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POINTWISE CONVERGENCE ON THE BOUNDARY
IN THE DENJOY-WOLFF THEOREM

PIETRO POGGI-CORRADINI

ABSTRACT. If ¢ is an analytic self-map of the disk (not an
elliptic automorphism) the Denjoy-Wolff theorem predicts the
existence of a point p with |p| < 1 such that the iterates ¢,
converge to p uniformly on compact subsets of the disk. Since
these iterates are bounded analytic functions, there is a subset
of the unit circle of full linear measure where they are all well-
defined. We address the question of whether convergence to p
still holds almost everywhere on the unit circle. The answer
depends on the location of p and the dynamical properties
of . We show that when |p| < 1 (elliptic case), pointwise
almost everywhere convergence holds if and only if ¢ is not
an inner function. When |p| = 1 things are more delicate.
‘We show that when ¢ is hyperbolic or nonzero-step parabolic,
then pointwise almost everywhere convergence always holds.
The last case, zero-step parabolic, remains open.

1. Introduction. Let ¢ be an analytic map defined on the unit
disk D = {z € C: |z| < 1}, and assume that ¢(D) C D (we call ¢ a
self-map of the disk from now on). The iterates of ¢ are ¢, = po---0¢,
n times. The following result is classical (elliptic automorphisms are
those that can be conjugated to a rotation).

Theorem 1.1 (Denjoy-Wolff). If a self-map of the disk ¢ is not an
elliptic automorphism, then there exist a point p € D such that the
sequence ¢n(z) converges uniformly on compact subsets of D to p.

Moreover, when p € D, ¢(p) = p and |¢'(p)| < 1, while when p € D,
then ¢(p) =p and 0 < ¢'(p) < 1 in the sense of nontangential limits.

The point p is referred to as the Denjoy-Wolff point of ¢. When
p € D, the map ¢ is called elliptic. When p € 0D, ¢ is called hyperbolic
if ¢'(p) < 1 and parabolic if ¢'(p) = 1.
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Since the functions ¢, are bounded analytic functions, it is well
known that one can define the corresponding boundary functions

G1(e) = lim b (re")

for almost every e’ on OD. More precisely, for every n = 1,2,3,...,
there is a set E,, C D of linear measure zero, so that ¢;, is well defined
on 0D\ E,. Then W = 0D\US2 , E,, has full measure and every iterate
¢n extends to W.

It is natural to ask whether for almost every point { € W the sequence
@2 (C) still converges to p as n — oco. An answer to this question in
the elliptic case (when p is not super-attracting) can be extracted from
the proofs of our paper [5]. The purpose of this note is to do a more
systematic study of this problem.

Before stating our result, we need to recall some definitions.

A bounded analytic function f on the unit disk D is an inner function
if the corresponding boundary function f*(e*’) has modulus equal to 1
for almost every e on dD. It follows from the Riesz theorem [4, page
205], that if f is inner then f o f is inner as well.

Recall the hyperbolic distance, defined for z,w € D as:

1+ |z — w|/|1 — wz|
1— |z —w|/|]1 —wz|

p(z,w) = log

Given a self-map ¢ of parabolic type, pick a point zg € D, and let
2n = ¢n(20) be the corresponding orbit. Define s, := p(2n, 2n+1), i-€.,
the hyperbolic step of the orbit. By Schwarz’s lemma, ¢ is a contraction
with respect to the metric p, in particular, s, is a nonincreasing
sequence, and hence s, = lim,_,, s, exists. There are two cases:
@ is nonzero-step if soc > 0 and zero-step if s = 0. It follows from
the main theorem of [8] that this classification does not depend on the
choice of zp (also see comments after Theorem 1.8 of [7]).

Theorem 1.2. Suppose ¢ is an analytic self-map of the disk which
is not an elliptic automorphism.

