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THE VARIATIONAL MCSHANE INTEGRAL
IN LOCALLY CONVEX SPACES

V. MARRAFFA

ABSTRACT. The variational McShane integral for func-
tions taking values in a locally convex space is defined, and it
is characterized by means of the p-variations of the indefinite
Pettis integral.

1. Introduction. Riemann generalized integrals taking values in
locally convex space have been studied in [9, 10]. In this paper we go
a bit further in studying the variational McShane integral for functions
defined in a o-finite quasi Radon measure space and taking values
in locally convex spaces. In [9] it is proved that if the domain is a
compact subinterval of the real line, the family of McShane integrable
functions coincide with that of variationally McShane integrable ones
if and only if the space is nuclear. It is known that, for Banach valued
functions, the family of variationally McShane integrable functions can
be significantly larger than that of Bochner integrable ones [2]. We
extend this result to the setting of locally convex spaces. We prove
some properties of the variational McShane integral. The main result
is the characterization of the family of variational McShane integrable
functions by means of the Pettis integrability and of the fact that,
for each semi-norm p, the p-variation of the indefinite Pettis integral
is moderated, Theorem 4. The proof is based on differentiability of
the primitive with respect to a suitable base which we introduce in a
quasi Radon measure space, Theorem 3. As a corollary we get that
in compact Radon measure spaces the family of variationally McShane
integrable functions coincide with that of integrable by semi-norm ones,
Theorem 6. Moreover, we give an example of a function which is
measurable by semi-norm and Pettis integrable, but such that the p-
variation of the indefinite Pettis integral is not moderated.
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2. Definitions and notations. Let (2,7, F, 1) be a nonempty o-
finite outer regular quasi-Radon measure space, where 7T is the family
of the open sets in {2, and F is the family of all y-measurable sets.
Unless specified otherwise, the terms “measure,” “measurable” and
“almost everywhere” refer to the measure p. If E is any set, then
we denote by Xg and °F, respectively, the characteristic function and
the complement of F.

From now on, X will be a Hausdorff locally convex topological vector
space (briefly a locally convex space) and X* the topological dual.
P(X) denotes a family of continuous semi-norms on X so that the
topology is generated by P(X).

We recall the following definitions.

Definition 1. A function f : €@ — X is said to be measurable
by semi-norm if, for each p € P(X), there exist a sequence (f?), of
simple functions and a subset X} C Q, with u(XJ) = 0, such that
lim,, 00 p(fE(t) — f(t)) =0 for all t € Q\ X{.

Definition 2. A function f : Q@ — X is said to be integrable by
semi-norm if, for any p € P(X), there exist a sequence (f?),, of simple
functions and a subset X{ C €, with u(X{) = 0, such that

(1) limy, 00 p(f2(£) = f(#)) = 0 for all £ € Q\ Xg;
(ii) p(f(t) — f2(t)) € L'() for each n € N, and lim,,_, [, p(f(t) —
fR(8))dt = 0;
(iii) for each measurable subset A of (2 there exists an element y4 € X
such that lim, o p([, f2(t) — ya) = 0.
Then we put [, f = ya.

If, in the previous definitions, both the negligible set X, and the
sequence of simple functions (f,), do not depend on the semi-norm
p, the function f is said to be respectively measurable and Bochner
integrable. Clearly a Bochner integrable function is integrable by semi-
norm, and in a Banach space the two definitions coincide.

Definition 3. A function f: ) — X is said to be Pettis integrable
if *f is Lebesgue integrable on 2 for each z* € X*, and for every
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measurable set £ C €2 there is a vector v(E) = [, f € X such that
*(v(E)) = [, z* f dp for all 2* € X*.

The set function v : F — X is called the indefinite Pettis integral of f.
As it is known (see, for example [15, page 65]) v is a countably additive
vector measure, continuous with respect to p (in the sense that for each
e > 0 there is an n > 0 such that if u(F) < n then v(E) <¢). If pis
a semi-norm on X, the p-variation v, of v is the smallest nonnegative
measure such that p(v(E)) < v,(E) for each E € F (see [8, page 16]).
If v is the Pettis integral of f, then for each p € P(X), v, is a measure
of o-finite variation.

