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NOTES ON LEXIMORPHIC SPACES

ELLEN MIR, J. TODD LEE, AJA JOHNSON AND CRISTA ARANGALA

ABSTRACT. A leximorphic space is a linearly ordered
topological space (LOTS) with first and last points that is
isomorphic to its Cartesian product given the lexicographic
ordering. In this paper, examples of both countable and
uncountable leximorphic spaces are detailed. Cardinality
and consistency conditions characterizing leximorphic spaces
are described. Finally, this paper settles an open question
concerning the connectivity of leximorphic spaces.

1. Introduction. A linearly ordered topological space (LOTS) S is
a linearly ordered set with the order topology. Throughout this paper,
M will be a LOTS with distinct first and last points, denoted 0 and 1,
respectively.

M x M will denote the set of ordered pairs of elements of M, with
the lexicographic ordering. M x M is also a LOTS with first and last
points. More generally, for each natural number n, M" is the LOTS of
n-tuples of elements of M, given the lexicographic ordering.

If S and S’ are two LOTS, amap f : S — S’ is order-preserving if, for
all z,y € Ssuch that z < y, f(z) < f(y). f is nonorder-destroying if for
all z,y € § such that z <y, f(z) < f(y) or f(z) = f(y) (f(z) < f(y))-
S is said to be isomorphic to S’ (also called order-isomorphic) if there
is an order-preserving, onto function f from S to S’, with the function
f called an isomorphism (or order-isomorphism). The inverse of such
a function is also an isomorphism, so we would simply say that S and
S’ are isomorphic. Two LOTS are isomorphic if and only if they are
homeomorphic topological spaces [9].

Standard notation for intervals will be used. In particular, if z,y € M
with z < y, [z,y] = {m € M | z < m < y} is a closed interval. If
A,B C M, then A precedes B (A < B)ifa<bforalla € Aandb € B.
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For each z € M, define the fiber V, by {z} X M. Note that each fiber
V; is isomorphic to M.

In 1981 and 1982, Alexander and Plaut introduced the idea of
leximorphic spaces:

Definition 1.1. A LOTS M is lezimorphic if M and M x M are
isomorphic.

2. Cardinality results. Before presenting examples of leximorphic
spaces, it is important to identify some classes of ordered spaces which
cannot be leximorphic.

Theorem 2.1. If M is finite, then M is not leximorphic.

Proof. Let M = {z1,23,...,2,}. The cardinality of M is the finite
number n, and the cardinality of M x M is n2. Since M has distinct
first and last points, n is at least 2. So there is no onto function from
M to M x M. a

Lemma 2.2 [4]. If S is a well-ordered set, then no proper initial
segment of S is isomorphic to S.

Theorem 2.3 [1]. If M is well-ordered, then M is not leximorphic.

Proof. The fiber V} is an initial segment of M x M, and thus by
Lemma 2.2, V; is not isomorphic to M x M. As noted earlier, fibers
are isomorphic to M, giving M not being isomorphic to M x M. ]

Definition 2.4. A set A is order dense in a LOTS S means that,
for each pair a,b € S such that a < b, there exists a ¢ € A such that
a < ¢ < b. Note that, if A =S, we simply say S is order dense.

The notion of order dense combined with countably infinite is quite
restrictive, as is detailed in the following known result.
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Theorem 2.5 [9]. If M and M’ are both countably infinite and order
dense, then M and M' are isomorphic.

Corollary 2.6. If M is countably infinite and order dense, then
every closed interval of M (as a subspace with the order topology) is
isomorphic to M.

Proof. If [a,b] is a closed interval in M, then [a, b] is also countably
infinite and order dense with respect to itself as a subspace with the
order topology. Thus, [a, b] is isomorphic to M. o

A sub-interval condition implied by this corollary will be explored in
more depth in the next section.

Alexander [1] describes an isomorphism from the set of dyadics in
[0,1] C R to its product and notes that this means that all countably
infinite, order dense spaces with distinct first and last points are
leximorphic, since this closed interval of dyadics is countably infinite
and order dense. Theorem 2.5 states that all such LOTS are isomorphic.
An even simpler proof can be had, but a general constructive approach
is also interesting.