(1) If ¢ is elliptic, then ¢X(() converges to the Denjoy- Wolff point of
@, for almost every ¢ in 0D, if and only if ¢ is not an inner function.
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(2) If ¢ is hyperbolic or parabolic nonzero-step, then ¢}, (C) converges
to the Denjoy- Wolff point of ¢, for almost every ¢ in 0D.

Our proofs do not extend to the parabolic zero-step case, which in
some sense is more similar to the elliptic case since the hyperbolic steps
are tending to zero. In fact, we make the following conjecture.

Conjecture 1.3. Suppose ¢ is an analytic self-map of the disk which
is parabolic zero-step. Then @7 (C) converges to the Denjoy- Wolff point
of @, for almost every ¢ in 0D, when ¢ is not an inner function.

Bourdon, Matache, and Shapiro [1] have independently given a
different proof of Theorem 1.2, and they have also given examples
of inner functions of parabolic zero-step type for which pointwise
convergence on 0D to the Denjoy-Wolff point does occur.

In Section 2 we tackle the elliptic case. In Section 3 we deal with the
hyperbolic and parabolic nonzero-step cases.

2. The elliptic case. Assume that ¢ is elliptic, i.e., the Denjoy-
Wolff point p of ¢ is in D (and assume that ¢ is not an automorphism).
If ¢ is inner, then for almost every ¢ € 0D, |¢%({)| =1 for all n, so the
convergence to p does not occur.

The converse is less straightforward. Assume then also that ¢ is not
an inner function. The argument revolves around showing that there
cannot exist a set £ C D of positive linear measure on which all the
iterates ¢; have modulus one.

2.1. An exhaustion of the unit disk. Given n = 1,2,3,...,
fix a parameter ¢ > 0, and consider the open set U,(t) = {z € D :
p(én(2),p) < t}. Then, let Q,(t) be the connected component of
U, (t) which contains p, and let F,(t) be 9Q,(t) N D. Notice that
F,(t) consists of at most countably many piecewise analytic Jordan
arcs, and either there is only one closed arc, or all the arcs have the
property that their two ends tend to D (by the maximum principle).
Let C(r) = {# € D : p(z,p) = r}; then there is an r > 0 such that
#(z) # p, for all z € C(r). Therefore, we can find ¢y > 0 small enough so
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that Q4(tp) is compactly contained in D, and therefore F}(ty) consists
of one closed Jordan arc. From now on we write Q,, for Q,(t9) and F,
for F, (o).

By definition,

(2.1) k(i) C Q2 and  @g(Fryx) C Fy

for n,k =1,2,3,.... Moreover, we also have

(2.2) Q, UF, CQyy1,

for n = 1,2,3,.... This is because whenever { € Q,, U F,,, there is

a path v C Q, U F,, connecting p to ¢, and by the invariant form of
Schwarz’s lemma and the fact that ¢(p) = p,

p(p, dnt1(7(5))) < p(p, pn(7(8))) <to, 0<s <1

2.2. Harmonic measure. If Q is an open set and E a closed set,
then we write
w(z,E,Q)

for the Perron solution of the Dirichlet problem, in the component U
of Q\ E containing z, with data Xg (the characteristic function of E).
Recall that this is obtained by taking the supremum of all the values
v(z), when v ranges among all subharmonic functions on U such that
limsup,_,,v(z) < Xg((), for all { € QU E (these functions v are often
referred to as “candidates”).

Write wy, (2) = w(z, F, Q). We will need two results about harmonic
measure. We refer to [10] for the potential theory background that is
needed.

Lemma 2.1 (Schwarz-type lemma). Let E be a closed set in D with
Cap (¢71(E)) > 0. Then,

w(z,¢"'(E),D\ ¢~ (E)) <w(4(2), E,D \ E).

