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CUNTZ-PIMSNER C*-ALGEBRAS AND
CROSSED PRODUCTS BY HILBERT C*-BIMODULES

BEATRIZ ABADIE AND MAURICIO ACHIGAR

ABSTRACT. Given a correspondence X over a C*-algebra
A, we construct a C*-algebra AX and a Hilbert C*-bimodule
Xoo over AX such that the augmented Cuntz-Pimsner C*-

algebras Ox and the crossed product Aé X X oo are isomor-
phic. This construction enables us to establish a condition
for two augmented Cuntz-Pimsner C*-algebras to be Morita
equivalent.

1. Introduction and preliminaries. The augmented Cuntz-
Pimsner C*-algebra Ox defined in [9] is a C*-algebra associated to
an A-correspondence (X, ¢x) that is universal for certain covariance
conditions, see [9, 3.12], when ¢x is injective and X is full as a right
Hilbert C*-module.

On the other hand, when X is also a Hilbert C*-bimodule over the
C*-algebra A, the crossed product A x X defined in [1] is universal for
covariance conditions that agree with those for which Oy is universal
under the assumptions mentioned above.

Thus, both constructions can be carried out when X is a Hilbert C*-
bimodule, and they agree when X is full on the right and the action
on the left is faithful. But this may fail if the condition of faithfulness
of the left action is dropped, as the following example, shown to us by
Sgren Eilers, proves.

Let A = C@® C and X = C be the Hilbert C*-bimodule over A
obtained by setting:

()‘HU“) T=AT, @ ()‘7 “) = TH, <x7y>L = (xya 0)

and
<$, y)R = (Oa Ey)
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Then X ® X = 0 because z @y = z-(0,1) @y = 2 ® (0,1) -y =
2 ® 0. This implies that Ox = {0} whereas A x X is isomorphic
to M>(C). This last statement can be checked directly by verifying
that the *-homomorphism induced by the covariant pair of maps

. . . . A . T
(ia,ix) 5 (4,X) = My(C) given by ia(\ ) = (30 ), ix(@) = (37
is an isomorphism, or by noting that X is the bimodule associated (as

described in [1, 3.2]) to the partial action on A given by I = C & 0,
J=0& C, 6(z,0) = (0, z).

This shows that A x X and Oy may not agree for a Hilbert C*-
bimodule X over A. On the other hand, as mentioned in [1], for any A-
correspondence (X, ¢x) the algebra Ox is a crossed product Ag X X oo
The example above shows that the algebra A,, and the bimodule X,
do not necessarily agree with the original A and X when X is a Hilbert
C*-bimodule over A. In this work we give an abstract construction
of Ay and X, out of an A-correspondence (X, ¢x). Both A and
X are described as direct limits of nicely related directed sequences
in their respective categories.

We apply this construction to the discussion of Morita equivalence
of augmented Cuntz-Pimsner C*-algebras. One of our tools is a result
from [1, 4.2]: if X and Y are Hilbert C*-bimodules over C*-algebras A
and B, respectively, and M is an A — B Morita equivalence bimodule
such that the A — B Hilbert C*-bimodules X ® 4 M and M ®g Y are
isomorphic, then the crossed products A x X and B XY are Morita
equivalent. In Theorem 4.7 we establish a condition of this kind for
the Morita equivalence of two augmented Cuntz-Pimsner C*-algebras.
Muhly and Solel showed in [8, 3.3, 3.5] a similar result for Cuntz-
Pimsner C*-algebras and for correspondences (X, ¢ x) and (Y, ¢y) such
that the maps ¢x and ¢y are injective and the correspondences are
nondegenerate, that is, ¢x(A4)X = X and similarly for Y. Our result
for augmented C*-algebras does not require the action to be injective,
but a condition related to nondegeneracy, see Remark 4.8, has to be
met.

This work is organized as follows. Section 2 deals with the notion
of direct limit of Hilbert C*-modules and proves some basic results
that will be further required. In Section 3 we construct, for an A-
correspondence (X, ¢x), a C*-algebra Ay, and a Hilbert C*-bimodule

X over Ay, such that Ox and A, X X are isomorphic. In Section 4
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we use that construction together with [1, 4.2] to give a sufficient
condition for the Morita equivalence of two augmented Cuntz-Pimsner
C*-algebras.