Theorem 2.7 [1]. If M is countably infinite and order dense, then
M s leximorphic.

Proof. First, a nonconstructive proof is given. Notice that, if M is a
countably infinite, order dense, closed interval, then so too is M x M.
By Theorem 2.5, all such LOTS are isomorphic, and more specifically,
M is isomorphic to M x M.

Now let us explore a general constructive proof. For each m € M,
a closed interval I,, is constructed and mapped to the fiber V,, =
{m} x M. (Unfortunately, no independence from Theorem 2.5 can be
claimed as Corollary 2.6 is used to guarantee the existence of these
maps.) We use the fact that each V,, is isomorphic to M to build an
isomorphism f: M — M x M.
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Let @ ={q0 =0,¢1 = 1,¢2,43,--- ,qn,--- } be any well-order of the
elements of M indexed with the natural numbers. Let a,b € M such
that 0 < a < b < 1, and define Iy = [0,a] and I; = [b,1]. Since the
fibers are isomorphic to M, let f(Iy) = Vo = Vg, and f(I1) = Vi =V,
be detailed by the isomorphisms guaranteed by Corollary 2.6.

We have now built Iy and ;. We now inductively construct Iy for
k > 2 as follows: Let ¢* be the least element in Q \ Uf;olll such
that ¢* < ¢! if and only if g5 < ¢ for all | = 0,1,... ,k — 1. Let
q’ﬂc be the least element in @ \ U;:Olll such that [qﬁ,qlg] NI # @ for
1=0,1,...,k—1. Let I, = [q’gt,q,’g;] and define f(I;) = Vg,. Notice
that by construction, f is order-preserving, well-defined (since M is
order dense), and onto. |

Alexander [1] also conjectures with a picture that the subspace of
rationals in the Cantor space is leximorphic. This would give an
example of a leximorphic space which is not order dense. When
speaking of the Cantor space, we mean the unit interval of the reals
with successive middle thirds removed. The countable Cantor set and
the unit interval of rationals can both be included in a large family
of countably infinite LOTS that are all leximorphic. To generate this
family, some machinery is needed.

Definition 2.8. M has a dense n-partition, n > 0, meaning that
there exists a list of sets {Ag, A1, ..., An} such that:

(1) 4o = {0,1},

(2) A;NA;j=0,forall0<i<j<mn,

(3) Ui = M,

(4) A; is order dense in M, for all 1 <37 < n.

Theorem 2.9. Suppose M and M' are countably infinite with
{Ag,...,An} and {Aj,..., A} respective dense n-partitions. Then
there exists an isomorphism f: M — M’ such that f(A;) = A} for all
0<s<n.

Proof. For n = 1, this is Theorem 2.5. For n = 2, let P, =
{p1,p2,...}and Q1 = {q1, g2, - . . } be any well-ordering of the elements
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of A and A, respectively. Likewise, construct well-ordered sets P; and
Q' for A} and A}. To define an isomorphism from M to M’, start with
f(0) =0"and f(1)=1".

Let f(p1) = p}, and define Py = P| \ {p}}. ¢1 is between 0 and p; or
p1 and 1. If the first case holds, let 1¢’ be the first element of @} that
lies between 0" and p}. In the latter case, let 1¢’ be the first element
of @ that lies between p} and 1’. In either case, the existence of such
a point is guaranteed by the fact that A/, is order dense in M’. Define
fla1) =14, Q2 = Q1 \ {1¢'}, and let Ry = {0,1,p1,q1}-

At stage k, all points Ry = {0,1} U {p1,... ,pk—1t U{q1,- - s qr—1}
have been mapped in an order-preserving manner, and we want to map
pi and gi to appropriate points in the sets P;, and Q). Ry is finite and
contains 0 and 1; thus, there exist points z,y € Ry such that ¢ < px < y
and there is no point in Ry, that is between x and y. Since Aj is order
dense, there exist points in Pj, between f(z) and f(y); let xp’ be the
first of these in Pj,. Define f(pr) = xp" and Py, = P\ {xp'}. Perform
a similar procedure for mapping g to a point g’ using Ry U {px} in
selecting the bounding points x and y.