Proof of Lemma 2.1. This proof is similar to the proof of Lemma 3.1
in [6]. Let G = D\ ¢~}(E). Let v be a candidate for the Dirichlet
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problem on G with data X4-1(g), and let u(z) = w(¢(z), £,D \ E).
When z € G, ¢(z) ¢ E, and hence v —u is subharmonic on G. Suppose
now that ¢ € 0G. There are two cases. First, assume that { € 0D,
ie., ( ¢ ¢! (E). Then by the definition of v and, since u is positive,
limsup, ,¢[v(z) — u(z)] < 0. When ¢ € ¢~ (E), limsup,_,,v(z) < 1.
Also, Cap E > 0 by Corollary 3.6.6 of [10], and at nearly every n € E
we have lim,_,, w(z, E,D\ E) = 1, by Theorem 4.2.5 of [10] (Kellogg’s
theorem), and by Theorem 4.3.4 (b) of [10]. Therefore, since ¢ is
analytic, for nearly every ¢ € ¢ !(E), lim,,cu(z) = 1. By the
extended maximum principle for subharmonic functions, [10, Theorem
3.6.9 (b)], v —u < 0 on G, and the conclusion is reached by taking the
supremum over all the candidates v. ]

The second result is a well-known “conditional probability estimate.”

Lemma 2.2 (Conditional probability). Suppose that Q is an open
set and E is a nonempty Borel subset of 0N). Also suppose that F is a
closed subset of 2 which separates a point z € Q from E in Q, i.e., if
U is the connected component of Q\ F containing z, then ENOU = &.
We have

w(zaEaﬂ) < w(z,F,Q) Supw(CaEaQ)'
CeF

Proof. With U as above, u(w) := w(w,F,U) = w(w,F,Q) is
harmonic in U. Let v be a subharmonic candidate for w(z, E, ). Then
f(w) := v(w) — w(w) sup;¢ r w(¢, £, ) is subharmonic in U. First note
that since F' separates z from FE in 2, we must have Cap F' > 0, see
Corollary 3.6.4 of [10]. Then, for nearly every { € F, lim,_,¢ u(w) = 1,
see [10, Theorem 4.3.4]. Moreover, since £ ¢ E and v is upper
semi-continuous, limsup,, . v(w) < v(§) < w(¢, E,Q). Therefore,
limsup,, ¢ f(w) < 0. On the other hand, if { € OU\F, then £ € 90Q\ E;
therefore, since u(w) > 0, and since by definition, lim sup,, ¢ v(w) <0,
we again have limsup,, . f(w) < 0. So by the extended maximum
principle for subharmonic functions, [10, Theorem 3.6.9 (b), f(w) <0
for w € U. The conclusion is reached by taking the supremum over all
candidates v. o
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2.3. Noninner elliptic self-maps. Recall the exhaustion €2,
defined in subsection 2.1, and that w,,(z) = w(z, Fy,, Q).

Lemma 2.3. Assume that the elliptic self-map of the disk ¢ is
not inner. Then, there is an integer N > 1 large enough such that
wn(2) <1 for every z € Q. In particular,

(2.3) a = sup wy(¢) < 1.
(eF

Proof of Lemma 2.3. This argument is very similar to the one in [5,
page 506]. We reproduce it here for convenience. Since ¢ is not inner,
there is a set of positive measure A C W (recall W C 9D is the set
of full-measure where all the iterates of ¢ are well defined) such that
¢*(A) C D. By Lindel6f’s theorem [4, page 75], it is well known that
the radial limits of ¢ coincide with its nontangential limits. Therefore,
for ¢ € 0D, we define the nontangential region:

1+ |p|
1—|p|

Q) ={zeD:lC~2| <2711~ |)]

(notice that p € T'(¢) for all ¢ € OD).