A generalized McShane partition (or simply a partition), see [5,
Definitions 1A], in 2 is a countable (eventually finite) set of pairs
P = {(Eyt;) + ¢ = 1,2,...} where (E;); is a disjoint family of
measurable sets of finite measure and ¢t; € Q for each ¢ = 1,2....
If u(2\ U;E;) = 0, we say that P is a partition of Q. A gauge on 2
is a function A : Q — T such that w € A(w) for each w € Q. We say
that a partition P = {(E;, ;) : ¢ = 1,2,...} is subordinate to a gauge
AifE; C A(t;) fori=1,2,....

Definition 4. A function f : © — X is said to be McShane
integrable, see [11, Definition 5], on €2, if there exists a vector w € X
satisfying the following property: given € > 0 and p € P(X), there
exists a gauge A, on Q such that for each partition P = {(E;,t;) : i =
1,2,...} of Q subordinate to A,, we have

1imsupp<zn:ll(Ei)f(ti) - w> <e.

If f is a McShane integrable function on € we set z = (McS) [, f-

3. Main results. We extend the definition of variationally McShane
integrable functions to the setting of locally convex spaces.

Definition 5. A function f : Q@ — X is said to be variationally
McShane integrable on 2, if there exists a countably additive set
function F' : F — X such that, given € > 0 and p € P(X), there exists a
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gauge A, on 2 such that, for each partition P = {(E;,t;) : ¢ = 1,2,...}
of Q subordinate to A, we have

(1) ZP(H(Ei)f(ti) - F(E)) <e.
We call F' the McShane variational primitive of f.

Proposition 1. If f : Q — X is variationally McShane integrable,
then it is McShane integrable and also Pettis integrable.

Proof. Let ¢ > 0 and p € P(X). Then there is a gauge A, on 2 such
that (1) is satisfied for each partition P = {(E;,t;) : ¢ = 1,2,...} of
2 subordinate to Ap. Since Q = U2, F; and F' is countably additive,
there is an N € N such that if n > N then p(F(U¥,E;)) < ¢/2.
Therefore, for n > N, we have

p(gn(mﬂti) - F(@)

p(iw(a)ﬂti) - re) +5(r( U B))

n+1

IN

IN

- € € €
ZP(H(Ei)f(ti) — F(Ey)) + 5<5t5=¢6

i=1
which implies that f is McShane integrable and (McS) fQ f=F(Q).

By [11, Theorem 2], the Pettis integrability follows from the McShane
integrability of f. o

The following proposition can be proved in a standard way.

Proposition 2. Let f: Q — X and g: Q — X be two variationally
McShane integrable functions. Then:

(i) the function f + g is variationally McShane integrable;

(ii) for each a € R the function af is variationally McShane
integrable;
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(iii) if «* € X*, the real valued function x*f is Lebesgue integrable;

(iv) if f = 0 almost everywhere, then f is variationally McShane
integrable and F = 0.

We recall that a function f : @ — X is called simple if there exist
T1,%s,... &, € X and Ay, As,... , A, € Fsuchthat f =Y 1" z;Xa,.
If s=3 7" 2iXa, and A€ F, then [, s =31 | p(AN A)z;.

Lemma 1. If f : Q — X is a simple function, then f is variationally
McShane integrable.

Proof. Since the variational McShane integral is linear, it is sufficient
to consider the case f(t) = Xg(t) - w where E is a measurable set in
Q and w is a non-null vector in X. For each A € F, put F(A) =
u(E N A)-w. Choose an open set G and a closed set H such that
H C E C G. Define a gauge A, on (2 in the following way:

G ifte H
Ay(t)=¢ GN°H ifteG\H
‘H ifteQ\G.

Let P = {(E;,t;) : ¢ =1,2,...} be a partition of {2 subordinate to Ap;
it follows that

=" p(u(E)f(t:) - F(E:)) + > p(F(E))

t,€E t;¢E
= > p(u(E:) w—p(ENE;)-w))
+ > p(WENE)-w))
t,¢E
< p(w) Y (B — w(E N Ey)

+p(w) Y WENE;) < 2p(w) - w(G\ H).
tLi¢E
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If p(w) = 0, the assertion follows trivially; otherwise, we choose H and
G such that p(G\ H) < ¢/2p(w). Therefore, f is variationally McShane
integrable and, for each A € F, F(A) = pu(ENA) - w. o

Lemma 2. Let f: Q — X be a function. Given p € P(X) and
e > 0, there is a gauge A, such that

S o) < [ p(FO)dn+ e

for every partition P = {(E;, t;) : i = 1,2,...} of Q subordinate to A,
where the integral in the last inequality is the upper Lebesgue integral.