By construction, f is order-preserving, and by exhaustion, f is well-
defined over the domain. It remains to be shown that f is onto.
At any stage N > 2, let p!, be the first point of P). Since Ry is
finite and contains 0 and 1, there exist points z,y € Ry such that
f(z) < pl, < f(y) and no point of Ry lies between = and y. f has
been defined to be order-preserving over Ry; thus, no point of f(Ry)
lies between f(z) and f(y). Ai is order dense in M; thus, there exist
points in A; between xz and y, and an infinite number of them are in
P;. The first of these in P; will map to p/,. A similar argument applies
to the first point of Q. The conclusion is that, at any stage, the first
points of the remaining sets in M’ are guaranteed to be in the range of
f. Thus, the process exhausts all points in M’.

For dense n-partitions where m > 2, the above process is easily
extended by induction, using the fact that if A; and Ay are order
dense, then A; U As is also order dense. o

How does this theorem help? With it, the idea of a generalized Cantor
space can be defined.
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Definition 2.10. Let M be countably infinite with a dense n-
partition {Ag, A1,...,A,}. Create a new space C' by starting with
M and, for each set A;, 1 < i < n, choose m; > 1 and then replace
each point p € A; with points p; < p2 < --- < pm,. Any space C
constructed as such we will call a countable generalized Cantor space
(CGCS) of type (my1,ma,...,my). Note that the first and last points
Ao = {0, 1} remain untouched.

Corollary 2.11. If C and C' are both CGCS’s of type (my, ma, ...,
my,), then C and C' are isomorphic.

Proof. Let C and C' be CGCS’s constructed from respective
spaces M and M’ with respective dense n-partitions {Ay,..., A,} and
{A4§,...,A,}. Theorem 2.9 gives the existence of an isomorphism
[+ M — M’ such that f(A;) = AL, for all 0 < ¢ < n. It is straightfor-
ward to point-wise define an isomorphism g : C — C’; consider a point
zeC. Ifx e Ay = {0,1}, let g(x) = f(x). For all other points, for each
z € C, there exists a p € A; such that z = py; let g(z) = f(p)r- The
resulting isomorphism g is a composition of reversing the construction
from C to M, following the isomorphism f from M to M’, and then
following the construction up to C’, carefully matching replacement
indices to maintain order. O

It is worthwhile to reflect on some of the equivalence classes formed
over the CGCS family. When constructing a CGCS from a space M,
the order of indexing of the partition sets (other than Ag) is unimpor-
tant beyond matching the corresponding type numbers. Furthermore,
nothing is gained by having multiple partition sets that have the same
type number, as each partition set (other than Ag) is order dense in
M. An equivalent space is constructed by having just one partition set
corresponding to a given unique type number. Thus, no spaces (up to
isomorphism) are lost by reducing our view to the following canonical
spaces.

Definition 2.12. Let C' be a CGCS. It may be assumed C is
constructed from a space M with a dense n-partition such that C has
type (my,ma, ... ,my,) with m; < mg < --+ < my,.
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This CGCS family contains several familiar spaces. If C is of type (1),
then C' is isomorphic to the unit interval of rationals with the usual
ordering. If C is of type (2), then C is isomorphic to the endpoint
subspace of the Cantor space. If C'is of type (1, 2), then C is isomorphic
to the rational subspace of the Cantor space. And finally, it is important
to note that any CGCS that has a type number of 2 or greater is not
order dense as a space, and if it has a type number of 3 or greater,
then it will have a countably infinite number of isolated points. Many
of these spaces are included in a large subfamily of countable spaces
that are leximorphic.

Theorem 2.13. If C' is a CGCS of type (1) or (1,2,... ,my,), then
C is leximorphic.