By restricting ourselves to a subset of A of positive linear measure,
we can assume that sup{|¢(z)|: 2 € T'(¢)} < s < 1, for some 0 < s < 1.
By uniform convergence of ¢,, on sD, there is an N € N such that
p(p,dn(2)) < to for all z € T'(¢) and all ( € A. Thus, the region
G = U¢eal'(¢) is a Jordan domain contained in 2. The boundary of G
is locally Lipschitz, so harmonic measure on G is absolutely continuous
with respect to linear measure (this follows from McMillan’s sector
theorem, see [9, Section 6.6]). Hence, w(z, A,G) > 0 for z € G. By the
maximum principle, then, w(z, A, Q) > 0 as well, and since w(z, -, Qn)
is a probability measure on 0Qy, we must have w(z, Fnx,Qn) < 1 for
z € Qn (recall Fy C D). O

Proposition 2.4. Assume that the elliptic self-map of the disk ¢ is
not inner. With the notations above,

(2.4) wn(p) — 0, asn — oco.
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Proof. We apply Lemma 2.1 with E = Fy (where N and « are as in
Lemma 2.3), and 9y := ¢n_1)k, k = 1,2,3,..., instead of ¢, to obtain

w(z, 9 (FN), D\ ¥ (Fi)) < w(¥n(2), Fy, D\ Fuy).

For notational simplicity, let Ty = Fni(n—1)x and Gy = Qn i (N-1)k-
Then, by (2.1), T}, C ¢ ' (Fy) and ¢ '(Fx) N Gy, = @. Therefore, for
z € Gy,

w(z, ¥ (Fn), D\ ¢ H(Fv)) = w(z, T, Gi).-
Taking the supremum for z € Ty, which is a subset of G, by (2.2),
and since by (2.1) ¥g(Tk—1) C F1, we obtain:

sup w((, Tk, Gi) < sup w((, Fn, Q) =a < 1.
C€ETk_1 ¢er

Now, we use the conditional probability estimate of Lemma 2.2, for
n > N,

wn(p) < a sup w(¢, Fr, Q) < a.
(eFN

Likewise, for n > 2N — 1,

wn(p) < a sup w((, Fr, Q)

CeEFN
< a sup w((, Fan,Qan) sup w((, Fr, Qay) < o
(eFN (EFaN

More generally, for n > N + k(N — 1),
wn(p) <af —0

as k tends to infinity. Therefore, (2.4) is proved. O

2.4. Proof in the elliptic case. Observe that, given a point { € W,
if ¢;,(¢) € D, then ¢ ,.(¢) = ¢x(#,(C)) — p, as k — oo. Thus, if the
sequence ¢;, does not converge pointwise to p, there is a set A C W
of positive linear measure such that, for any ¢ € A, |¢%(¢)| =1 for all
n=1,2,3,.... We claim that

(2.5) 0 < w(p, A, D) < wp(p),
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but letting n tend to infinity and using (2.4) we thereby reach a
contradiction.

To prove (2.5), we use the fact that, although F,, may not separate
A from p, it at least does so “radially.” Fix an integer n, and for
every ¢ € A, since |¢%(¢)| = 1, we can find 0 < r({) < 1 so that
p(én(r¢),p) > to for r(¢) < r < 1. In particular, the slit S, = [r({)¢, {)
does not intersect £2,,. So, letting A = UceaSe, we find that

(2.6) w(p, A, D\ A) < wn(p),

as one can see from Lemma 2.2, for instance.

Finally, the proof of (2.5) is completed if we can show that

To see (2.7), let v(z) be a subharmonic candidate for w(z, 4,D). By
the maximum principle, v(z) < 1 for all 2 € D. So v is also a candidate
for Ain D\ 4, ie., v(z) <w(z,4,D\ A), and (2.7) is proved by taking

the supremum over the v’s and evaluating at z = p.

This completes the proof of Theorem 1.2 in the case of an interior
Denjoy-Wolff point. O

2.5. Remarks. We have just shown that the pointwise almost
everywhere convergence on D of the iterates to the Denjoy-Wolff point
holds whenever the self-map is elliptic and noninner. As mentioned
above, this fact at least in the case when the derivative of ¢ at p is
nonzero was already contained in [5, 6]. However, there the main tool
was the Koenigs’ map o : D :— C, which solves the functional equation

0 ¢(z) = ¢'(p)o(2),

and the following dichotomy was proved: either ¢ is not inner and then
o has finite nontangential limits (in H?(D)) almost everywhere on 0D,
or ¢ is inner and then the radial maximal function of ¢ is infinite almost
everywhere on 9D. In the case when ¢'(p) = 0, one would have to use
a different conjugating map due to Béttcher, which is not even well
defined in D, but the logarithm of its modulus is, see [3, page 33].
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What we have done here is purge the map o from the arguments. We
will see below in the hyperbolic and parabolic cases, that conjugations
will again be useful.

