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ABSTRACT. In this paper we classify four-dimensional real
Lie algebras g admitting an integrable, left invariant, para-
hypercomplex structure. The equivalence classes of compati-
ble structures are classified. The metric of split signature (2;
2), canonically determined by the para-hypercomplex struc-
ture, is very convenient in understanding the structure of g.
Moreover, these structures provide many examples of left in-
variant metrics of anti-self-dual metric of split signature. Con-
formal geometry and the curvature of the canonical metric
on the corresponding Lie groups are also discussed. For ex-
ample, the holonomy algebras of this canonical metrics are
determined.

1. Introduction. Invariant structures of complex or quaternionic
type on Lie groups are important from a geometric view point as well
as from algebraic view point. For example, Snow [11] and Ovando [10]
classified the invariant complex structures on four-dimensional, solv-
able, simply-connected real Lie groups. Invariant hypercomplex struc-
tures on four-dimensional real Lie groups are classified by Barberis [5]
(see Section 2 for details). There is the unique (up to a homothety)
positive definite Hermitan metric associated with such a structure. An-
drada and Salamon [4] have shown that any para-hypercomplex struc-
ture on a real Lie algebra g rise to a hypercomplex structure on its
complexification g€ (considered as a real Lie algebra). They referred
to para-hypercomplex structure as complex product structure.

An additional interest in integrable hypercomplex and para-hyper-
complex structure is provided by the fact that each of these structures
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implies the anti self-duality of a canonical metric. Lie groups with a
positive definite, left-invariant, anti-self dual metrics, which are not
conformally flat, were classified by de Smedt and Salamon [7].

We have three goals. The first one is to classify four-dimensional real
Lie algebras g which admit an integrable para-hypercomplex structure
in order to describe the corresponding left invariant structures on Lie
groups. Let us state the main theorem (proved in subsection 3.4).

Theorem 1.1. The only 4-dimensional Lie algebras g admitting an
integrable para-hypercomplex structure are:

RYR® sl»(R),R& r31,R® b3,
R*® aff (R),04,045,aff (C),aff (R) ® aff (R),

ta,1,c, ta,1 and by.

In this case the corresponding Hermitian pseudo-Riemannian metric
determined by the para-hypercomplex structure is also unique up to a
constant, but has to be of signature (2,2). As noticed by Salamon this
metric is anti self-dual (see also [8]).

Although the metric is not involved in the statement of the main
theorem we use it to naturally define subclasses of the structures
in terms of the signature of the induced metric on the commutator
subalgebra g’ and center Z(g). In the proof we study these classes
separately in details. Since metrics induced by compatible structures
are isometric, we classified equivalence classes of structures up to a
compatibility, which is our second goal. Moreover, in a few cases
the equivalence of the structure in a given compatible class is also
established. Explicit examples of all such classes are given in Section 5.
The third goal is to study the geometry and the curvature of the
corresponding left invariant metrics. The holonomy algebras of the
constructed left-invariant metrics are computed.

Here is a brief outline of the paper. In Section 2 we first give neces-
sary definitions and prove some basic properties of para-hypercomplex
structures that we use later. Some of these properties are of general
interest in study of these structures. In Section 3 we step-by-step prove
Theorem 1.1. First, in subsection 3.1 we classify four-dimensional Lie
algebras with a non-trivial center and admitting a para-hypercomplex
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structure. Further on, we suppose that algebra g has a trivial center.
In subsections 3.2 and 3.3 we classify solvable four-dimensional Lie al-
gebras g admitting a para-hypercomplex structure (Theorems 3.2, 3.3
and 3.4 depending on the dimension of the commutator subalgebra
g’ = [g,9])- In subsection 3.4 we prove Theorem 1.1 using previous
classifications, and we provide examples of para-hypercomplex struc-
tures on the corresponding algebras. Our results are compared with
the results of Barberis [5] in Section 4. In Section 5 we classify the
para-hypercomplez structures up to equivalence. Finally, in Section 6
we study conformal geometry, curvature and holonomy of the metrics
induced by the para-hypercomplex structures.

2. Preliminaries. Let us recall some standard notation of four-
dimensional Lie algebras (see [2]):

e RDsla(R): [e1,e2] = ea, [e2,e4] = —e1, [ea, €1] = €2,

e RDrsg1: [e1,ea] = e, [e1,€4] = ey,

e R®h3: [e1,e2] =3,

e R?’@aff(R): [e1,e2] = e,

ey [e1,eq] =es, [e1,€2] = €1, [e2,€4] = €4,

0y [es,e3] =es3, [e1,e2] = e3, [ea,e1] = Aeq, [ea, e2] = (1 — N)ea,
e aff(C): [es,e2] = €2, [ea, €3] = €3, [e1, €] = €3, [e1,e3] = —ea,

e aff(R)®aff(R): [e1,e3] = e1, [e2,e4] = €2,

e ty10: [eq,e1] = e1, [eq, e2] = €2, [es, €3] = Aes,

o hy: [eq,e3] = e3, [e1,e2] = €3, [e4,€2] = €2/2, [es, 1] = €2 +€1/2,
oty les,e1] = e1, [e, e2] = Aea, [eq, €3] = €2 + Aes.

In order to provide more uniform view we also use the following
notation for 4-dimensional Lie algebras:

(PHC1) v is abelian,
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(PHC6) [X,W]=7Z, [X,Y] =X, [Y,W]=W,

(PHC7) [X,Z] = X, [XaW] =Y, [sz] =Y, [KW] = aX +0Y,
a,beR,

(PHCS) [Xa Z] =X, [K W] =Y,

(PHCY) Z, W] =Z, Y, W] =Y, [X,W] =cX +aY +bZ, ¢ # 0,
a€R,be{0,1},

(PHC10) [V, X] = XZ, [W,Z] = Z, [W,X] = AX +bY + aZ,
W Y]=(1-A)Y,A#0,1.

In the previous list the additive basis of algebra g is (X, Y, Z, W), and
only the non-zero commutators are given.

The relations between these lists of algebras are described in the
following lemma.

Lemma 2.1. Lie algebras (PHC3), (PHC4), (PHC5), (PHC6) and
(PHCS8) in our list are respectively Lie algebras R @ t31, R & b3,
R aff(R), 04 and aff(R) @ aff(R).

Lie algebra (PHCT) is 04,1 for 4a + b* = 0; aff(C) for 4a + b* < 0;
aff(R) ® aff(R) for 4a + b > 0.

Also, (PHCY) corresponds to ta1,. for ¢ # 1; ta11 for ¢ = 1 and
a=b=0;andvy; forc=1 and a® + b2 £ 0.

In the (PHC10) case, we have 04 for X\ # 1/2; 0415 for A = 1/2,
b=0; and hy for A\=1/2, b # 0.

Let V be a real vector space. A complex structure on V is an
endomorphism J; of V satisfying the condition
J?2=—1.

Existence of a complex structure implies that V has to be of an even
dimension. A product structure on V is an endomorphism Jy of V'
satisfying the conditions

J2=1,  Jy# =L

A para-hypercomplez structure on'V is a pair (Ji, J») of anti-commuting
complex structure J; and product structure Jp, i.e., satisfying the
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relations
(2.1) Ji =1, JZ =1, JiJo = —JoJi.

This structure is also known as Clff (1, 1)-structure. If both structures
J1 and J; are complex, then the pair (J1, J2) is called a hypercomplex
structure on V. In the sequel we concentrate on the case of para-
hypercomplex structure.

It is customary to denote J3 = JiJs. Note that the structure Js is
a product structure. The Lie subalgebra of End (V') spanned by .Ji, Jo
and J3 is isomorphic to sla(R). Any z = (x1,72,23) € R® defines a
structure by the formula

Jm = l‘lJl + l‘QJg + I3J3.

Denote by
(r,y) = T1y1 — T2Y2 — T3Y3,
r = (z1,%2,23), ¥ = (y1,Y2,93), the inner product in R® = RY?Z and
by
T Xy = (T2y3 — T3Y2, T3Y1 — T1Y3, T1Y2 — T2Y1),

the usual cross product. The structure J, is a complex structure

provided that

(w,0) =a] —25 — a5 =1,

and a product structure provided that

(x,z) = 2] — x5 — 25 = —1.
Hence, a para-hypercomplex structure (Jq,J2) defines a 2-sheeted hy-

perboloid S~ of complex structures and a 1-sheeted hyperboloid St of
product structures.

Proposition 2.1. If (Jy,J3) is a para-hypercomplex structure on a
vector space V, then:

1) JmJy = 7<$7y>l + szy-

ii) The pair (J,,Jy) € 8~ x 8T is a para-hypercomplex structure if
and only if ¢ L y.
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Proof. From the relations
JiJo =J3 = =JoJ1, Jids =—Jo=—J3J1, JoJs=—J1 = —J3J,

statement i) follows by a direct calculation. Since J, is a complex
structure and J, is a product structure, the pair (J,,J,) is a para-
hypercomplex structure if and only if J, and J, anti-commute. Using
the relation i) and the anti-commutativity of the cross product we have

0=JyJy+ JyJ, = —2(z,y)1.
Hence, statement ii) is proved. o

The para-hypercomplex structures (Ji, J2) and (J,, Jy) are called com-
patible. A consequence of Proposition 2.1 is that all compatible struc-
tures are parameterized by the group SO(1,2), which acts on them.

An almost para-hypercomplex structure on a manifold M is a pair
(J1, J2) of sections of End (I'M) satisfying the relations (2.1). It is a
para-hypercomplex structure if both structures are integrable, that is,
if the corresponding Nijenhuis tensors

(2.2) No(X,Y) = [JoX, JoY] — Jo[X, JoY] — Ju[JoX, Y] £ [X, Y],

a = 1,2, vanish on all vector fields X, Y. In this formula sign — occurs
in the case of a complex structure and sign + occurs in the case of a
product structure.