Proof. The proof follows as in [11, Lemma 3] with small changes.

Proposition 3. If f : Q — X is an integrable by semi-norm func-
tion, then it is variationally McShane integrable and the two integrals
coincide.

Proof. Let € > 0 and p € P(X). Let ¢, : & — X be a simple function
such that

2) I RECRO

The function ¢, is variationally McShane integrable as we already
proved; thus, there is a gauge A; such that

®) S p(tencr) - [ epa) <

for each partition P = {(E;, ;) : ¢ = 1,2,...} of Q subordinate to A;.
By Lemma 2 there is a gauge Ag such that

(oo}

@ Y pUr) ~ DB < [ 070 = bpl0) d+

i=1
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for every partition P = {(E;,t;) : i = 1,2,...} of Q subordinate to As.
Let A = A; N Ag, and take a partition P = {(E;,t;) : i = 1,2,...} of
Q subordinate to A. By (2), (3) and (4) we get

§p<f(ti)ﬂ(Ei) - /E fdu) < ii_o;p(f(t,-)u(Ei) _¢p(ti)l//(Ei)>
+ ip(%(ti)u(m - /E o du>
+§;P(/Ei¢pdn—/&fdp>

< [ o) = dplendn+ § + 5

+3 /E U = 0(0)

<€+€+€7 O
211"

Corollary 1. If f : Q@ — X is a Bochner integrable function, then it
is variationally McShane integrable and the two integrals coincide.

For each p € P(X), let X, be the completion of the normed linear
space X/p~'(0), and let i, be the canonical mapping of X into X,,, see
[13, 0.11.1]. Given a function f : Q — X and a semi-norm p € P(X),
define the function f, :  — X, by

fo(t) = (ip 0 £)(t) = ip(f(t)).

If f : © — X is McShane integrable (variationally McShane integrable),
then also f, : & — X, is McShane integrable (variationally McShane
integrable) and (McS) [, fp = (McS) [, ipof = ipo(McS) [, f, i.e., the
McShane primitive (McShane variational primitive) F), of f, is equal
to ip 0 F.

Remark 1. We note that if f : Q — X is McShane integrable then, for
each ACQ, f|A:Q — X is also McShane integrable. Indeed, since
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the function f is Pettis integrable the same is true also for f | A and,
for each E € F, vs1a(E) = ve(ENA). Also, f, : @ — X, is McShane
integrable and, by [5, Theorem 1N], the same is true for f, [ A. Choose
e>0,p e P(X) and find a gauge A, such that for n big enough,

5) p(iM(Ei)fp A - 1) [ gy 14) <

for each partition P = {(E;,t;) : ¢ = 1,2,...} of Q subordinate to A,
Since

p(gu(mfp ) - ) [ 7,1 4)

—p(iu(Ei)f A - v4),

we get from (5) the McShane integrability of f | A.

For a McShane integrable function, the following version of the
Henstock lemma holds and can be proved as in the real case.

Lemma 3. Let f: Q — X be a McShane integrable function. Then
to each € > 0 and each p € P(X) there corresponds a gauge A, such

that
(3 (umste) - aes) [ 1)) <

i=1

for each partition P = {(E;,t;) :t =1,...,s} in Q subordinate to Ap.

We recall that a subset K of X is totally bounded if for each p € P(X)
and for each € > 0 there exists a finite set B, B C X, such that
K C B+ by(e), where by(e) is the ball with center the null vector and
radius €.