Proof. If C' is of type (1), it is isomorphic to the underlying space M
from which it was constructed, and in turn, M is the previously
discussed countably infinite, order dense space (Theorem 2.7).

Suppose C' is of the type (1,2,...,m;,). The goal is to show that
C x C is also a CGCS of type (1,2,...,m,;,), and thus isomorphic to
all such CGCS'’s, including C. This can be done by finding a countably
infinite space M’ with a dense partition {Af, A},..., A} from which
C x C can be constructed as a CGCS of type (1,2,... ,m,).

Let M be a countably infinite LOTS with dense partition {Ay, Ay, .. .,
Ay} from which C can be constructed. Start with the space C' x M;
this is probably the most natural initial candidate for M’ but there is a
problem. There are gaps between points in C' that create gaps between
the corresponding fibers in C' x M. To fix this, we will combine the
last points and first points of these consecutive fibers. For every point
p € A;, 2 < i < n, replace each pair of points {(pk, 1), (Pr+1,0)},
1 <k < m; — 1, with a single point we will call (p},,1). The resulting
LOTS M’ is not equivalent to M x M or any other cartesian product.
However, it is a space from which C' x C can be constructed.

Define the following partition sets for M’:

A6 = {(070)7 (17 1)}7

Ay ={(z,y) e M' |y € A1} U{(0,1),(1,0)}
U{(p1,0) |p€ A, 1<i<n}
U{(pmial) |p€Aia 1 S’LSTL},
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Ay ={(z,y) € M | y € Ay}
U{(p,1) |pe A, 2<i<n, 1<k<m;—1}, and
Ai={(z,y) e M' |y A}, 2<i<n.

All of the replaced points of M x {0, 1} are in A}. All the nonreplaced
points of M x {0,1} are in Aj U A}j. Otherwise, these sets are
completely determined by the partition sets of M. This readily gives
that {Af, A},..., A} forms a partition of M'. M’ is countable since
C x M is countable. All that remains to be shown is that C' x C can
be constructed from M’, and that the partition sets for M’ are each
order dense.

To see how C' x C' can be constructed from M’, note that almost all
of the points constructed from the Als map naturally to corresponding
points in C' x C. The exceptions are the points (p},1) in A5. The ps
are precisely the single points used to replace the consecutive points
found in C x M. This replacement is done to allow M’ to be order
dense. And by being in A}, they are returned to being consecutive
points in the Cantor construction.

It is easy to show that each A, i > 1, is order dense in M’. Let
(a,b) < (¢,d) in M', and fix 1 <4 < n. There are three situations to
consider:

(1) a =c. Let e € A; N (b,d). Then
(a,b) < (a,e) < (c,d)
and (e, f) € AL
(2) (a,c) # @. Let e € (a,c) and f € A;. Then
(a,b) < (e, f) < (¢,d)

and (e, f) € A}.

(3) (a,¢) = @ and a # c¢. Then a = py and ¢ = pi1 for some py.
Thus, b < 1 or d > 0 (or else (a,b) = (¢,d) in M'). If b< 1, lete=a
and f € A;,N(b,1). If d > 0,let e=cand f € A; N (0,d). Then

(a,b) < (e, f) < (c,d)
and (e, f) € AL
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We have shown that M’ is a countably infinite LOTS with a dense
partition that can be used to generate C' x C'. Thus, C x C' is a CGCS
of type (1,2,...,m,) and is isomorphic to C. O

Remark 2.14. CGCS’s of type (2,...,m,) are not leximorphic. If
A; is not type 1, then each point in C'\ {0,1} is in a consecutive pair.
However, there are points in (C' x C) \ {(0,0),(1,1)} which are not
elements of consecutive pairs.

In particular, this means that the set of endpoints of the Cantor set
(a CGCS of type (2)) is not a leximorphic space.

This theorem gives a variety of countably infinite subspaces of the real
unit interval that are leximorphic, including spaces that aren’t order
dense and that have isolated points. Alas, as with the finite spaces,
bigger subspaces of the unit interval are not possible. When moving
from countably infinite to uncountable spaces, Alexander puts a limit
to the possibilities with the following result:

Theorem 2.15 [1]. If M is uncountable and separable, then M is
not leximorphic.