If M = @G is a Lie group we additionally assume that the para-
hypercomplex structure is left invariant. This allows us to also describe
a para-hypercomplex structure on its Lie algebra g. Hence, a para-
hypercomplex structure (Jy,J2) on g satisfies both relations (2.1) and
(2.2).

Proposition 2.2. Let (J1,J2) be an integrable para-hypercomplex
structure on a Lie algebra g.

i) The product structure Js = J1Jo is integrable.

ii) Any compatible para-hypercomplex structure (Jy, Jy) is integrable.
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Proof. Statement i) follows from the relation

2N3(X,Y) = M (o X, oY) + No(J1 X, J1Y)
— WNo (1 X,Y) — JIN,(X, J1Y)
+ No(X,Y) = JoNi (12X, Y)
— BN (X, oY) — Mi(X,Y),

where N3 is the Nijenhuis tensor of the product structure J3.

To prove ii) denote by A, the Nijenhuis tensor corresponding to the
structure J;, ¢ = (x1,x2,x3). One can check that

N, = 2INT + 23Nz + T3N3 + 2122 (JsNT + JsNz + JsN3Jh)
+ :U25L'3(J1N2 — J1N3 — J1N1J2)
+ z123(—JoNT — JoN3 + JoN2 J3)

holds, where we have used the notation, for instance,
JoNoJ3(X,Y) = JoNo(J3X, J3Y).

Now, statement ii) follows using statement i). O

Let g be an inner product on the vector space V. A para-
hypercomplex structure (Jy, J3) on V is called Hermitian with respect
to g if

(2.3) 9(JoX,Y)=—g(X,J.Y), X,YeV

holds, i.e., if both structures J; and J; are Hermitian. It is easy to prove
that a Hermitian complex structure is an isometry and a Hermitian
product structure is an anti-isometry, i.e.,

g(N1 X, 1Y) =g(X,Y), 9(J2X, J2Y) = —g(X,Y).

Existence of an anti-isometry implies that the inner product g must be
of neutral, (n,n) signature.

Proposition 2.3. Let (Ji,J2) be a para-hypercomplex structure
Hermitian with respect to the scalar product g on the vector space V.
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i) The product structure J3 = J1Jo is Hermitian.

ii) Any compatible para-hypercomplex structure (J, Jy) is Hermitian.

Proof. i) If J; and Jy are Hermitian, then Js is Hermitian since we
have

(JsX,Y) = (1o X,Y) = (X, 1Y) = (X, Jo 1Y) = —(X, J3Y).

ii) Since the condition of any J, to be Hermitian is linear with respect
to z, statement ii) follows from statement i). o

Now, we specialize to the four-dimensional case and prove some
lemmas which will be useful in the sequel.

Lemma 2.2. If (J1,J2) is a para-hypercomplex structure on a real
four-dimensional vector space V', then:

i) There is an inner product g on V, unique up to a non-zero
constant, such that the structure (Jy,J2) is Hermitian with respect to
g.

ii) Any compatible para-hypercomplex structure (Jy,J,) determines
the same inner product g on V.

Proof. First, we prove the existence of such an inner product. If
(+,-) is an arbitrary positive definite inner product on V, then the inner
product

(24) g(X, Y) = (X, Y) + (JlX, J1Y) — (JQX, JQY) — (J3X, J3Y)

satisfies the properties (2.3).

To see the uniqueness let ¢'(-,-) be another inner product on V
satisfying (2.3). As remarked before both products are of signature
(2,2). There exists a vector X which is not null with respect to the
both inner products, for instance

g(X,X)=1, ¢(X,X)=A#0.
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The relations (2.1) and (2.3) imply that the vectors X, J1 X, Jo X, J3X
are mutually orthogonal with respect to both inner products. Moreover,
9(X, X) = g(/1 X, /1 X) = —g(J2X, J2X) = —g(J3X, J3X) =1
9 (X, X) =g (N1 X, 1 X) = ¢/ (J2X, 12X) = —g'(J5X, J3X) = \.
Hence, ¢'(-,-) = Ag(+,-), A # 0.

ii) According to Proposition 2.3 the structure (Jy,J,) is Hermitian
with respect to g. The statement follows from the uniqueness of g (up
to a non-zero scalar). O

Remark 2.1. In light of Lemma 2.2 we see that the notion of null
vector N (such that g(IN, N) = 0) depends only on the compatibility
class of Hermitian structure (Ji,J2) and not on a particular inner
product.

From the proof of Lemma 2.2 we also obtain the following.

Lemma 2.3. If (Jy,J2) is a is a para-hypercomplex structure on
a real four-dimensional vector space V, then (X, J1X,J2X,J3X) is a
basis of V if and only if X is not null.

Lemma 2.4. If J, is an endomorphism of a 4-dimensional Lie
algebra g such that J> = +1 and (X,J,X,Y,J,Y) is a basis of g
then the corresponding Nijenhuis tensor N, vanishes if and only if
No(X,Y) = 0.

Proof. One can easily show that NV, (JoX,Y) = —JoNo(X,Y). The
lemma follows from the fact that N, is antisymmetric and bilinear. O

Lemma 2.5. Let (J1, J2) be a para-hypercomplex structure on a real
four-dimensional vector space V, and let W C V be a two-dimensional

subspace. Then there exists a compatible para-hypercomplex structure
(Ji,J5) such that:

i) If W is definite (contains no null directions) then JJW = W.

ii) If W is Lorentz (contains exactly two null directions), then JyW =
w.



1400 NOVICA BLAZIC AND SRDJAN VUKMIROVIC

iil) If W is totally null (every vector in W is a null vector) then either
() Slw=1,V=WeaJ|W, or

(b) there exists a non-null vector X such that

W=R(JIX +J3X,X — J5X), JW)=W foralJeS*.

iv) If the induced metric on W is of rank 1 (W contains ezactly one
null direction N) then N = J{ X — J;X (for any given vector X € W,
| X1? #0).

Proof of i) and ii). Let (X,Y) be a pseudo-orthonormal basis of
W (|X]? = —|Y])? = 1 and (X,Y) = 0 with respect to the induced
inner product on W). Then, according to Lemma 23. vectors X,
J1X, JoX and J3X form a pseudo-orthonormal basis of V' and we have
Y =x1J1 X+ 230X +x3J3X with m%—m%—x% = =1, where — occurs if
W is Lorentz and + if W is positive or negative definite. The structure

Jry = x1J1 + 22J2 + x3J3

preserves W. It is a product structure if W is Lorentz (and we
set Jb = J;) or a complex structure if W is definite (and we set
Ji = Jz). The second structure can be chosen such that (J1, J3) forms a
compatible para-hypercomplex structure. Note that there cannot exist
a product structure preserving a definite W since a product structure
is an anti-isometry. Similarly, a complex structure preserving a Lorentz
W cannot exist.

Proof of iii). Let N3 € W be a null vector. There exists a non-null
vector X € V perpendicular to N;. Hence

Ny =aJi X 4+ BLX +vJsX and o — %2 —42 =0,
so a # 0 and we may assume that « = 1. Then J} = 8Jy + vJ3 is
a product structure, the structure (Ji,J3), J; = Ji is a compatible

para-hypercomplex structure, and we have

Ny = Ji X + J5X.
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Any null vector aX + bJ{ X + ¢J4 X + dJ, X which is orthogonal to the
vector Nj is of the form

N*E =aX +bJ] X +bJ5X +aJiX.

Notice that the vector Ny is also of the form N* and that there exist
exactly two null planes W¥ containing the vector N;. They can be
written in the form

W* = R(Ny, NI = X + J;X).

The plane W~ is the +1-eigenspace of the product structure Jj} and the
vectors Ny, Ny, JiNy, J{Ny are independent, so V. =W~ @ JJW~
and iii) (a) holds.

In the case of the plane W™ one easily checks that JJWT = W+ =
JYWT and hence statement iii) (b) follows.

Proof of iv). The proof is similar to the first part of the previous
proof (with Ny = N). O

Lemma 2.6. Let (Jy,J2) be a para-hypercomplex structure on a real
four-dimensional vector space V', and let W C V be a three-dimensional
subspace such that the induced metric on W is degenerate (that is
WL Cc W). For N € Wt and X € W, |X|? # 0, there exists a
compatible para-hypercomplex structure (Ji,J%) on V such that N =
J1X — J5X and the arbitrary null vector in W belongs to the union of
two-dimensional planes m = R(N,J{N) and n_ = {V | JiV = =V},
i.e.,

null(W):={UeW ||[UP?=0}=m Ur_
=R(N,JIN)U{V | JiV = -V }.

Proof. Since we have |[N|? = 0, |X|? # 0, (N, X) = 0 the existence
of a compatible structure (J1,J3) such that N = J; X — J5 X follows
from Lemma 2.5 iv). Moreover, (N, J{N,X) is a basis of W and
(N,JiN,X,J;X) is a basis of V. Thus, for U € null (W) of the form
U=aN +BJ|N +vX we get

0=|U* =~(y - 26)|X|*.
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The case v = 0 gives the plane m; = R(NV, J1N). For v = 28 one can
check that Ji(U) = —U, so U belongs to the —1 eigenspace of Jj. O

3. Lie algebras admitting a para-hypercomplex structure.
3.1. Case when g has a non-trivial center.

Theorem 3.1. A four-dimensional Lie algebra g admitting a para-
hypercomplex structure and with a non-trivial center Z(g) is one of
algebras R*, R @ sl2(R), R® 31, R® b3, R2 @ aff(R), 04 (PHC1-
PHCEG).