Theorem 1. Let f : Q) — X be a McShane integrable function. Then
v (F) is totally bounded.
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Proof. Assume first that p(2) < co. Let ¢ > 0 and p € P(X) be
fixed. Then, according to Lemma 3, there is a gauge A, such that

(6) p(X_; <u(Ei)f(ti) ~ (McS) /E | f>> <$

for each partition P = {(E;,t;) : i =1,...,s} in Q subordinate to A,.
Since the function f is Pettis integrable, vy is absolutely continuous.
Then there is an 7 > 0 so that

€

(7) p(4) < 3,

whenever p(A) < 7. Fix a partition P = {(E;,¢;) : 4 = 1,2,...}
of ) subordinate to A,, and let N be such that u(2\ UY,E;) < 7.
Let E € F. Then {(ENE;,t;) : ¢ = 1,...,N} is a partition in Q
subordinate to A,. By (6) we have

N ™

®) p<z (u(E N B f(t:) - vf(EmEm) <

i=1

Therefore, by (7) and (8), we get
p( Sou(E0B)I(6) - vs(E))

<p( X BN B (6) - vy(EN E)

i=1
+p (I/f(E \ Uf\ilEi)) < €.
The set {af(t;),0 < a < p(E;),i=1,...,N} is compact; therefore, it

is totally bounded [7, page 60]. Then it follows that v;(F) is totally
bounded. The general case follows as in [5, Corollary 3E(b)]. o

We will prove the existence of a strong derivative for the primitive of
a variationally McShane integrable functions f.

We recall that a derivation base on €, see for example [16, Chapter
5], is a nonempty subset B of F x Q. For a set E C Q, we write

B(E)={(A,w) e B: AC E} and B[E] = {(A,w) € B:w € E}.
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If A is a gauge defined on (2, we denote by

Ba ={(A,w) € B: AC A(w)}.

We say that a base B is

e a fine base on a set £ C Q if for any w € F and for any gauge A
the set Ba[{w}] is nonempty;

e a filtering base if for each w € Q, the set B[{w}] is a directed set.

We recall that a function F' : Q — X is B-differentiable at w € Q if
there is an element a such that
F(E)

lim —— = a,

w(E)

where the limit is taken over all E in the directed set B[{w}].

Definition 6. A derivation base B is said to satisfy the strong Vitali
property if, for every B* C B, fine on a set F, and every € > 0, there
exist finitely many couples (A1, w;), (A2, w3),.-. , (An,wy) in B*, such
that the sets A, Ag, ..., A, are pairwise disjoint and

p(EV(UiL Ai)) <e,

where the symbol V denotes the symmetric difference.

The Vitali covering theorem is an important tool for classical deriva-
tion theorems of functions defined on subsets of R™. It is perhaps worth
recalling at this point that any derivation base B with the strong Vitali
property differentiates all L'-primitives.

For the definition of decomposability see [6], and for the definition of
lifting we refer to [14]. We recall the following theorem and corollary.

Theorem 2 [6, Theorem 72B]. A quasi-Radon measure space (2, T,
F, ) is decomposable.

By the previous theorem and the lifting theorem ([14, page 1139]),
we get
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Corollary 2. Each nontrivial quasi-Radon measure space (Q, T, F,
@) has a lifting.

Let F¢ C F be the family of all sets of F of finite measure, and let p be
a lifting. Set R = Uacr,p(A), and define g,(w) ={A € Fr:we AC
p(A)}. For w € R, let a,(w) = {(g,w) : g is a cofinal subset of g,(w)}.
Then (a,(w),w)wer is a strong Vitali derivation basis [14, page 1146].
From now on let B = (a,(w),w),cr- Since the set of partitions
subordinate to any gauge A is not empty ([5, Remarks 1B]), the family
B is a fine base.

Theorem 3. Let f: Q — X be a variationally McShane integrable
function, and let F be its primitive. Then the function F is differen-

tiable with respect to the derivation base B at almost all w € Q and
F'=f.

Proof. Let p € P(X). Let N be the set of all w € Q for which
F(w) is not differentiable or F'(w) # f(w). Given w € N, there is an
n(w) > 0 such that for each gauge A, we can find a set A C A,(w),
with p(A) < 1/n(w) and

P (f(w)(A) = F(A)) = n(w)u(A).