The short argument is that, if M is uncountable, M x M is not
separable, and separability is preserved by a homeomorphism. This
begs several questions, the first of which will be addressed in Section 5:

Question 1. Are there uncountable leximorphic spaces?

Question 2. Is Theorem 2.13 a characterization of all leximorphic
subspaces of the unit interval?

3. Consistency and product results.

Theorem 3.1. M is leximorphic if and only if all powers M™ of M,
where n 1s a natural number, are isomorphic.
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Proof. Suppose M is leximorphic, and let f : M — M x M
be an isomorphism. Define g : M? — M® = M x (M x M) by
g(z,y) = (z,f(y)). Then g is an isomorphism from M? to M?3. By
induction, we can define isomorphisms between M™ and M™t! for all
n > 1. Thus, M is isomorphic to all its powers, and all its powers are
isomorphic to each other. On the other hand, if all the powers of M
are isomorphic, then in particular, M is isomorphic to M2, and M is
leximorphic. ]

Definition 3.2. M is consistent if each closed interval in M is
isomorphic to M.

Note that if M is consistent and contains more than two points, then
it is infinite and order dense. Corollary 2.6 can be restated as countably
infinite, order dense spaces with first and last points are consistent. The
property of consistency was used strongly in the constructive proof
of Theorem 2.7 and can be used to generate several nice results for
products.

Lemma 3.3. If M is consistent and M 1is isomorphic to M™
(M = M"™) for some natural number n > 2, then M is leximorphic.

Proof. Let M be consistent and M = M™ for some natural n > 2.
If n = 2, M is leximorphic by definition, so suppose n > 2. Let
f: M — M™ be an isomorphism.

Let I = {0} x M™ ! c M™. I is isomorphic to M" ! and is a closed
interval in M™, so f~1(I) is a closed interval in M. By consistency,
f71(I) = M. Thus, M = M"~!. Repeating this process n — 2 times,
we conclude that M = M?2. O

Theorem 3.4. If M is consistent and M™ = M™ for some distinct
natural numbers m and n, then all powers of M are isomorphic.

Proof. Without loss of generality, assume m < n. If m =1, then M
is leximorphic by Lemma 3.3. Then by Theorem 3.1, all powers of M
would be isomorphic.

So assume 2 < m < n, and let f : M™ — M™ be an isomorphism.
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Let V be a one-dimensional fiber in M™. That is, for some fixed z,
Toy .o Ty in M,V ={(z1,22,... ,Tm_1,Y) 1y € M}.

If f(V) is not contained in a one-dimensional fiber of M™, then it
contains a two-dimensional interval of the form R = {y1} x {y2} x -+ - x
{Yn—2} X [a,b] x M. By consistency, [a,b] = M, and thus R = M?.
fL(R) is a closed interval contained in V. V is isomorphic to M, so
f~Y(R) = M by consistency. So, in this case, M is leximorphic.

If f(V) is properly contained in a one-dimensional fiber I of M™,
then f~!(I) contains a two-dimensional interval T of M™ containing
V. T is isomorphic to M2. f(T') is a closed interval in I, so f(T') = M
by consistency. Since M x M =T = f(T) = M, M is leximorphic.

This narrows the cases to the following: For M not to be leximorphic,
f must map each one-dimensional fiber of M™ onto a one-dimensional
fiber of M™. Such an f can be used to define an isomorphism
g:M™ 1 — M" 1 asfollows: g(w) = z, where f({w}xM) = {z} x M.

In summary, if M is consistent, and M™ = M", then either M is
leximorphic, and we’re done, or M™~1 = M"~!. If we continue this
process, either we will conclude that M is leximorphic at some stage
1<k <m—1 or we will conclude that M = M™~™*1, But if this is
the case, then M is leximorphic by Lemma 3.3. u]

The proof of Theorem 3.4 uses a technique first used by Alexander
[1] to prove a special case: If M is consistent and M? is leximorphic,
then M is leximorphic.