As a consequence of the Levi decomposition theorem and the classifi-
cation of real semisimple Lie algebras the only non-solvable Lie algebras
which are four-dimensional are R @ so(3) and R @ sl2(R). Since they
both have a non-trivial center, as a consequence of Theorem 3.1 we
have the following corollary.

Corollary 3.1. The only non-solvable, real four-dimensional Lie
algebra admitting a para-hypercomplex structure is R @ slo(R).

Proof of Theorem 3.1. In order to prove that these are the only
Lie algebras with non-trivial center which admit a para-hypercomplex
structure we consider two cases.

Case 1. There exists a non-null central element Z. Let (Jy, J3) be a
para-hypercomplex structure on g and denote

X=02Z Y=J0Z W=JsZ
Then
(3.1) [X,Y]=aZ +bX +cY + dW.
According to Lemma 2.4 integrability of J; is equivalent to

(3.2) 0=MN(2,Y) = [X,W] - J1[X,Y].
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Similarly, the integrability of J3 is equivalent to

(3.3) 0=MN(X,2) =[Y,W] - J2[X,Y].

From relations (3.1), (3.2) and (3.3) we get
[X,W]=-bZ+aX —dY + W, [Y,W]=cZ—dX +aY — bW.

The Jacobi identity is equivalent to

0=[[X,Y],W]+[[Y,W], X] + [W,X],Y]
=2(—a®> - b* +*)Z — 2cdX — 2dbY — 2adW.

If a = b=c=d = 0 then the algebra v is abelian R* (PHC1). If
a=b=c=0and d # 0 then after scaling g = R @ sl3(R) (PHC2).

If d = 0 and 0 # c® = a? + b?, then the derived algebra g’ = [g, g] of
g is two-dimensional since

clY,W] =a[X,Y] + b[W, X].

It is generated by the vectors W7 = [X,Y], Y1 = [W, X]. The vectors
Zy = Z, X; = X/c¢, Y, and W, are linearly independent and we get
algebra R @ v3; (PHC3).

Case 2. All central vectors are null vectors. Denote one of them by
N. According to Lemma 2.5 iv), we can assume that N = J; X — Jo X
for a non-null vector X € g’. Then the vectors N,J;N,X and J1 X
form a basis of g and the structure J, expressed in the terms of that
basis reads
(3.4)

JoX = X—-N, JoJiIN=N, JJ 1 X=JN+X, JN=JN.

The integrability of the structure J; gives the following conditions
(3.5) 0=N =1 (X,N)=[/1 X,J1N] — Ji[X, 1 N].

Since the vectors N, JoIN, X and J; X form a basis of g, the integrability
of the product structure J; is equivalent to

(3.6) 0= N3(X,N) = [J1 X, J1N] — J5[X, J;N].
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The vector [X, J;N] is of the form [X, J1N] = aN+bJ; N+cX +dJ1 X.
Using the relations (3.5) and (3.6) we get
(3.7)
[X,J1N] = aN + bJiN + 2bX, [J;X,J.N] = —bN + aJi N + 2bJ; X.

If we write [X, J1 X] = aN+8J1N+~X +6J1 X and impose the Jacobi
identity on the vectors J; N, X and J; X we get the following system of
equations:

—4ab — b? — 6b+va — a® =0,
—4bB + ad + by = 0,

bla+v) =0,

b(b—48)=0.

The system has three classes of solutions.

(3.8)

Case 2a). a = 0 =b. In this case the only non-zero commutator is
[X, /1 X]=aN + BJ1N +vX + 01 X.

If v = 0 = §, the change of the basis Y = J1 X, Ny = aN + 8J;N,
Ny € R(N,JiN) gives R @ hs (PHC4). If § # 0, then the change
Y[X,J1X]/5, Ny = N,N; = J,N gives R? ® aff(R) (PHC5). The
case 0 = 0,7 # 0, similarly reduces to R @ty (PHCS).

Case 2b). b=8 #0,a= —v, 8 =0 and a = —(a® + b?)/(2b). This
case reduces to R @ v3 1 (PHC3).

Case 2¢). a =y # 0. Then, b = § = 0. Moreover, we may assume
that @ = 1 to obtain 04 (PHC6). O

3.2. Case of solvable Lie algebra g and dimg’ < 2.

Theorem 3.2. Let g be a four-dimensional real Lie algebra admitting
a para-hypercomplez structure and dimg’ = 1. Then g is R @ b3 or

R aff(R).

Proof. If g has a non-trivial center &, then from Theorem 3.1 it is one
of the algebras R @ h3, R @ aff(R). Now, as in [5, Proposition 3.2],
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suppose that the center ¢ of g is trivial, and let X be a non-zero element
of g’. There exists a Y such that [Y, X] = X. Then g decomposes as

g = ker (adx) Nker (ady) ® RX ® RY.

From the Jacobi identity we get that £ = ker (adx) N ker (ady), a
contradiction. Hence, solvable g without center and with dimg’ =
1 does not exist (this does not depend on the existence of para-
hypercomplex structure). u]

Theorem 3.3. Let g be a four-dimensional solvable Lie algebra
admitting a para-hypercomplex structure and with dimg’ = 2. If g
has a non-trivial center, then it is algebra R @ v3 ;. If g has a trivial
center, then g is one of algebras 04,1, aff(C), aff(R) ® aff(R).

Remark 3.1. Using the notation introduced by Snow [11], these Lie
algebras are S11, S8 and S10, respectively. The class S11 contains as
a special case the Lie algebra aff(C) which is the unique solvable Lie
algebra with 2-dimensional derived algebra which admits hypercomplex
structure [5].

Proof. Suppose that the center of g is trivial and that (Jy,J3) is
a para-hypercomplex structure on g. According to Lemma 2.2 and
Remark 2.1 the structure (Jy,J2) determines the inner product on
g = V and the notion of a null vector. As in Lemma 2.5 we have to
consider the cases concerning the rank and the signature of the induced
inner product on g’ = W.

Case i) Induced metric on g’ is definite. Because of Lemma 2.5 i) we
may assume that g’ is invariant with respect to the complex structure
Ji, J1g' = ¢',and g = ¢’ @ Jog'. Let {X,J;X =Y} be a basis of g’ and
{X,Y, J>X, JoY} be a basis of g. The Lie algebra g is abelian since g
is solvable and by the integrability of the product structure J; we have
No(X,J1X) =0 and

(3.9) [, X, Y] =0, [LX,Y]=I[LY,X]

Because of the integrability of the complex structure Ji, N (X, JoX) =
0 and

(3.10) (X, J,X] = —[Y, JoY].
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For arbitrary vectors V and W in g,
[V, W]=a(V,W)X +B(V,W)Y,

where a and ( are skew-symmetric bilinear forms on g. From the Jacobi
identity we have

a(Xﬂ]QX):ﬁ(XaJZY)’ a(JQKX):B(X7J2X)a

and the bracket in g is determined by ¢ = «a(X,J/oX) and d =
B(X, J2X) as follows:

(3.11) [X, JoX]=-[Y, LY ]= cXHY, [X, L,Y]=]Y, Jo X]|=—dX+cY.
Since dim g’ = 2, ¢® + d? # 0 and we may choose

T=(c?+d*) (cX +dY), ¥=(2+d*) ' (—dX +cY),
Z=(P+d) Y chhX —dlY), W =(P+d>) YdLX +clY),

and hence

X,Z|=X, [X,W]=Y,
D’;’Z]:?a [}77)?]:_)?7
so we get the algebra PHCT for a = —1, b =0 (g = aff(C)).

Case ii) Induced metric on 4’ is indefinite, of Lorentz type (—+).
Because of Lemma 2.5 ii) we may assume that g’ is invariant with
respect to the product structure Jo, Jog' = ¢’, and g = ¢’ ® J1g'. Let
{X,J2X =Y} be a basis of g’ and {X,Y, ;1 X, J1Y} a basis of g. By
the integrability of the complex structure Ji, N1(X,Y) = 0 and
(3.12) [AX,JiY] =0, [JiX,Y]=[]LY,X].

Because of the integrability of the product structure Jo, No(X, J1 X) =
0 and

(3.13) (X, 1 X] =Y, iY].
From the Jacobi identity we have

CY(X, JlX) = B(Xv JIY)7 O[(J]_Y,X) = _ﬂ(Xa JlX)7



FOUR-DIMENSIONAL LIE ALGEBRAS 1407

and the bracket in g is determined by ¢ = «(X,J1X) and d =
B(X, J1X) as follows:

(X, 1 X]|=[Y, hY] =cX +dY, [X,1iY]=[Y,JiX]=dX + Y.

Since dim g’ = 2, ¢ — d? # 0 and we may choose

X =(*—d®) (X +dY), Y = (= d?®)"Y(dX +cY),
Z=(=d®) Y chX —dNY), W=(?—d) Y (=dJ,X + cJiY),
and hence o _ o

X,z =X, [X,W]=Y,

Y,Z=Y, [Y,W]=X,

and we get algebra aff(R) @ aff(R) (PHC7 for a = 1,b = 0).

Case iii) ¢ is a totally null plane. According to Lemma 2.5 iii) we
have to consider two geometrically different cases.

In the first case we can assume that J>|; =1 and g = g’ + J1¢’ holds.
If (X,Y) is a basis of g’ we have

X=X, LY=Y, JhhX=-5X, JJY=-JLY.

One easily checks that the integrability of the complex structure Jj is
equivalent to the relations

[JLX,J,Y] =0, [X,J,Y]=]Y,JX].

It is interesting that the product structure Jy is automatically inte-
grable. Hence, the possible non-null commutators are

T' = [X, 1 X]= aX +bY,
Y' =Y, ;Y] = cX +dY,
X' =[X,;Y]=eX + fY.