Fix an integer n > 1, and set N,, = {w € N : n(w) > 1/n}. If ¢ > 0,
since f is variationally McShane integrable there is A}, so that

9) > p(Flwdn(B) — F(E) <

for each partition {(Es,w;) :4=1,2,...} in Q subordinate to A}. Let
S be the family of all sets A such that, for some wg € Ny, A C Ap(wa)
for some gauge Ap, with Ay(wa) C Al(wa) and

(10) p(F@alu(A) ~ F(4)) > ~p(A)

Then the family S* = {(A,wa)} is a fine base of N,. Indeed, for
any w € N, and for any gauge A, with Ap(w) C Al(w), the set
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Si{w}] is not empty. By the strong Vitali property, there are couples
(A1, w1), (A2,ws),... € 8* such that Ay, As,... are pairwise disjoint
and pu(N,V(U2,4;)) = 0. Also @ = {(41,w1), (A2,w2),...} is a
partition in Q subordinate to Al. By (9) and (10), we get

p(Nn) < Zu(Ai) = an (1(Ai) f(wi) = F(A)) <e.

By the arbitrariness of £ and of p € P(X), it follows that u(N,) =0
and as N = U2 | N, we get that p(IN) = 0. Therefore, the assertion
follows. O

In the following proposition, using a different technique from that
used in [2], we will prove that each variationally McShane integrable
function is measurable by semi-norm.

Proposition 4. Let f : Q@ — X be a variationally McShane
integrable function, and let F be its McShane variational primitive.
Then the function f is measurable by semi-norm.

Proof. Tt follows from Theorem 1 that vy(F) is totally bounded;
therefore, the closed linear span of v;(F) is separable by semi-norm
[3, page 75]. Moreover, by the previous theorem, the function F' is
differentiable almost everywhere and F’ = f. For each p € P(X), let
Y,, be the closed linear span of {F,(A) : A € Q}. ThenY,, is separable in
X, and contains the set {f,(t) : F,(t) = f,(t)}. Hence, f, is essentially
separably valued. By the Pettis measurability theorem [1, Theorem
2.2], it follows that f is measurable by semi-norm. i

We will need the following lemma.

Lemma 4 [4, page 250]. Let f : Q — X be an integrable by semi-
norm function. Then, for each p € P(X), the function p(f(t)) is

Lebesgue integrable and
p(/f) S/p(f)-
Q Q
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In the proof of the following proposition, we use a technique similar
to that of [2, Lemma 4].

Proposition 5. Let f : Q@ — X be a variationally McShane
integrable function. Then the function f is measurable by semi-norm
and Pettis integrable. Moreover, for each p € P(X) the p-variation vy,
of v is moderated.

Proof. It remains to prove that, for each p € P(X), v, is moderated.
Let p € P(X), and assume that v, is not moderated and that u is
positive on each nonempty open set. Since f is a measurable by the
semi-norm Pettis integrable function, it follows from [10, Theorem
1] that there are two functions g and h such that f = g + h, with
g bounded and measurable in X, and h(t) = Y, @,Xa,(t), where
the sets A,, are disjoint, p(4,) < oo, @ = U2, A4, and the series
> . (Ap)zy, is unconditionally convergent in X,,. Since g : Q — X,
is measurable and bounded, it is Bochner integrable; therefore, its
p-variation is moderated since it is finite. Thus, we may assume
f=h=3.",2,Xa,. Moreover, f is Pettis integrable but it is not
integrable by semi-norm. Then there is an A,,, such that if U D A,
is open

(11) / P d = o

Let € > 0. For n € N, choose G,, D A,, such that

27t (p(zn) + 1)

Let A, : Q@ — T be any gauge such that A,(w) C G, if w € A,
and let P = {(E;,w;),i = 1,...s} be a partition in 2 subordinate
to Ap. For each ¢ = 1,...,s, there is an n; such that w; € A,,.
Since P is subordinate to A,, E,, C Gy,. Set C; = E; N A,, and
D; = E; \ A,,. Observe that if w € A,,, then f(w) = z,,; moreover,
UwieAnDi c Gn \ Ana thus

(12) N(Gn \An) <

(13)

;p@(&)ﬂwn - 1)- Zp( [ e - 1)
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Il
s

Let A} be an arbitrary gauge satisfying Al(w) C Ap(w). We have that

Ano Ccea Azl)(g)'

no
Set Un, = Gy N (Ucea,, Ap(s)), and let & be a sequence of points from
A, satisfying

#(Une \ Ui, (£)) = 0.

