such that the
ratio in which it divides the segment [b, 53] coincides with the ratio in
which = divides the segment [a!, a3]

We now prove that g maps lines onto lines. Let a and b be two
different points. Let y be a point between g(a) and g(b). Let f :
N — {0,1} be the map describing y’s precise location on the segment
[9(a),g(b)] (i-e., f(1) is O if y belongs to [g(a),m] and is 1 if y belongs
to [m, g(b)], where m denotes the midpoint of [g(a), g(b)], and so on).
Let z be the point on the segment [a,b] which lies in all the nested
intervals defined by f on [a,b]. Given that g preserves, besides B and
- B, midpoints, since it preserves the || relation, g(z) belongs to the
same nested sequence of intervals y belongs to. By Arch, there can
be only one such point, and thus y = g(z). Now let (see Figure 6)

u

u/

FIGURE 6. The definition of M, (amb).

S(abc) <= (Fuv) [L(abe) A ~L(abu) A au || bv Abu || ve A uv || ab.
Given Arch,

B(ayasz) — { \/ (Jas---ay) l /\ S(a;air1ai42) A B(alwan)] }

n=3 i=1
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a; ay az a4 a; ..., T Ap
FIGURE 7. Definition of S(abc); getting past any given point = on the ray ards.

Since we also have S(abc) = S(g(a)g(b)g(c)) (given that S is definable
in terms of L and ||), every point y on the line g(a)g(b) lies between
two points g(e) and g(f), with e and f on the line ab, and thus, by (3),
there is a point « between e and f (i.e., a point = on the line ab) with
g9(z) = y.

Let now a, b, ¢ be three non-collinear points. Then g(a), g(b), g(c) are
also non-collinear. For any point x of 2, there exist distinct points
u and v on the lines g(a)g(b) and g(b)g(c), respectively, such that z
lies on the line uv. Given that g maps lines onto lines, there must be
distinct points u’ and v’ on the lines ab and bc respectively, such that
g(v') = v and g(v') = v. Given that g maps the line u'v' onto the line
uv, there must be an 2’ on u'v’ such that g(z') = .

2. Given an order-preserving (and thus injective) mapping g : 2 — 2,
the image A" = ¢g(2l) is an affine subplane of 2, isomorphic to 2 as an
ordered affine plane. Furthermore, by the Corollary of Theorem 1 the
parallelism of 2" is indeed that of 2[, which means, that the projective
closure B’ of 2 naturally embeds into the projective closure 8 of
2. Since by [24, 9.2] and [28, V.1. Satz 8] (Archimedean) orderings
of affine planes uniquely extend to (Archimedean) orderings of their
projective closure, 8 and 8’ are isomorphic as Archimedean ordered
projective planes. By the above Proposition, we obtain P = P’, and
so A =2 o

Notice that, by [24, 9.4, Satz 19], Archimedean ordered translation
planes (i.e., planes satisfying the minor Desargues axiom, Al4 in the
Appendix) must be Pappian (see the Appendix for the statement of the
Pappus axiom), so we could have stated the above theorem (as well as
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the Proposition preceding it) under the apparently weaker assumption
that 2l is an Archimedean ordered translation plane.

Notice also that Theorem 2 remains valid if 21 is an Archimedean
ordered m-dimensional affine space with n > 3. Such spaces are
Desarguesian; thus, by Archimedeanity, Pappian, and so Theorem 2
for this n-dimensional 2 is implied by its plane case. As the following
example shows, Theorem 2 is no longer true in infinite-dimensional
Archimedean ordered affine spaces. Let the universe of 2l consist of all
maps h : N = Q, and let B(abc) hold in 2 if and only if there is a
t€Q,0<t<1, such that b = ta + (1 — t)b, where Ah is the map
defined by (Ah)(n) = Ah(n), for all A € Q and all A : N — Q. The
map ¢ : A — 2, defined by ¢((h))(1) = 0 and ¢(h)(n + 1) = h(n), for
allm € N and all h : N — Q, preserves both B and —B, but is not
onto.

By a celebrated result of Prief-Crampe [27], the completion construc-
tion making any Archimedean ordered field a copy of the reals can be
carried over to arbitrary (i.e., not necessarily Desarguesian or Pappian)
projective planes: Each Archimedean ordered projective plane can be
embedded into a topological projective plane the point space of which
is a surface. The latter are called flat projective planes, and have been
thoroughly studied, see [29], [30, Chapter 3]. In particular, any flat
projective plane carries a unique ordering, is Archimedean and fulfills,
by [29], the following

Fact. Let B be a flat projective plane, and let ¢ : B — P be a
homomorphism, i.e., a mapping from the point set of 3 into its point
set fulfilling:

(i) collinear points are mapped onto collinear points,

(ii) the image of ¢ contains a frame, i.e., four points no three of
which are collinear.

Then ¢ is an isomorphism (i.e., it is one-to-one and onto, and preserves
both L and —L).

Calling affine planes flat, if their projective closures are flat, this result
of Salzmann immediately yields the following extension of Theorem 2:

Corollary. Let 2 be a flat affine plane. Then any map g : A — A
fulfilling B(abe) < B(g(a)g(b)g(c)) for all points a,b,c of A is an
isomorphism, i.e., must be surjective.
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Proof. As above, we have that the image 2’ of g is an affine subplane
of 2, isomorphic to 2 as an Archimedean ordered affine plane, and that
its projective closure 3’ is a subplane of the projective closure B of 2,
which is a flat plane. Since any isomorphism of affine planes uniquely
extends to an isomorphism of their projective closures, the above Fact
gives the assertion. o

APPENDIX

3. The L'-axiom system for ordered affine planes from [33] consists
of (here L(abc) is an abbreviation for ab || acVa=0bVa=c¢):

A 1abl ece,

A 2 ab | ba,

A3a#bAab|pgAabl rs—pqlrs,

A 4 ab | ac — ba || be,

A 5 (abc) ~(ab || ac),

A 6 (Vabep)(3q) [ab || pg A p # 4l

A 7 (Vabed)(3p) [~(ab || cd) — (pa || pb A pe || pd)],
A 8 B(abc) — L(abc),

A 9 L(abc) — (B(abc) V B(bca) V B(cab)),
A 10 B(abc) — B(cba),

A 11 B(abc) A B(acd) — B(bed),

A 12 B(abe) A B(bed) Ab # ¢ — Blacd),

A 13 —L(abb') A L(abc) A L(ab'c’) ABY || e¢’ A B(abe) — B(ab'c’).

The last axiom, A13, is the outer form of the Pasch axiom, oPasch in
[33, page 148], stating the invariance of the betweenness relation under
parallel projection. In the presence of the minor Desargues axiom, i.e.,
of

A 14 —L(abp) A—L(abr)Aab || pgAab || rsAap || bgAar || bs — pr || gs,
axiom A12 becomes superfluous. If we add Archto A1-A11, A13, Al4,
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then we can prove (see [23, 9.4, Satz 19]) the Pappus axiom, i.e.,

A 15 (A1§i<jg3 Noei ﬂL(piquk)> A L(pip2ps) A L(q192q3) A p1ge
| P2g1 A p2a3 || P3g2 — P13 || P3q1-

Acknowledgments. This paper was written during a stay of the
second author, as a Mercator Visiting Professor, at the Institute of
Mathematics of the Dortmund University of Technology.

ENDNOTES

1. The first who appears to have considered mappings m preserving
the strict betweenness relation Z (see Section 2 for its definition) in
ordered spaces, in the sense of Z(abc) = Z(m(a)m(b)m(c)) was Peano
[23, pages 143-144], who presciently calls them “affinities.”
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