3. The case when the Denjoy-Wolff point is on the boundary.
When the Denjoy-Wolff point w is on dD it is customary to change
variables with the Mdbius transformation i(w + z)/(w — z) so that ¢
becomes a self-map of the upper half-plane H with the Denjoy-Wolff
point at infinity. Julia’s lemma [4, page 57] then implies that ¢ can be
written as

(3.1) 6(2) = Az + p(=)

for some A > 1 and some function p, with Imp(z) > 0 for all z € H,
such that
n.t. — lim —= =0.
z—o0 2
In particular, the horodisks H(t) = {z € H : Imz > t}, t > 0, are
mapped into themselves, and the map ¢ is classified as hyperbolic if
A > 1 and parabolic if A =1.

The proof of Theorem 1.2 in the elliptic case hinged on the fact that
for noninner self-maps of the disk there cannot exist a set £ C 0D of
positive linear measure on which the nontangential limits ¢}, of each
iterate ¢, all have modulus one. This, however, is quite possible for
noninner self-maps of hyperbolic and parabolic type, as the following
example shows.

Example 3.1. Let G be the upper half-plane minus the slits
L,={z=z+iy:2=2n0<y < 2"} forn=123,..., and
minus the rectangle R = {z =z +iy: -1 <z <1,0<y<1}. The
domain G is simply connected, so let o be the Riemann map of H onto
G, such that n.t. — lim, ,o, 0(2) = co. Defining ¢(z) := o 1(20(2)),
one can check that ¢ is hyperbolic, noninner, and all of its iterates
have zero imaginary part on 0~!(L;) C R. A parabolic example can
be obtained by letting L, = {z = 2+ iy : z = n,0 < y < 1} for
n=1,23,...,and R={z=z+4+iy:2<0,0<y<1}.

Therefore, the proof in the hyperbolic and parabolic cases must
necessarily be different. We begin with the hyperbolic case.
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3.1. The hyperbolic case. We need the following conjugation due
to Valiron; see also [2] for a recent exposition of this result.

Theorem 3.2 (Valiron). Assume ¢ is as in (3.1) with A > 1, i.e.,
¢ 1is hyperbolic. Then, there is an analytic map o with c(H) C H such
that n.t. —lim, o 0(2) = 00 and actually o is isogonal at infinity, i.e.,
n.t. — lim,_, o, Argo(z) = 0, which satisfies the functional equation:

oo¢p=Ao.

Since o is bounded analytic (after a change of variables), it has
nontangential limits almost everywhere on the real axis. We let o*
be the boundary function. By the Riesz theorem ([4, page 205]) the
set Z = {z € R: o*(z) = 0} has measure zero. Suppose z € R\ Z is
a point at which o*(z) and all the iterates ¢ (z) are well defined, and
assume that

linn_1>i£f |7 (z)] = R < oo.

Choose a sequence of integers n for which |¢}(z)] < 2R. For each
such n, define v,(t) = ¢n(x + it), for ¢ > 0. Then, ~, is a curve
which connects the ball B(2R) = {|z| < 2R} to infinity. By the Riesz
theorem, we also have that the boundary function o*(z) is finite almost
everywhere. In particular, there exists an s > 2R such that [o*(s)|,
|o*(—s)| < oco. Therefore, if I' = {z € H: |z| = s}, then

(3.2) M :=sup|o(2)] < .
zel

Let z,, = ¢ (z+it,) be a point in I'N7y,,, which is necessarily nonempty.
Then,
M 2 |o(zn)| = |o(¢n(x + itn))| = A™|o(z + ity)]-

Therefore, since A > 1, lim, o |o(z + it,)] = 0. However, since
lim; 4o o(x 4 it) = oo, and |o(z + ét)| > 0 for all ¢ > 0, we must
conclude that ¢, tends to 0, i.e., that c*(z) = 0. But this contradicts
our hypothesis that = ¢ Z.