The Jacobi identity is equivalent to the equations
(3.14) (e—-dX' +fY' —=cI"=0, (a—f)X'+bY' —el' =0,
or equivalently

ele—d)+c(f—a)=0, ef=be, af—f>+bd—be=0.
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If X' is a zero vector, then we get the algebra aff (R)®aff(R). Suppose
that X’ is a non-zero vector. If Y’ or T” is a zero vector then we get
an algebra PHC7 for a = 0 = b. Suppose that none of the vectors X',
Y’, Z' is the zero vector. We can suppose that one of the pairs X’,Y”’
and X', T is independent, say X', T'. If the vectors X’ and Y’ are
collinear then we get the algebra PHCT7 for a = 0, b = 1. Finally, if
both the pairs X', 7" and X’,Y” are independent then introduce a new
basis (X', Y, Z',W') satisfying

1 1
AES B(fJIX -b1Y), W' = 5(—€J1X +a1Y),

where D = af — be # 0. In the new basis the commutator relations
take the very simple form

[XI,ZI] — X,, [XI,W,] — Yl, [Y,, Zl] — Y’,

fc—deX,_l_ ad—ch,

Yl l:

Since X’ and Y’ are independent then cf — de # 0, that is, a # 0 in
the algebra PHCY.

In the second case we can assume that (N7, N3) is a basis of g’ and
g’ is invariant with respect to Ji, Ja, J3. Then a possible basis of g is

Ny =1 X+JX, No=X—-J3X, N3=J1X—-JX, Ny=X+J3X.
We calculate the structures in terms of that basis:
J1N1:_N2; J1N3:_N47

J2N1 = N27 J2N3 = _N4;
JsN1 = N1, JsNa=—Nz, JsN3=—N3, JsNy= Ny.
By the integrability of Js,

J3[N1, Ng] = [N1, Ny],  J3[Na2, N3] = —[Nz, N3].

Thus,
[N1, Ng| = pN1, [N2, N3] = ANs.
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The integrability of J; and J; is equivalent to
0= —[NZ,N4] - )\Nl +,uN2 + [Nl,Ng,]

After imposing the Jacobi identity this reduces to the algebra PHC3.

Case iv): the induced metric on g’ is of rank 1. Denote by N the
null vector belonging to g’ (which is unique up to a scaling constant).

According to Lemma 2.5 iv) we can choose a product structure Jy
such that for the basis (X, N) of g’ one has

(3.15) N=J,X - J,X, N isnul

Then (X,N,J;X,J1N) is a basis of g. One easily calculates the
following relations

JoX =J;X —-N, JoN=JN.

The integrability of J; is equivalent to Nj[X,N| = 0, i.e., to the
relations

[1X,JiN] =0, [X,JiN]=I[N,J 1 X].

Since (X, N, X, J3N) is a basis of g the integrability of the product
structure J3 is equivalent to Na(X, N) = 0 which gives the condition

[N, J;N] =0.
The commutator relations now read
[X,J1X]=aX +bN, [X,J;N]=cX +dN,

where a,b, c,d are unknown coefficients. The Jacobi identity is now
equivalent to the following relations

(3.16) c=0, dla—d)=0.

The case d = 0 gives the algebra with dim g’ = 1 which we have already
discussed. The remaining case a = d # 0, after the change

= 1

(317) Y =N, Z=JN, X-= b

~ 1
X, W=>-hX—- AN,
a a

a
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takes the form

Y,Z]=0, [V,\W]=Y, [X,Z]=Y, [X,W]=X
of the algebra PHCT7 for a =0 =b. o

3.3. Case of solvable Lie algebra g with dimg' = 3.

Theorem 3.4. Let g be a four-dimensional solvable Lie algebra
admitting a para-hypercompler structure and with dimg’ = 3. If g
has a nontrivial center it is algebra 04, otherwise it is algebra of the
type PHC9 or PHC10.

Proof. 1If the algebra g is solvable then its derived algebra g’ is
nilpotent. Up to isomorphism the only 3-dimensional nilpotent Lie
algebras are abelian algebra and Heizenberg algebra generated by X,Y
and Z with nonzero commutator

[X,Y] = Z.

Let g be with trivial center, admitting a para-hypecomplex structure
(J1,J2), and let (-,-) be a compatible inner product on g. First, we
discuss the case of g’ being abelian.

Suppose that g is a non-degenerate subspace and X is normal
vector of g’. Then |X|2 # 0 and ¢’ = R(J1 X, J2X,J3X). From the
integrability of J; and Jz, we have

(X, JodsX] = Jo[X, JsX],

for a,8 € 1,2,3, o # 3. Hence, [X, JoX] = AJ,X, and we get the
algebra PHC9 for a = 0 = b (the Lie algebra corresponding to the real
hyperbolic spaces).

Assume now that g’ is a degenerate subspace and NN is normal vector
of g. Then |[N|? = 0 and N € g’. According to Lemma 2.5 iv) we
can choose a compatible structure (Jy,J2) such that N = J; X — Jo X
for any X € ¢/, | X|? # 0. Since J; N is orthogonal to N we also have
J1N € g'. Hence we may suppose that g’ = R(N, J; N, X). Moreover
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the (N, J1N, X, J1X) is a basis of g. The integrability of J; and Jy
implies

(3.18) [JiN, J1X] = Ji[N, 1 X] = Jo[N, J, X],

ie., [N,J1X]| =dN and [J;N, J; X] = dJ1 N, d # 0. Moreover, we may
choose X such that d =1 to get algebra PHCO9.

Now we turn to the case when g’ is a Heisenberg algebra. Let
¢ = R(X,Y,Z) and g = R(X,Y,Z,W). One can easily check that
the center R(Z) is an ideal of g, and hence

(W,Z] = \Z, A#0,

no matter how the vector W that does not belong to g’ is chosen.
At the other side, independently of the choice of non-central vectors
X,Y € ¢ their commutator is always in the center. Moreover, non-
commutativity of g’ implies that [X,Y] # 0, and by scaling of Z we
can achieve

[X,Y] = 2.

Also, A # 0 since otherwise Z would be a non-zero central element of
g. Hence, it remains to calculate the commutators [W, X| and [W,Y].
This approach we use to prove the remaining part of the theorem.

We consider the cases depending on degeneracy of g’ with respect
to the induced compatible metric. Also there are different subcases
depending on the norm of a central element of g'.

i) Suppose that g’ is not degenerated, and let W be its
normal vector. Denote by Z = £(g’) a non-zero central element of g'.
As an element of g’, Z is orthogonal to W. Now we have the following
cases.

W and Z have the same sign: Using Lemma 2.5 i) we may
choose a compatible structure (Ji,Jz2) such that Z = JyW. Then
the (J1W, JoW, JsW) is a basis of g’. After a simple calculation (and
scaling) we get the commutator relation:

(W, AW =21 W, [W, JoW = LW, (W, JsW]J3W, [JoW, JsW]=J; W.

That is a special form of algebra PHC10.
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W and Z have the opposite sign: Using Lemma 2.5 ii) we may
choose a compatible structure (Ji,J2) such that Z = JoW. Then
the (J1W, JoW, JsW) is a basis of g’. After a simple calculation (and
scaling) we get the commutator relation:

W, W= LW, [W, J.W]= 2J.W, (W, JsW]JsW, [JLW, JsW]=J.W.

That is again a special form of algebra PHC10.

The center Z of ¢’ is a null vector: We have: |W |2 #0, |Z]2 =0,
Z 1 X, so using Lemma 2.5 iv) we may choose a structure (Jy, J2) such
that

N=7Z=JW —J,W.

Moreover there is a decomposition
g=g ®RW = R(N, J; W, JsW) & RW.
Now we have
[J1W, JsW] = AN, [W,N]=N, X#0.

After imposing the integrability condition for the structure (Jy, J2) we
get a contradiction. Hence, this case does not give a solution.

!

ii) Suppose that g’ is degenerated, and let N € g’ be its
normal vector and Z € ¢g’, a non-zero central element of g’. We
now discuss cases depending on the type of vector Z.

Z is a non null vector, |Z|?> # 0: Let X = Z. Consider the basis:
g=R(N,JiN, X, J1 X), ¢ =R(N,J1N, X).
Let [N, J1N] = X and [J1X, X] = AX. Then
(J1 = J2)[N, 1 X] = -X,

whaich is again a contradiction.

Z is a null vector, |Z|? = 0: According to Lemma 2.6 all null
vectors of g’ are contained in two two-dimensional planes:

null (¢) = m U = R(N, JiN) U{V|J3V = -V}
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We now study three possible cases Z = N, Z € 7_ and Z € 7.

Z = N (the normal to g’ is a center of g'): Then we have a
decomposition:

g:R<N7J1NaXaJ1X>7 g/:R<NaJ1NaX>
Because of the integrability of para-hypecomplex structure (Jy, J2), we
have

(3.19)
[JiN,X] = AN, [J1X,N] =N, [J;X,X] =aN +bJiN +cX, A #0.

The Jacobi identity is equivalent to ¢ = A. After some scaling we get
the algebras PHC10.

Z € n_,Z # N, (Z is —1 eigenvector of J3). Then Z =
aN + b(J1N + 2X) and we have the decomposition:

g=R(N, 1N, Z, 1 Z), g =R(N,JiN, Z).
Due to the Heisenberg algebra structure of g’ we may assume
[Z,1Z)=Z, [N,JiN]=XZ, X#0O.
Because of the integrability of J; and Jo we have
[J1N, 1 Z] = 1[N, 1 Z] = Jo[N, J1 Z],
and then
[N,J1Z] = aN, and [J1N, J1 Z] = aJ1N, a #0.
Now, by the Jacobi identity,

[N,J1Z] = aN, [Z,J,Z] = 202,
[J1N, J1Z] = aJ1N, [N,JiN] = \Z,

a, A # 0. After scaling it is a special case of relations PHC10.
Zecm,Z=aN+ J1N, a € R. Consider the decomposition

a=R(N,Z X, J,X), ¢ =R(N,Z X).
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Let [N, X] = Z and [J1X, Z] = AZ. By the integrability,
(Jl - JQ)[N, JlX] =2)\Z — 2CLN,

which implies A = 0, i.e., Z is in the center of g. That is a contradiction.