As demonstrated by the rational Cantor set, not all leximorphic
spaces are consistent. Without consistency, there are still some product
conditions which imply leximorphic.

Theorem 3.5. If M™ = M™ for some natural numbers m and n
such that m < n, then M™ =2 M&E+TDn—km for ol natural numbers
k>0.

Proof. M™ = M™ = M™ x M™™ = (M™ x M™ ™) x M"™ =
M?n—™_ This process can be continued any finite number of steps k. O



1268 E. MIR, J.T. LEE, A. JOHNSON AND C. ARANGALA

~

Corollary 3.6. If M™ = M™ for some natural numbers m and n
such that n = (k+2)/(k+ 1)m for some natural number k > 0, then
M™ 1is leximorphic.

Proof. If n = (k+2)/(k+1)m for some natural k& > 0, then
(k+1n —km = (k+2m — km = 2m, and M™ = M?*™ by
Theorem 3.5. O

4. Connectivity results. Recall that an ordered space is Dedekind
complete if each nonempty subset with an upper bound has a least
upper bound. A linearly ordered topological space X is connected if
and only if X is Dedekind complete and order dense [9].

So far, the only examples of leximorphic spaces described have been
countable, and thus not connected. The following was an open question
posed by Alexander [1]: Can a lezimorphic space be connected?

The main result of this section is the following;:

Theorem 4.1. If M is leximorphic, then M is not Dedekind
complete.

This immediately leads to a negative answer to Alexander’s question:
Corollary 4.2. If M is leximorphic, then M is not connected.

The proof of Theorem 4.1 makes use of the following theorem due to
Plaut:

Theorem 4.3 [7]. A linearly ordered topological space M 1is lexi-
morphic if and only if there exists a nonorder-destroying onto function
p: M — M such that, for each m € M, p~'(p(m)) is isomorphic to
M.

Theorem 4.3 guarantees a function (a Plaut function) that maps
isomorphic copies of M onto points of M in the “correct” order. This is
worth reflection, since it pinpoints how leximorphic spaces are “almost”
consistent. With Theorem 4.3, a proof of Theorem 4.1 is now given:
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Proof of Theorem 4.1. Suppose that M is a leximorphic space. Let
A={xe M| p(x) <zorthere exists ay € M (xz <y and p(y) <y)},

where p is a Plaut function guaranteed by Theorem 4.3. Note that A
is the set of all elements that “shift” left under p, as well as all those
elements preceding any element which shifts left.

The set A is nonempty because it contains the closed interval mapped
by p to the first element 0 of M. The complement M \ A is nonempty,
since 1 ¢ A.

Any point of M \ A is an upper bound of A. It will be shown that A
does not have a least upper bound. By way of contradiction, suppose
that A has a least upper bound 7. If v € A, then v must be the last
point of A. If v € M \ A, then + is the first point of M \ A.

Let t € p~1(v), and suppose that t < 7. Since t < v = p(t) implies
that ¢ € A and p does not shift ¢ left, there exists an s € M such
that t < s and p(s) < s. Note that s € A. Since t < s and p is
nonorder-destroying, p(t) < p(s). Putting the inequalities together
gives v = p(t) < p(s) < s <4, or v < 7. This contradiction shows that
no element of p~1(v) precedes ~.

Now assume that ¢t € p~!(y) and v < t. Thus, t € M \ A. However,
p(t) =~ < t implies that ¢t € A. This contradiction shows that 7 does
not precede any element of p~1(7).

These last two results imply that p='(y) = {7}. But, by definition,
p pulls back each element of M to an isomorphic copy of M. Thus, A
cannot have a least upper bound, and M is not Dedekind complete. O

This result leads to the following question:

Question 3. Can a leximorphic space contain a nontrivial connected
subset, or are all leximorphic spaces totally disconnected?