Define W1 = A;(gl) N Uno and, for n Z 2, Wi = A}J(fl) n Uno \Uj<in
and assume p(W;) > 0. Then, {(W;,&)} is a partition of U,,
subordinate to A}. Let {(F7,£)} be any partition of Q\Up, subordinate
to A[ly If {(V;‘a 67‘)} = {(Wi7 gl) U (Fla 61)}7 then {(‘/7‘7 57‘)} is a partition
of Q subordinate to Al. Since p(f(w)) is not Lebesgue integrable,
there is a sequence of disjoint sets H; such that Uy, \ A, = U;H; and,
according to Lemma 4,

(14) Zp( / | f> — too.

Now change each (W;,§;) with the pair {(W; N H;, &) : p(W; N H;) >
0} U{(Wi N Apy, &) = p(W; N Apy) > 0}. Again, this is a partition
of Q subordinate to A},, and for each & € Ay, D; C Uy, \ Any; thus,
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p(D;) = 0 or D; C Hj for some j. Also, #((Uno\Ano)\U&eAno D;)=0.
By (13) and (14), we have

So(ueaser- [ 1) = 3 o( [ 1)-3

iEN 1 i An
(15) € €i€An,
€
> A
> ZP( /H j f) 5 = 00
J
which implies that f is not variationally McShane integrable. O

Proposition 6. Let f : Q@ — X be a function which is Pettis
integrable and measurable by semi-norm. If, for each p € P(X),
the p-variation v, of v is moderated, then f is variationally McShane
integrable.

Proof. Observe that by [11, Proposition 6] the function f is McShane
integrable and therefore also each f, : {2 — X, is McShane integrable.
Moreover, f, is strongly measurable and the variation of its indefinite
Pettis integral is moderated. Since X, is a Banach space, by [2, Lemma
2] it follows that each f, is variationally McShane integrable. Then,
if ¢ > 0 is fixed, there is a gauge A, such that if P = {(E;,¢;) : i =
1,2,...} is a partition of {2 subordinate to A, we have

M8

ZP (n(E:) f(t:) — F(E:;) = Y _p(ip (W(E:)f(t:) — F(E;)))

1

o
Il

(16)

o

P ((E;) fp(ti) — Fp(Ey)) < e.

=1

Therefore, f is variationally McShane integrable. ]

From Propositions 5 and 6 we have the following theorem which is
the generalization to the locally convex space of the main result of [2].

Theorem 4. Let f: Q) — X be a function. Then f is variationally
McShane integrable if and only if f is Pettis integrable, measurable
by semi-norm and, for each p € P(X), the p-variation v, of v is
moderated.
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We recall the following

Theorem 5 [1, Theorem 2.7]. Let f : Q@ — X be a Pettis integrable
function which is measurable by semi-norm. Then the induced vector

measure v has finite variation if and only if f is integrable by semi-
norm. Moreover, for each A € F vy(A) = [, p(f)dp.

As a corollary we get the following characterization.

Theorem 6. Let (Q,7,F,u) be a compact finite Radon measure
space. Then a function f: Q — X is variationally McShane integrable
if and only if f is integrable by semi-norm.

Proof. The sufficient part follows from Proposition 3. To prove the
necessity observe that, on a compact space, each moderated measure
is finite. Therefore, the assertion follows from Theorems 4 and 5. o

The following is an example of a function which is McShane integrable
(and then Pettis integrable), measurable by semi-norm, but for some
p € P(X), the p-variation v, is not moderated.

Example. Let Q = [0,1], C be the Cantor set in [0,1] of measure
zero and X a locally convex space which is not nuclear. Let A, be
any sequence of open sets covering 2. Then C C U,A,,. There is an
ng € N such that C'N A,, is uncountable. In particular, there is an
interval I, such that C'NI,, is uncountable. Let )z, be a series in
X which is unconditionally convergent but not absolutely convergent.
Denote by (al,bl), r > 0,1 < i < 2", the contiguous intervals of length

177

1/(3"*1) adjacent to C. Denote by df the center of (al,b).
Define

¢ ifteCort=d,i=1,...,2", r=0,1,...,
Fft)y =4 37/2rz, ifte(al,dr),i=1,...,2", r=0,1,...,