3.4. The proof of Theorem 1.1. According to the Levi decom-
position theorem every Lie algebra g decomposes into direct sum

g=1Ds,

where v is the maximal solvable ideal (radical) and s is the semisimple
part. Since so(3) and sl2(R) are the only semisimple Lie algebras
of dimension less or equal to 4, the only non-solvable Lie algebras of
dimension four are

R®s0(3) and R ®slz(R).

They both have a non-trivial center R, so from Theorem 3.1 we
conclude that the unique non-solvable Lie algebra admitting a para-
hypercomplex structure is R @ slo(R), i.e., PHC2. Solvable four-
dimensional Lie algebras with nontrivial center and admitting a para-
hypercomplex structure are PHC1 and PHC3-PHC6 (Theorem 3.1).
Solvable four-dimensional Lie algebras with trivial center and admitting
a para-hypercomplex structure are PHC7-PHC10 (Theorems 3.2, 3.3
and 3.4).

The examples of para-hypercomplex structures on the algebras are
given in Section 5. o

4. Comparisons with the work of Barberis. In this section we
compare our results with the classification of hypercomplex structures
in the paper of Barberis [5]. We see that there are many more four-
dimensional Lie algebras with para-hypercomplex structure than Lie
algebras with hypercomplex structure.

Namely, we have the following.

Theorem 4.1 ([5]). The only four-dimensional Lie algebras admit-
ting an integrable hypercomplex structure are:
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(HC1) g is abelian,

(HC2) [X,Y] =W, [Y,W]=X, [W,X]=Y,

(HC3) [X,Z] =X, [ X,W]|=Y,[Y,Z|=Y,[Y, W] =—
(HC4) W, X] =X, WY]=Y, [W,Z] = Z,

(HCh) W, X=X, W, Y|=Y/2, W, Z] = Z/2, |Z,Y] = X.

The Lie algebra HC2 is isomorphic to R@®so(3) and it does not admit
a para-hypercomplex structure. Its counterpart admitting a para-
hypercomplex (but not hypercomplex) structure is algebra R @ sl(2).

No algebra g with dim g’ = 1 admits a hypercomplex structure, while
algebras R @ hs and R @ aff(R) admit a para-hypercomplex structure
and satisfy dimg’ = 1.

The Lie algebra HC3 is isomorphic to aff(C) and it is the only Lie

algebra with dim g’ = 2 admitting a hyper-complex structure. It also
admits a para-hypercomplex structure.

The Lie algebra HC4 corresponds to real hyperbolic space RH*. It
admits both hypercomplex and para-hypercomplex structure (f41,1).

Finally, the Lie algebra HC5 corresponds to complex hyperbolic space
CH?. It admits both hypercomplex and para-hypercomplex structure

(04,(1/2))-

5. Equivalence of structures. In Lemma 2.2 we have proved that
any compatible structure (J;, J,) on the Lie algebra g gives rise to the
same geometry of g, i.e., the induced metrics are isometric. Hence, we
do not distinguish compatible structures from a geometrical point of
view. Thus, we will also use the weaker version of the standard notion
of equivalent structures.

Definition 5.1. The structures (Jq,J2) and (J7, J}) on Lie algebra
g are compatibly equivalent if there exist an automorphism ¢ of Lie
algebra g and structures (J;, Jy) and (J,, Jy/) compatible with (J7, J2)
and (Ji, J3), respectively, which commute with ¢:

¢pod, =Jy oo, ¢on:Jy/o¢_
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The equivalence ¢ in that case is conformal with respect to the
induced metrics on g (it is a homothety). The other way around, non-
equivalent structures may induce metrics on g which are not conformal
to each other.

In this section we find equivalence classes of para-hypercomplex struc-
tures on four-dimensional algebras g.

In the case of abelian four-dimensional Lie algebra g = R* the
automorphism ¢ is any linear map, since there are no obstructions
coming from the commutator relations. Therefore, any two structures
on the abelian algebra are equivalent.

5.1. Algebra PHC2.

Theorem 5.1. Integrable para-hypercomplex structure on R &
sl2(R) is unique up to the equivalence.

Let g be a Lie algebra R®sl>(R) with an integrable para-hypercomplex
structure (Jy,J2). By the proof of Theorem 3.1, case 1, for non-null
central element Z and the basis (Z,X = J1Z,Y = JoZ,W = J3Z), we
have

X,Y]=W, [X,W]=-Y, [Y,W]=-X,

and similar relations for arbitrary para-hypercomplez structure {jl, jg}
on g for some Z. The automorphism ® : g — g, ®7Z = Z, dJ, 7 = jaZ,
a € {1,2,3} is the equivalence between these two para-hypercomplex
structures.

In the basis (Z, J1Z, JoZ, J3Z) this structure reads:

0 01 0 0 0 0 -1
0 0 0 -1 0 01 0
(5.1 JSi= -1 0 0 0 | 2=109 10 o0
0 10 0 -1 00 0

We will refer to this structure as J2.

Remark 5.1. Note that the center Z of g is non-null vector and that
7 is orthogonal to g’.
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Remark 5.2. The simply connected Lie group with Lie algebra R ©®
sl(2,R) is the multiplicative group H* of para-quaternionic numbers
of norm one.

5.2. Algebra PHC3. The equivalence of structures is Lie algebra
automorphism and hence preserves the center of algebra g. On the
other hand the equivalence is conformal and hence preserves the metric
type of the center. From the proof of Theorem 3.1, we see that
R & v3; (PHC3) appears twice and we have to consider the following
non-equivalent classes: the central element is non-null and the central
element is null.

Theorem 5.2. On the algebra R @ v3 1 there is S*-family of non-
equivalent integrable para-hypercomplex structures such that the cen-
ter of the algebra is non-null. There is a unique integrable para-
hypercomplex structure (Jy,J2) with the null center (up to a compati-
bilty equivalence).

Proof. Let g be a Lie algebra R & v31, and (Ji,J2) a para-
hypercomplex structure on g. Suppose that the center of g is not
null with respect to the metric induced by (Jy,J2). By the proof of
Theorem 3.1, case 1, for non-null central element Z and the basis
(Z,X = W Z,Y = J,Z,W = J3Z), we have

(5.2) [X,Y] =aZ + bX + cY,
(5.3) [X,W]=—-bZ + aX + cW,
(5.4) Y, W] =cZ+aY — bW,

for some a,b,c € R, a® + b2~:~c2, ¢ # 0. Similarly, for arbitrary
para-hypercomplex structure (Jy, J2) on g we obtain the corresponding
relations for some @,b,¢ € R, a2 + b2 = @, ¢ # 0. Suppose
that ® : v — v is an equivalence of these two para-hypercomplex
structures. Since the center is one-dimensional, ®Z = aZ, a # 0

and ®X = aX, ®Y = oY, ®W = oW, where 1 Z = X, JoZ =Y,
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JsZ = w. Then, using the relations ®[X,Y] = [®X, Y], from (5.2)
we get (a,b,¢) = «a(a,b,¢). That is, the equivalence classes of para-
hypercomplex structures are parameterized by the points of RP! = S!.

The one-parameter family of para-hypercomplez structures J3A(9) is
given in the following way

(5.5)
001 0 cos ¢ 0 —sing 0
J = ( 0 001) I, — 1 —Ccos ¢ 0 sin ¢
! -100 0 J°’ 2 —sin ¢ 0 —cos¢ 0
0100 0 sin ¢ 1 cos ¢

Now we consider para-hypercomplex structures with null center. Let
g be a Lie algebra R @ t3 1, and (J1, J2) and (J1, J2) two equivalent
para-hypercomplex structures on g. According to Lemma 2 5, up to a
compatibility, we can assume N = J; X—JoX and N = J1 (J17J2)X for
some unit vectors X, X e g. Moreover, from the proof of Theorem 3.1,
case 2b, in the basis (N, JJ1 N, X, J; X) the commutators are
(5.6)

[X,JiN] =aN + bJyN + 2bX, [J1X,JyN]=—-bN +aJ;N +2bJ1 X

a? + b2

(5.7) X, 1 X] =~

N —aX +bJ1 X

where b # 0. For any other para-hypercomplex structure (Jl, Jg) with
a null center, the commutators in the basis (N, JIN, X, 1 X ) have the
similar form for some @,b,¢ € R, b # 0. Let ® : g — g be the
equivalence between these two structures. Let ®X = aN + JiN +
CX +6J1X. Since the algebra R @3 ; is with one-dimensional center
®N = pN, p # 0. By applying ® to the relation NJ; X — Jo X we get
v =28+ p, 6 =0 and hence

®X = aN + BJN + (28 +p)X
Since @ is an equivalence,
®[X,/;N] = [8X,;®N],  ®[/1 X, /;N] = [J;8X, J,®N]

and
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The compatibility condition for the third commutator is fulfilled auto-
matically since the third commutator is dependent.