5. Uncountable leximorphic spaces. We now return to Ques-
tion 1. If an uncountable leximorphic space exists, it is not well-ordered
(Theorem 2.3), separable (Theorem 2.15), or connected (Corollary 4.2).
In this section, examples of uncountable leximorphic spaces are con-
structed.
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5.1. 1 —sets. The construction of an uncountable leximorphic space
uses the following generalization of order dense:

Definition 5.1. An ordered set S is called an 7;-set if, for each pair
of countable subsets A and B such that A < B, there exists an element
x € S such that A <z < B.

Lemma 5.2 [6]. The cardinality of any n;-set is at least c.
Lemma 5.3 [6]. All n;-sets of cardinality Ry are isomorphic.

Remark 5.4. Note that this result is vacuous without the continuum
hypothesis.

At this point, we have some properties of 7;-sets, but we have not
proven that such a set even exists. Now we will construct an n;-
set of cardinality ¢ and modify it to demonstrate an example of an
uncountable leximorphic space.

5.2. Construction of an 7;-set. Let S consist of all the {0, 1}-
valued sequences of length w;. Order S lexicographically: If @ = {a¢ :

€ <wi}andb={be: &< w} are elements of S, @ < b if there exists
0 < wy such that ag = b¢ for all { < 0, and a, = 0 and b, = 1. Note
that |S| = 2%1.

Now consider the following subset of S: Let Q consist of the elements
@ of S such that there exists an ordinal o < w; where a, =1 and a¢ =0
for all £ > 0. That is, the elements of Q have a last 1.

The elements of Q are the so-called “upper elements” of S. Each
element of Q is the immediate successor of an element of S with a last
0. These corresponding elements are called “lower elements.”

Theorem 5.5 [6, 8]. Q is an n;-set of cardinality c.
Together, Lemma 5.3 and Theorem 5.5 give us the following:

Corollary 5.6. Each n;-set of cardinality ¢ is isomorphic to Q.
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5.3. An uncountable leximorphic space.

Theorem 5.7 (CH). Q x Q is an n-set of cardinality ¢ and is thus
isomorphic to Q.

¢. Now let A and B be
B. Let A ={z € Q:
({z} x Q) # @}. A’ and

Proof. First, note that |Q x Q| = ¢-¢ =
countable subsets of Q@ x Q such that 4 <
AN{z} x Q) # @} and B ={z e Q: BN
B’ are both countable subsets of Q.

If ANB = &, then A’ < B’. Since Q is an 7;-set, there exists a
y € Q such that A’ <y < B’. Then A < (y,y) < Bin Q x Q.

If ANB' # @, then AANB' ={z}, where 2 € Q. Let A, ={z € Q:
(z2,2) € A} and B, = {z € Q: (2,2) € B}. Then A, < B, in Q, so
there exists a y € Q such that A, < y < B,. Then A < (z,y) < B in
Qx Q. O

Remark 5.8. Note that the proof shows that the product of any 7;-set
with itself is still an 7;-set.

The preceding theorem shows that there is an example (assuming
CH) of an uncountable LOTS which is isomorphic to its cross product.
However, our definition of leximorphic requires that the spaces have
first and last points. Q, and n;-sets, in general, do not have first and
last points. There is a natural way to add a first and last point to Q:
Attach the points 0 and T.

Theorem 5.9 (CH). Let O = QU {0,1}. Then Q is an uncountable
leximorphic space.

Proof. Let P = (Q x Q) \ {(0,0), (1,1)}. First, note that |Q| = |Q| =
¢, so |P| = ¢. We will show that P is an n;-set. This proves that there
is an isomorphism from P to Q. Then we can map (0, 0) to 0 and (I, 1)
to 1, and we have an isomorphism from 9 x Qto é, thus proving that
Q is leximorphic.
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Let A and B be countable subsets of P such that A < B. Let A" =
{reQ:An({z} x Q) # @} and B'={z € Q: BN ({z} x Q) # &}.
A’ and B’ are both countable subsets of Q.

If ANB = @, then A < B'. If A"\ {0} and B’ \ {1} are both
nonempty, then the proof is just as in this case in Theorem 5.7.