(R

—3r/2rx, ifte(d,br),i=1,...,2", r=0,1,...,

177

where ¢ is the null vector in X. We want to prove that f is McShane
integrable to ¢. Indeed, fix € > 0, and let p € P(X). By [12, Theorem
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4], there is a natural number R such that

oo

S

sup p< Z€i$i> < Z
e;=1lor0 R+1

For any sequence of real numbers (6;)7,, satisfying the condition
|0;]<lfori=R+1,R+2,..., we have

p< i 92171) < %

R+1

In fact, let us expand 6; into the dyadic form

€

,J

= E : g, =0 or 1.
i : 27 ’ 1,]

Then

(17)

For i = 1,...,2", let U = (al,b}) \ {d'}, Ugp = UR U, UT,
U= U¥Ug and V = C U (UX, U¥, {d’}). Moreover, let K =
max{p(z1),...,p(zr)}, and choose a positive real number p such that
pK 3R+l < ¢/2. For any € € [0,1], let § = min{|¢ —all, |E—b7|,|£—dT|}.
Define A, () as follows:

(=6, E+6) if¢eUr,i=1,...,2",r=0,1,...,

Ap(g)_{(ﬁ—p, E+p) ifEcV.
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Observe that, in order to prove the McShane integrability of a function
f defined on a compact subinterval of the real line, it is enough to take
finite partitions P = {([;,t;) : 4 =1,... , s} where (I;) is a collection of
nonoverlapping subintervals of [0, 1], see [5, Proposition 1E]. Thus, let
P={(I;t;):i=1,...,s} be a partition of [0, 1] subordinate to A,.

Now p(3>-0_, |L|f(t:) = P>, ev il f(ti)). Fori =1,...,s, each
interval I; is either entirely in Ug or it is disjoint from Ug; thus,
(18)

P( > |Iif(ti)> SP( > Ii|f(ti)> +p > Ll

t, €U I,CUr IiﬂUR=<I>

Let us estimate the two sums separately. From the definitions of f and
of A (f) for £ € U], it follows that there are numbers 0], 0 < r < R,
i=1,...,2", such that |07 < 2p and

R 2 g,
P( > |Iif(ti)> ZZ p(z,)0]

I;,CUr

=

(19) . 3r

r=0
R
3 3R+
=2p) or 2'p(r) < 2pK ———
r=0

_ Kp(3R+1) <

For r > R we can find numbers 6, for which |6,.| < 1 and

(20) | DY @)L §p< 3 mu) <z

I; ﬂ Ur=% r=R+1
From (18), (19) and (20) we obtain

p( Z Ii|f(ti)> < %—i— % =ec.

t;eU
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Therefore, the function f is McShane integrable with the integral equal
to ¢. By [9, Theorem 2] it follows that f is Pettis integrable. Moreover,
since f is a countably valued function, it is measurable. Now let

¢ ifteC
Ft)=< 37/2"(t — al)z, ifte(al,df], i=1,...,2", r=0,1,...
=37/2"(t — bl )z, ifte(df,b]),i=1,...,2", r=0,1,...
be the primitive of f. Since the series Y .- z; is not absolutely
convergent, there is a semi-norm p € P(X) such that, for all N,

(21) | > Bla) = co.

The set C' N I,,, is uncountable; let 7o € N be such that there is an 1o,
1 < i < 27, for which both the intervals (a; °,b;.°) and (a:;[’hl, b 1)
are contained in I, . Let {(uf,vF),i > ro, k = 1,...,20770} be

the contiguous intervals of the Cantor set which are contained in the
i

interval (b:;o ,a;% 1), and denote by d their centers. Let {(uf,d}),i >
To, k=1,...,2°° 7} be a family of intervals. By (21) we have

9i—T0

Z p(F([Ufadf])) = Z Z gn—lﬂp(%)
i=ro+1 k=1 i=ro+1 k=1
1S A0
=5 2 > zib@)
i=rop+1 k=1
1 - l 11—
=% > 52 "p(xi)
i=ro+1
1 = 1_
=5 D 5P
i=rp+1
1 oo
= 3 2T0+1 Z p(l‘l)
i=ro+1
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Since
vp(An) =D vp(le) > Y BF([uf,df))),
k=1 i=N+1

where A, = U2 | Ii, we get v5(A,) = co. Therefore, the p-variation
v is not moderated. In particular, it follows that the function f is not
variationally McShane integrable.

Acknowledgment. The author thanks Professors L. Di Piazza and
K. Musial for helpful discussions and comments.
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