Thus, @ is an equivalence for all a, b; a, B, with b, b # 0. The conclusion
is that all structures with null center are equivalent. The structure J3B
fora=0,b=11is

0 01 0 0010
0 00 -1 000 1

B8 =13 090 0| 7|10 0 0 O
0 10 0 0100

5.3. Algebra PHC4.

Theorem 5.3. If the algebra R @ h3 admits an integrable para-
hypercomplex structure, then its two-dimensional center is necessarily
totally null. There is a S' family of non-equivalent integrable para-
hypercomplex structures on the algebra R @ bs. Any such structure is
compatibly equivalent to some structure from the given S'-family.

Proof. In the proof of Theorem 3.1, this algebra appears only in the
case 2a) where all central elements are null. There exist an isotropic
central element N, and X, X € g such that

N=J X —JX=0X—-JX.

Also, from the proof of Theorem 3.1 we know that in the corresponding
basses (N, JJ1 N, X, X, J1X) and (N, J1 N, X, X; X) the nonzero commu-
tators are

(5.9) [X,J;1X] =mN +n/N, [X,J;X]=mN+nJN.

The equivalence @ : g — g of the para-hypercomplez structures (Jy, Jo)
and (Jy, J3) is of the form

(5.10) ®X = aN + BN +7X + 651X,  ®N =pN +qJ,N,

where «, 3,7,9,p,q € R. If we replace the relation N = J1 X — Jo X
into (5.10), we get p=v — 2B, ¢ =0=4, i.e.,

®N = (y—2B8)N,  ®X =aN+BJ N +~X
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with v # 0, v — 28 # 0. From the commutators (5.9), we see that ® is
an equivalence if and only if the system

(5.11) m(y—28) =v’m,  n(y-28) =+"nn,

has a non-trivial solution for (a,f,7,d), that is, if and only if the
nonzero vectors (m,n) and (m,n) are proportional and we have an S!
family of non-equivalent structures. To find them explicitly, denote
Y = 11X, Z = mN +nJiN, W = —JiZ. Then in the basis
(X,Y,Z,W) the commutator of R @ h3 reads [X,Y] = Z. One can
check easily that the S* family J4(¢) of non-equivalent structures is:
(5.12)

I S
_[10 00 —
Jl_(gg olé>’ J2 = —cos¢ sing sin2¢ cos2¢ 0

sing cos¢ cos2¢ —sin2¢

5.4. Algebra PHCS5.

Theorem 5.4. If the algebra R® aff(R) admits an integrable para-
hypercomplex structure, then its two-dimensional center is necessarily
totally null. Moreover, every such structure is compatibly equivalent
to some structure from the two S'-families of non-equivalent para-
hypercomplex structures on the algebra R@aff(R). For the first family
the commutator g' is null space and for the second g’ is not null space.

Proof. This algebra appears only in the case 2a) of the proof of
Theorem 3.1, where all central elements are null. To find non-equivalent
structures we start similarly as in the proof of Theorem 5.3. That is, for

the bases (N,J1N, X, J1X), N = J1X — JoX and (N,le,X,JlX),
N = J1 X — J2 X, the endomorphism ® compatible with the structure
(J1,J2) is of the form:

®N = (y—28)N, ®X =aN + LN ++X,

where y(y — 28) # 0. The corresponding non-zero commutators are of
the form:

[X,1.X] = mN + nJiN + kX + fJ. X,
[X,J1X] = mN + 7N + kX + f5 X,
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with k2 + f2, k2 + f2 # 0. If we assume that | X|? = 1, then the square
norm of the commutator is

I1X, 1 X]]? = f2+ k> +2(fm — kn).

It is clear that if the structures (Ji, J») and (J1, J;) are equivalent then
the commutators are simultaneously null or non-null, i.e.,

P2 k2 +2(fm — kn) = A(f? + k> + 2(fm — kR)), A#0.

The condition that ® is Lie algebra endomorphism is equivalent to
the following:

(5.13) k=qk, f=n7f
a(=k) + B(f +2m) = y(m — ym/),
(5.14) a(—f)+ B(—k +2n) =v(n — yn').

From (5.13) it follows that the structures are equivalent only if (k, f) =
~(k, f) what we assume in the sequel. Equations (5.14) are then linear
equations over o and [ for some fixed 7. The determinant of that
system D = f? + k% 4+ 2(fm — kn) is exactly the square norm of the
commutator [X, J; X].

If D # 0 then there exist the unique solution «a, 3. The condition
v(y —2B) # 0 (non-degeneracy of ®) is equivalent to f2 + k2 + 2(f —
k) = |[X,J1X]|> # 0. Hence, in the case of non-null commutator g’
there exist S* family of non-equivalent structures.

If D = 0 then one can show, by using (5.13) that equations (5.14) are
dependent and the solution is not unique. The condition (v —28) # 0

is easily achieved and we again have S!' family of non-equivalent
structures.

Let us write these structures explicitly. In the case of non-null
commutator g’ we may choose m = n = 0 and introduce a new basis

Y =cos¢pX +singp1 X, X' =-JLY', Z' =N, W' =JN.

In that basis the only nonzero commutator is [X',Y’] = Y’ and the
structures J5A(¢) are given by:
(5.15)
0 -1 0 O —sin2¢ —cos2¢ 0 0
J = 1 0 0 O J$ — —cos2¢ sin2¢ 0 O
! 0 0 0 -1/’ 2 —sing —cosgp 0 1
0 0o 1 O —cos¢ sin ¢ 1 0
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In the case of null commutator ¢’ we may choose
(myn, k, f) = (—(1/2) sin ¢, (1/2) cos ¢, cos ¢, sin @),
and introduce the new basis
Y' = —(1/2)sin¢ N + (1/2) cos¢p J1N + cos ¢ X +sin¢ J1 X,
X' =-J5Y', Z =N, W =JN.

In that basis the only nonzero commutator is [X',Y’] = Y’ and the
structures J5B(¢) are given by:
(5.16)
0 -1 0 0 —sin2¢ —cos2¢ 0 O
{1 0 0 O 6 | —cos2¢ sin2¢ 0 O
=10 0 0 —1) 25| o o o0 1] °
0 0 1 0 0 0 1 0

5.5. Algebra PHCG.

Theorem 5.6. If the algebra 04 admits an integrable para-hypercomplex
structure, then its one-dimensional center is necessarily null and the
induced metric on three-dimensional ¢’ is degenerate (of rank 2). Any
such structure is compatibly equivalent to the some of the following
non-equivalent structures: (J\°,J3°) (J6C), (J', J>") (J6B) and
the one-parameter family (J)™,Jy"), n € R, (J6A) defined below.

Proof. This algebra appears only in case 2c) of the proof of The-
orem 3.1 where all central elements are null. As before we suppose
that

[X,/iN] =N, [/ X,JiN]=JN, [X,J;X]=mN +nJ;N+X,
and
[X,JiN] =N, [LX,iN]=JN, [X,}3X]=mN+nJN+X.

An equivalence @ : g — g is determined by ®X = aN + ﬁle + 75(,
®N = pN, p = v—20 and it exists if and only if the system of equations

mp=m, (n—1lp=n-1, =1,
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has a solution such that p # 0. The result follows by studding of the
equations. To get the structures explicitly choose the base

X’:X—i-ngN, Y =, X —mJ,N, Z'=N, W' =JN.

We get the commutators for 04 and the corresponding para-hypercomplex
structures (J;", J3"") are defined by

0 -1 0 O
mn | 1 0 0 0
ST = -n/2 m 0 —-1]’
m n/2 1 0
0 1 0 0
g _ 1 0 00 .
2 (n—2)/2 -m 0 1
m (2-n)/2 1 0

5.6. Algebras PHC7 and PHCS8. Depending on the sign of 4a+b?
the algebra PHC7 is 041, aff(C), or aff(R) @ aff(R). The algebras
PHCS and aff(R) @ aff(R) by definition coincide.

Each of these algebras appears twice in the proof of Theorem 3.3
depending on the metric type induced on its two-dimensional derived
algebra g’, and we have to analyze these situations. It is interesting
that the case of totally null g’ happens for each algebra.

Theorem 5.6. On the algebra g = aff(C) there are two non-
equivalent integrable para-hypercomplex structures. Any other is com-
patibly equivalent to the one of this two. With respect to one of them the
derived algebra g' is definite and with respect to the other it is totally
null.

Proof. As first, suppose that two-dimensional commutator subalgebra
g’ is definite with respect to the metric induced by structure (Ji, J3).
Using a compatible structure if necessary we can suppose that J;
preserves g'. Following the proof of Theorem 3.3, case i) and formulas
(3.11), for X € ¢/, in the basis (X,Y = 1 X,Z = JbX, W = —J3X)

the commutator relations are:

[X,Z] = cX+dY = [Y,W], [X,W]=dX—cY = -]Y,Z], *+d*> #0.
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The same construction for some X € ¢’ and structure (]1, jz) yields
similar relations over some ¢, d, ¢> + d? # 0. One can easily check that
the automorphism given by

Mm:“+@X+w7@Y
2+ 2+

is equivalence of (Ji,J;) and (Ji,J;). Hence, all such structures are
equivalent to J71A

0 10 0 0 0 0 -1
-1 00 0 0 01 0
=l 00 -1 2=10 10 o0
0 01 0 -1 00 0

Now, suppose that the subalgebra g’ is totaly null with respect to
the metric induced by structure (Jy, J3). We use a different approach,
namely, we choose the basis (X,Y,Z, W) in which the algebra g =
aff(C) has the simplest commutators

(X, Z]=X=-[Y,W], [Y,Z]=Y =[X,W].