If A’ = {0}, then B’ is a countable subset of QU {1}. Since B’ \ {1}
is a countable subset of Q, there exists an element y € Q such that
y<B'. Then A’ <y< B in Qand A < (y,y) < Bin P.

Similarly, if B’ = {I}, A’ is a countable subset of Q U {0}, so there
exists an element y € Q such that A’ <y. Then A’ <y < B’ in @ and
A< (y,y) < BinP.

If ANB # @, then A NB = {z}, for some z € Q. Let
A, ={x € Q:(z,2) € A} and B, = {z € Q : (z,2) € B}. If
A, # {0} and B, # {1}, then the proof is just as in Theorem 5.7.

If A, = {0}, then B, is a countable subset of Q U {I}. There exists
an element y € Q such that y < B,. Then A, < y < B, in Q and
A< (z,y)<BinP.

If B, = {1}, then A, is a countable subset of Q U {0}. There exists
an element y € Q such that A, < y. Then A, < y < B, in Q and
A< (z,y)<BinP.

Thus, P is an n;-set of cardinality ¢, and é is a leximorphic space. O

5.4. Larger leximorphic sets. The definitions of 7;-sets and Q can
be generalized to larger cardinalities. Then, nearly identical arguments
can be applied to show that there are uncountable leximorphic sets of
cardinality larger than R;.

Definition 5.10. Let o be an ordinal. An ordered set S is called an
na-set if, for each pair of subsets A and B of cardinality less than N,
such that A < B, there exists an element = € S such that A < x < B.

Definition 5.11. (1) Let S, be the set of all {0, 1}-valued sequences
of length wg,.

(2) Let Q, be the set of all @ in S, with a last 1.
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Remark 5.12. Note that this definition agrees with our earlier defini-
tion when a = 1. Also, 7ny-sets are simply the order dense sets. Qp is
isomorphic to Q.

In this section, some definitions regarding ordinal and cardinal num-
bers are useful:

Definition 5.13. (1) An ordinal a is called a successor ordinal if
a = B + 1 for some ordinal 3.

(2) A limit ordinal is a nonzero ordinal which is not a successor
ordinal.

(3) A cardinal number & is regular if it is not the sum of fewer than
k cardinal numbers less than k. The cardinal R, is regular if and only
if the union of any collection of fewer than X, ordinals less than w, is
less than w,. In particular, any cardinal of the form Ng_; is regular.

(4) A regular cardinal R, is strongly inaccessible if a is a nonzero
limit ordinal and 2* < R, for all A < X,.

The following theorem compiles results from Rosenstein, which give
us what we need to adapt the techniques in the last section to larger
cardinalities.

Theorem 5.14 [8]. (1) An n,-set has cardinality at least R,,.
(2) Any two n,-sets of cardinality R, are isomorphic.
(3) If R, is a regular cardinal number, then Q, is an 1,-set.

(4) |Qal = 22{2% : B < a}.

(5) If @« = v + 1 is a successor ordinal, then Q. has cardinality 2% .
Thus, if 2% = Ry41, Qo 15 an n-set of cardinality N, .

(6) If Ng < N, implies that 2% < R,, then Q, has cardinality R,.
Thus, if R, is strongly inaccessible, then Q, is an ny-set of cardinality
N -

This leads to the main result of the section. Here we assume the
generalized continuum hypothesis: 2%« = X, + 1 for all ordinals c.
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Theorem 5.15 (GCH). Let a be an ordinal such that o is a successor
ordinal or R, is strongly inaccessible. Then Q, = Q. U {0,1} is a
leximorphic space of cardinality R .

Proof. By the cardinality assumptions, Q,, is an 7,-set of cardinality
N,

Let P = (Qa % Qa) \ {(0,0),(1,1)}. Then |Qu| = |Qa| = Rq, so
|P| = No. A proof analogous to that of Theorem 5.9 shows that P is
an 7,-set, thus demonstrating that Q, is leximorphic. u]
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