In conclusion, we find that, except for a set of linear measure zero,
at all points z where the iterates ¢ (z) are well defined we have
lim,, o0 |@) (2)| = 00, which proves Theorem 1.2 in the hyperbolic case.
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3.2. The parabolic nonzero-step case. The counterpart of
Valiron’s theorem in the parabolic nonzero-step case is the following
result of Pommerenke.

Theorem 3.3 (Pommerenke [8, Theorem 1 and (3.17)]). Let ¢ be
an analytic self-map of H of parabolic type as in (3.1) with A =1, and
let {zn = ¢n(1)}22, be a forward-iteration sequence. Then,

Im 2,41
Im z,

as n tends to infinity.

Moreover, if ¢ is nonzero step, i.e., p(zn,Znt+1) 4+ Sco > 0, letting
Zn = Up + tv, and considering the automorphisms of H given by
M,(z) = (2 — un)/vn, the normalized iterates M, o ¢, converge
uniformly on compact subsets of H to a function o which satisfies the
functional equation

co¢p=0+b,
where
(3.3) bi= lim —mL " g,
n— oo Un

The conjugation o is a self-map of H by construction and Pom-
merenke also shows that n.t.—lim,_,,, Im o(z) = 400 (and actually the
region of convergence can be extended to a tangential one). However,
this is not enough information about the behavior of ¢ at infinity; in
particular, some information on the behavior of Reo(z) at infinity is
necessary if one wants to repeat the same argument as in the hyperbolic
case.

Instead we modify the argument slightly. Let o be the conjugation of
Theorem 3.3 and assume without loss of generality that the constant b
in (3.3) is positive, so that u,, is eventually an increasing sequence and
since v, > vgp:

(3.4) lim w, = +oc.

n—o0
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Let o* be the boundary function. Suppose « € R is a point at which all
the iterates ¢* (z) are well defined, and where o*(z) is finite. Assume
also that

linn_1>i£f | (z)] = R < oo.

Instead of considering the half-line {z = z+it,t > 0}, let z, = ¢, (i) =
Up, + Uy, and define P to be the polygonal curve

P =[z,i]U[i,z1]U[z1,22]U---.

At one end, P tends nontangentially to z. Near infinity, P is a simple
curve tending to infinity. Moreover, by (3.4), Rez — 400 as z tends
to infinity along P. Also, as Pommerenke remarks, in [8, Remark 1],

(3.5) L0 as n — oo,
Up

so the argument of z tends to zero as z tends to infinity along P.

Choose a sequence of integers n so that |¢f(z)] < 2R, and let
Yn = ¢n(P). By construction, if z tends to z along P, then ¢,(z)
tends to ¢ (z) and hence intersects the ball B(2R). If z tends to
infinity along P, we claim that

(3.6) lim |¢,(z)| = +o0.

P>z—00

In fact, find k so that z € [z, zk+1]; then by Schwarz’s lemma,

P(Pn(2)s 2k1n) < p(z,2k) < p(z1,22) < 00,

s0 ¢,,(2) tends to infinity.

Also, we claim that

(3.7) m:= Zlglf) Reo(z) > —o0.

This holds on [z,i] by our choice of z. Also, for k = 1,2,3,...,
o(zr) = o(pr(i)) = o(i) + kb, and for z € [zg, 2k+1], Schwarz’s lemma
implies

p(0(2), (i) + kB) < p(z, 24) < p(e1, 22) < 00,

which yields (3.7) at once.
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Find s > 2R such that |0*(s)|,|0*(—s)| < oo, which can be done
since o is a selffmap of H. Then each curve 7, must intersect the
circle {|z| = s} at a point of the form ¢, (w,) for some w, € P. Also,
SUp|, = [0(2)| = M < o0, so by (3.7),

M > |o(¢n(wy))| = |o(wy) + nb| > Reo(wy) + nb > m + nb — 400,

which is a contradiction.