Then, according to the proof of Theorem 3.3, case iii) up to a compat-
ibility we can choose (Jy, J2) such that

L(X)=X, LY)=Y, LZ)=-Z JLW)=-W,
and similarly for (jl,jg) Then, because of the relations of para-
hypercomplex structure and the integrability the structure J; has the
form

Ji(X) =dZ — W, N(Y)=cZ+dW, +d*#0,

and similarly for jl and some ¢, d. These two structures are equivalent.
Namely, the equivalence ® is given by

B(Z)=2Z, BW)=W, B(X)=05X 1Y, (Y)=1X +0Y,
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with v = (dc — &d) /(& + d?), v = (Gc + dd)/(¢* + d?). We have proved
that any two such structures are equivalent to J71B

00 -1 0 10 0 0
00 0 -1 01 0 0
=110 0 o 7|00 -1 o o
01 0 0 00 0 -1

Theorem 5.7. On the algebra g = aff(R) @ aff(R) there are two
non-equivalent integrable para-hypercomplex structures. Any other is
compatibly equivalent to one of these two. With respect to one of them
the derived algebra g’ is Lorencian and with respect to the other it is
totally null.

Proof. The Lorencian case appears in case ii) of the proof of Theo-
rem 3.3. The proof that all such structures are equivalent is easy and we
give only the structure J72A4 in the canonical basis of aff(R)® aff(R)
(see Section 2)

0 0 -2 0 100 0
0 0 0 -2 0 1.0 0
N1 = /2 0 o0 o]’ =10 01 o0
0 1/2 0 0 0 00 -1

The case of totally null g’ appears in case iii) or the proof of Theo-
rem 3.3. Note that the case of algebra PHCS8 is contained here. The
proof that all the structures are equivalent is similar to one in Theo-
rem 5.6. The structure J72B in the canonical basis is

0 0 -1 0 10 0 O
0 0 0 -1 01 0 O
=110 0 o) 25 oo 1 0 .
01 0 O 0 0 0 -1
Theorem 5.8. On the algebra g = 041 there are two non-

equivalent integrable para-hypercomplex structures. Any other is com-
patibly equivalent to the one of this two. With respect to one of them
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the derived algebra g’ is degenerate (has exactly one null direction) and
with respect to the other g’ is totally null.

Proof. The case of totaly null derived algebra g’ appears in case iii)
of the proof of Theorem 3.3 and can be proved in the same way as in
Theorem 5.6. In the canonical basis of 94,1 (see Section 2) the structure
JT73A is

00 -1 0 10 0 0
00 0 -1 01 0 0
=110 0 o 7|00 -1 o
01 0 0 00 0 -1

Suppose that the derived algebra g’ is degenerate with respect to the
integrable para-hypercomplex structure (Jy,.J3) of g. (here we follow
case iv) of the proof of Theorem 3.3). For the null direction N € ¢, up
to a compatibility we can suppose that N = J; X —Jo X for X € g’. By
scaling vectors N and X we could have achieved a = 1 in the proof of
Theorem 3.3. In the basis (IV, X, J; N, Jx) the commutator relations
are

[N,J1X] =N =[X,/;N], [X,1X]=bN+X, beR.

For another such structure (:]1, 172) in the corresponding basis (N ,)~( ,
J1N, Jx) the similar commutator relations hold for some b € R. The
automorphism ® between the structures is given by

®(N)=N, @X)=(b—b)X+N.

Hence, all such structures are equivalent. In the canonical basis one of
these structures J73B is

00 -1 0 0 010
00 0 -1 100 1
=110 0 o =1 000 .
01 0 0 0 1 10

5.7. Algebra PHC9. The algebra PHC9 corresponds to the
algebras t4 1 . and t4,; as explained in Lemma 2.1. Note that the algebra
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t4,1,1 corresponds to the real hyperbolic space RH 4, The algebra PHC9
appears twice in Theorem 3.4, once in its general form, with degenerate
¢’, and the other time with non-degenerate g’ in the form of t41 ;.

Theorem 5.9. On the Lie algebra g = t4,1¢, ¢ # 1 there exist two
non-equivalent integrable para-hypercomplex structures. Any other is
compatibly equivalent to the one of this two. In both cases the three-
dimensional subalgebra g' is degenerate with respect to the induced
metric.

Proof. From the proof of Theorem 3.4 one can see that this case
happens when the subalgebra g’ is abelian and degenerated with respect
to the metric induced by para-hypercomplex structure (Jy, J3).

This part of the proof works for all algebras PHC9, with degenerated
¢’. As in the proof of Theorem 3.4 let N = J; X — JoX. From formulas
(3.18) we have that

[N,J1X] =N, [LN,J1X]=JN, [X,J1X]=aN+bJiN +cX,

for some numbers a, b, ¢ with ¢ #£ 0. If (.71, .72) is an equivalent structure,
for some X €g,N = J1X — J,X we have similar relations with
coefficients @, b, ¢, and ¢ # 0. One easily checks that the equivalence
® between the structures (Ji,J2) and (J1,J2) has to be of the form

®:9—9g, X =aN+8J1N+ X, ®dN = (1—-28)N, 8 # 1/2. From
the compatibility with commutators we also have:

(5.17) ¢=¢ B(l—c+2b)=b—b, a(l—c)+2aB=a—a.

Since we are interested in the algebra g = ts1,., ¢ # 1, fix some
c# 0,1 and let 2b = ¢ — 1.

Then b = b and all structures determined by any a are equivalent.
To find one of them explicitly, let a = 0, b = (¢ — 1)/2. By choosing
X' =2X+JN,Y =N, 7Z =J N, W = J; X we get the commutator
relations of t4 1, ¢ # 1,

[lewl] — CXI, [Y’,W’] — Yl, [lewl] — ZI7
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and the structure J91A4

0 0 0 -1/2 0 0 0 1/2
-1 0 -1 0 -1 01 0
=10 1 o0 /2 |’ =10 1 0 1/2
2 0 0 0 2 00 0

Now, fix some ¢ # 0,1 and let 2b # ¢ — 1. Then, the solution «,
exists and all such structures are equivalent. To get a particular one,
we can choose the structure determined by a = 0 and b = 0 # (¢c—1)/2.
We immediately get the relations of the algebra t4; ., ¢ # 1, and the
structure J91B

00 0 -1 0 0 0 1
00 -1 0 -1 01 0
(5.18)  J1= 01 0 0} =10 101
10 0 0 1 00 0

This structure is not equivalent to the previous since otherwise we
would have 8 =1/2. o

Theorem 5.10. On the Lie algebra g = t41,1 there exist two
non-equivalent integrable para-hypercomplex structures. Any other is
compatibly equivalent to the one of the following two. In one case the
three-dimensional subalgebra g’ is degenerate with respect to the induced
metric and in the other case it is non-degenerate.

Proof. In the degenerate case, take ¢ =1 and a = 0 = b in the proof
of Theorem 5.9. We immediately get the commutator relations of t4 1,1
and the structure (5.18) (which we also denoted by J92A4).

In the non-degenerate case one can prove that the structure is unique
up to equivalence, and the structure J92B is given by:

0 0 0 -1 0 0 -1 0
0 0 -1 0 0 0 0 1
=10 1 0 of 71210 0 o o
10 0 0 0 1 0 0

Theorem 5.11. On the Lie algebra g = t4,1 there exist S*-family of
non-equivalent integrable para-hypercomplex structures. Any other is
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compatibly equivalent to some structure from this family. The induced
metric on g’ is degenerate.

Proof. We start as in the proof of Theorem 5.9 and suppose that
c¢=1and a® + b* # 0. Then from the relations (5.17) we get that the
structures are equivalent if and only if (a,b) is proportional to ('d,~).
Hence, we have an S' family of non-equivalent structures. One can

show that in the canonical basis of v 1 this family J93(¢) is given by

010 0 —sin2¢ cos2¢ sin¢g cos¢
[ =100 0 | cos2¢ sin2¢ —cos¢ sing
‘]1_<0001>’ J2 = 0 0 0 1 - o

0010 0 0 1 0

5.8. Algebras PHC10. The algebra PHC10 is one of the algebras
04,5 for A # 1,0 or by as explained in Lemma 2.1. However, the algebra
04,1/2 is considered separately since it admits many more non-equivalent
structures.

Theorem 5.12. On the Lie algebra g = 04,12 there are five non-
equivalent structures. Any other is compatibly equivalent to the one of
this five structures.

Proof. By study of the proof of Theorem 3.4 we see that there are
four geometrically different cases with the last resulting in two non-
equivalent structures. To describe them, denote a central element of
the commutator subalgebra g’ = h3 by Z, and let (g’)* be the one-
dimensional space orthogonal to g'.

The first case: sign(Z) = sign ((¢')*) and (g')* ¢ ¢/, that is, ¢’ is
not degenerated. By following the proof of Theorem 3.4 one can easily
prove that all such structures are equivalent and one of them is J101A:

01 0 0 0 0 -1 0
-1 0 0o o o 0o 0o 172
=10 0 o 1/2 |’ =110 0 o0
0 0 -2 0 0 2 0 0
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The second case: sign (Z) = —sign ((g')*) and (g')* ¢ ¢, that is g’ is
not degenerated. One can prove that all such structures are equivalent
and one of them is J101B:

0 0 1 0 0 -1 0 0
o 0o o0 172 -1 0 0 o0
=11 0 0 0] 2o o0 o 1/2
0 -2 0 0 0 0 2 0

The third case: (g')*t C ¢, that is, g is degenerated and Z € (g')*.
This is a generic case, so we calculate it for any algebra PHC10. From
the formulas (3.19), up to a compatibility, the commutators in the basis
(N,JiN, X, J1 X) are:

[Ji1X,N] =N, [J1X,J1N] = (1 — A)J,N,
[JIN,X] = AN,  [JiX,X]=aN +bJyN + AX,

for some a,b € R, A # 0,1. Here, N = Z is a central vector of g', as
well as normal to g’ and X € ¢'. If (Jy, Jo) is another such structure
we have similar commutators for some X e ¢’ and some real numbers
a,b,\ # 0,1. The map ® compatible with these two structures is of
the form

®(N) = (2k +n)N,  ®(X)=nN —kJN + ¢X,

for some n, k, 2k +n # 0 and g # 0. Such ® is an automorphism of g
if and only if:

(519) X=X, q¢q=1, n—2ak=a—a, k(1—2b—2c)=0b—b.

Now, we specialize to the case of algebra 04 /5, i.e., A =1/2,b=0. We
see that equations (5.19) always have a solution, that is, all structures
are equivalent. To get a particular one we can take a = 0 = b and
after scaling of the basis to match the commutators of 94 ;/5, we get
the structure J101C

0 0 0 1 0 0 0 -1
|0 0 -120 |0 0 12 -1
o2 o0 o} 2 -2 0 0
10 0 0 -1 0 0 0
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The fourth case: (g')* C ¢, that is, g’ is degenerated, but Z ¢ (g')*.
From the proof of Theorem 3.4, formulas (3.20) the commutators are:

[Z,J1Z) = 2aZ, [N,JiN] = AZ, [N,J1Z] = aN, [JiN,J1Z] = aJ,N,

a,\ # 0, where N € (g/)t. The automorphism & of the algebra
g compatible with the structure (Jq,Jz2) is of the form ®(N) = pN,
®(Z)qZ for p, q satisfying
_e 2 A
q= 3 p = q}:-
Therefore, we have two non-equivalent structures for (o, \) = (1,+1).
After scaling the basis (N, J1N, Z, J1Z) to match the commutators of
04,1/2, we get the structures J101D and J101E

0 -1 0 0 01 0 0
. (1 0 0o o . (10 0 o

=10 0o o 1| 2=loo0o 0 = o
0 0 F1 0 00 T1 0

Theorem 5.13. On the Lie algebra g = 04, ¢ # 1/2, there are two
non-equivalent integrable para-hypercomplex structures. Any other is
compatibly equivalent to the one of the this two. With respect to both
structures the commutator algebra g’ is degenerated and the center of

the algebra g is Z(g) = (g')*.

Proof. This algebra is a special case of algebras PHC10 for ¢ # 1/2,
and it appears in the formulas (3.19). By analyzing the formulas
(5.19) we find that there are two non-equivalent structures for b =
(2¢—1)/2 = b and b # (2¢—1)/2. In the first case we set (a,b) =
(0, (2¢ — 1/2)) and get the structure J102A

0 0 0 1/2
g 0 0 -2 -1/2
YTl 1/2e) 1/(2¢) 0 0o |’

-2 0 0 0

0 0 0 —1/2
I — 0 0 —2c —1/2
27 1/(2¢) —1/(2¢) 0O 0

-2 0 0 0
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In the case b # (2¢ — 1)/2 we can set (a,b) = (0,0) since ¢ # 1/2, and
the structure is J102B:

0 0 0 1 0 0 0 -1
0 0 —c 0 0 0 —c -1
=10 1/ 0 o] 271/ —1c 0 0 o
1 0 0 0 1 0 0 0

Theorem 5.14. Integrable para-hypercomplex structure on the Lie
algebra g = by is unique up to compatible equivalence. With respect to
that structure the commutator algebra g’ is degenerated and the center
of the algebra g is Z(g) = (g')~.

Proof. This algebra is a special case of algebras PHC10 for ¢ = 1/2,
b = 0 and it appears in the formulas (3.19). By analyzing formulas
(5.19) we see that all such structures are equivalent. To get a particular
one we choose (a,b) = (0,1) and get the structure J103:

0 0 1/2 0 0 0 1/2 -1

o 0 0 2 0o 0 0 -2
=19 o o o] 2=|l2 1 0 o o

0 -1/2 0 0 0 -1/2 0 0

6. Geometry related to phc-structure. Lemma 2.2 says
that every integrable para-hypercomplex structure (Jq,J2) on a four-
dimensional Lie algebra g defines the conformally unique scalar product
on g. Moreover, it says that any compatible structure (J7, J}) defines
the same scalar product. Possibly different conformal geometries may
arise from non-equivalent structures (as defined at the beginning of
Section 5).

This scalar product defines left-invariant metric on the corresponding
four-dimensional Lie group G. This metric is anti self-dual (see [8, 10]).
Note also that every such Lie group is a complex manifold admitting a
left-invariant neutral metric.

The results were not complete, since only one structure for each Lie
algebra was given, in order to prove the existence. However, the results
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have been already used by Ivanov and Zamkovoy [8] to study geometry
of four-dimensional Lie groups in more details. They showed that some
of this metrics are not conformally flat. In [8] it was also checked that
the induced conformal structure [g] is actually locally hyper-Kahler.

Moreover, a compact four-dimensional solve-manifold M = G/T’
which admit anti-self-dual neutral metrics are considered. The exam-
ples obtained are locally conformally hyper-Kahler and most of them
are not conformally flat. An important particular case is based on the
Lie algebra 94. The corresponding solvable Lie group is known as Solj.
The geometric structure modeled on Solf is one of the possible geomet-
ric structure on four manifolds [13]. Its compact quotients by discrete
group I' are the Inoe surfaces modeled on Solf. In [8] the following
theorem was proved:

Theorem 6.1 [8]. The Inoe surface N = Sol}/T" modeled on Sol}
admit a locally conformally hyper-para-Kdhler structure and do not
admit any global one. The Lie form is parallel and the Weyl curvature
is not zero. Therefore, the Inoe surfaces N = Sol}/T" modeled on Sol}
have anti-self-dual not Weyl flat neutral metric.

In this section we give some additional properties of the conformal
geometries induced by the integrable para-hypercomplez structures. As
first, we can calculate the curvature of the induced metric.

Recall, that the curvature tensor of a neutral four-dimensional man-
ifold M can be seen as a self-adjoint map

R:AN>T*M — A2°T*M

of six-dimensional space A2 T*M of 2-forms on the manifold M. There
is a decomposition

NT*M=ANT"M&A T*M

of the space of 2-forms onto three-dimensional spaces of self-dual
and anti-self-dual 2-forms. With respect to that decomposition the
curvature tensor can be decomposed as:

- W+ B i
R= (B* W_>+12I’
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where W, and W_ are self-dual and anti-self-dual parts of the Weil
tensor W, B is the Einstein part and s is the scalar curvature. The
Weil tensor W = W, @ W_ is conformal invariant. In our case when
the metric is induced by integrable para-hypercomplex structure, it is
anti-self-dual, that is, W_ = 0 ([8]). The curvature of Lie groups
associated to the Lie algebras form our classification is given in Table 1.
However, we point out some interesting facts that one can prove by
direct calculations.

Theorem 6.2. The only Lie algebras admitting a flat integrable
para-hypercomplex structure are: R, R®b3, 041, 04,—1, t41 and t4 1,
c==l1.

Remark 6.1. Note that the algebras 04 _1, t41 and t41,, ¢ = %1
admit both flat and non-flat integrable para-hypercomplex structure.

Theorem 6.3. The only Lie algebras admitting a Ricci flat, but not
flat, integrable para-hypercomplex structure are: t41, t41,-1, 04,-1.

Most of the geometries arising from para-hypercomplez structures are
conformally flat.

Theorem 6.4. The only Lie algebras admitting non-conformally flat
structures are Rty 1, R2®aff(R), 04, ta1, 0a,c, ROb3 ta 1,0, ¢ £ 1/2.
Among them only 0412 admits a structure with scalar non-flat metric.

Theorem 6.5. The only para-hypercomplex locally symmetric Lie
groups of dimension 4 are determined by the algebras R*, R @ sl2(R),
R ® b3, 04, 41, 04, c = %1, t41c, c = %1, -3. The induced metrics
are biinvariant only on R @ slo(R) and 04.

Since a Lie group with a left invariant metric is an analytic manifold
the holonomy algebra is generated by {R(z,y), V.R(z,y) | z,y,2 €
g}. By a direct computation, using Mathematica, we calculated the
holonomy algebras as given in Table 1. The holonomy algebra were
also computed by H. Baum and A. Galaev another way. They used
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a theorem of Wang specializing in the holonomy algebra of naturally
reductive spaces (see [8, II, p. 204, Corollary 4.2).

Theorem 6.6. Let g be the left invariant metric on the Lie group
G which is determined by an integrable para-hypercomplex structure
(J1,J2) on G. Then, its holonomy algebra is one of the following: 0,
R, R?, 50(1,2), s50(2,2), R®so(1,2). The complete list of the holonomy
algebras is given in Table 1.

Remark 6.2. We have confirmed the result of Andrada [1], that
the only algebras admitting para-hyperKéahler structure (that is para-
hypercomplex structure with parallel structures) are: abelian R*, R &
B3, t4,1,—1 and 04 0.

Remark 6.3. The para-hypercomplex structure equivalent up to
compatibility class induce the isometric metric (up to a homothety). If
the induced metrics are isometric (up to a homothety) the structures
are itself are not necessarily equivalent. They are equivalent up to a
compatibility class.

Acknowledgments. We are grateful to A. Andrada, H. Baum, I.
Dotti and S. Ivanov for useful comments and suggestions. Also we
thank A. Galaev for writing Mathematica program to check indepen-
dently our computations of the holonomy algebras.

APPENDIX

7. The catalog of integrable, left invariant para-hypercomplex struc-
tures on four-dimensional Lie algebras (up to equivalent compatible
class) is presented in the following Table. The commutator relations
and the para-hypercomplex structures are given. Some properties of the
naturally induced left-invariant compatible conformal class of metrics
are systemized. We checked to see if the metrics are locally symmetric
and biinvariant. Moreover, the Weyl curvature, Ricci curvature, the
scalar curvature and the holonomy algebras are presented.
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