Thus, except for a set of linear measure zero, at all points x where the
iterates ¢* (z) are well defined, we have lim,_, |¢%(z)| = oo, which
proves Theorem 1.2 in the parabolic nonzero step-case.

4. Remarks about the parabolic zero-step case. Here we col-
lect some remarks on the parabolic zero step-case, or, in Pommerenke’s
terminology, the identity case. Recall that these are analytic self-maps
¢ of the upper half-plane H that can be written as in (3.1) with A =1,
and such that the hyperbolic steps p(zn, zn+1) of the forward iteration
sequence z, = ¢, (i) tend to zero. We have already mentioned in the
introduction that the fact that the hyperbolic steps tend to zero does
not depend on the choice of the starting point i. Moreover, given any
point z € H, we also have that p(¢,(z), ¢n(i)) — 0, as n tends to infin-
ity. This also follows from Pommerenke’s Theorem 1 [8]. In fact, with
the notations of Theorem 3.3, the normalized iterates M, o ¢,, converge
uniformly on compact subsets of H to ¢ in this case. So
(4.1)

P(Bn(2), Bn(i)) = p(My 0 dn(2), My © ¢ (i) = p(My, © ¢ (2),7) — 0.

It also follows from (3.1) that for any given z € H the sequence of
imaginary parts Im ¢, (z) is strictly increasing, hence it either has a
finite limit or it tends to infinity. Again, this is a property that does
not depend on z, and in the parabolic nonzero step-case, both cases
arise. In [7], we left open the problem of producing examples in the
parabolic zero-step case as well. However, we now realize that this
question can be easily answered.

Proposition 4.1. If ¢ is a parabolic zero step self-map of H as
above, then given z € H,

lim Im ¢, (2) = 4o0.

n—oo
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The proof of this proposition is immediate because otherwise one
would have
U = lim Im ¢, () < o0
n—r o0
and by (4.1) lim, o Im ¢, (2) = £ as well, for any z € H, which
contradicts the fact that Im ¢, (z) increases as soon as Im z > £,

REFERENCES

1. P. Bourdon, V. Matache and J. Shapiro, On convergence to the Denjoy- Wolff
point, Illinois J. Math., to appear.

2. Filippo Bracci and Pietro Poggi-Corradini, On Valiron’s theorem, in Future
trends in geometric function theory, University of Jyvaskyla, Department of Math-
ematics and Statistics 92 (2003), 39-55.

3. Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext:
Tracts in Mathematics, Springer-Verlag, New York, 1993.

4. Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen
Wissenschaften, Band 162, Springer-Verlag, New York, 1970 (translated from the
second German edition by Phillip Emig).

5. Pietro Poggi-Corradini, The Hardy class of Koenigs maps, Michigan Math. J.
44 (1997), 495-507.

6. , Norm convergence of normalized iterates and the growth of Koenigs
maps, Ark. Mat. 37 (1999), 171-182.

7. , Backward-iteration sequences with bounded hyperbolic steps for ana-
lytic self- maps of the disk, Rev. Mat. Iberoamericana 19 (2003), 943-970.

8. Ch. Pommerenke, On the iteration of analytic functions in a halfplane, J.
London Math. Soc. 19 (1979), 439-447.

9. , Boundary behaviour of conformal maps, Grundlehren der Mathema-
tischen Wlssenschaften 299, Springer-Verlag, Berlin, 1992.

10. Thomas Ransford, Potential theory in the complex plane, London Mathemat-
ical Society Student Texts 28, Cambridge University Press, Cambridge, 1995.

DEPARTMENT OF MATHEMATICS, CARDWELL HALL, KANSAS STATE UNIVERSITY,
MANHATTAN, KS 66506
Email address: pietro@math.ksu.edu




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