We start by recalling some definitions and by setting some notation.

Notation 1.1. Let A and B be C*-algebras. If ¢ : A — B is
a *-homomorphism, we denote by ¢*) the *-homomorphism ¢*) :
My, (A) — My(B) defined by (¢*)(M));; = ¢(M;;).

Given a right Hilbert C*-module X over a C*-algebra A, we denote
by £(X) and K(X), respectively, the C*-algebras of adjointable and
compact maps. For z,y € X, we write 6,, to denote the map
0z,y € K(X) defined by 6, ,(2) = z(y,z). For z € X, |z| denotes
the element |z| € A defined by |z| = (x, z)'/2.

Given subsets S and T of X, we write (S,T) to denote the set
(S, Ty =span{(s,t) : s € S, t €T} If S C L(X), we denote by SX
the set SX =span{s(z):s € S, ¢ € X}. Given a C*-subalgebra C of
L(X), we denote by L¢, x the right Hilbert C*-module homomorphism
Lex : C®c X — X defined by Le x (¢ ® ) = ¢(z). Note that Lo x
is an isomorphism when CX = X.

When X is a right Hilbert C*-module over A, the map z ® a — za,
for x € X and a € A, is an isomorphism of right A-Hilbert C*-modules
between X ® A and X that associates the map T' € £(X) to the map
T®ids € L(X ® A). Often in this work we will identify X with X ® A
and T € L(X) with T ® id4 as above without further warning. For
T € £(X) we will understand that 7%° is id 4.

We next recall some of the terminology in [8] that we will adopt.
Given C*-algebras A and B, an A — B correspondence (X, ¢x) con-
sists of a right Hilbert C*-module X over B together with a x-
homomorphism ¢x : A — L(X). We will denote the correspondence
by X and drop the reference to the map ¢x when it does not lead to
confusion. Besides, we will write a - z to denote [¢x (a)](z).

Let X; be an A; — B; correspondence, for 1 = 1,2. A homomorphism
of correspondences (o, ¢, 7) consists of C*-algebra homomorphisms
o0 : A — Ay and 7 : By — B; and a linear map ¢ : X; — X
such that
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$(a-zb) = o(a) - $(z)m(b) and (¢(z),$(y)) == ((z,y)),
for all T,y € Xl, a e Al, be Bl.

Whenever A; = A, respectively By = By, and there is no reference
to the map o, respectively m, we assume it is the identity map. Two
A — B correspondences X and Y are said to be isomorphic if there is
a homomorphism (idy4, J,idg) where J : X — Y is invertible.

Note that the map L¢, x defined above for a C*-subalgebra C' of £(X)
is a homomorphism of C' — A correspondences, for C' acting on C ® X
via l ® idx, [ being left multiplication.

Homomorphisms of right Hilbert C*-modules and homomorphisms of
Hilbert C*-bimodules are defined in the obvious analogous way, Hilbert
C*-bimodules being defined as in [3, 1.8].

Lemma 1.2. Let (¢,0) : (X,A) — (Y,B) be a homomorphism of
right Hilbert C*-modules. Then ¢ is norm-decreasing, and it induces a
C*-algebra homomorphism ¢, : K(X) — K(Y') such that ¢.(0z, 2,) =
9¢(m1),¢(12); fOT‘ Ty, 2 € X.

Proof. If x € X, then
le(@)]* = [{(x), (@)l = llo((z, 2))|| < [[{z, 2] = |l=]|*.

As for the second statement, if z;,y; € X for i = 1,2,...,n, then by
[6, 2.1] we have

= [|SY2T 2| a,.(13)

H D bt o)

where S;; = (¢(x:), ¢(x;)) and Ty; = (6(y:), 6(y;)). Now, § = o) (M)
and T = 0™ (N), where M;; = (z;,x;) and N;; = (y;,y;). Therefore,

Z 0%‘7%‘

which shows that ¢, extends to a continuous map on (X). Finally, it
is straightforward to check that ¢, is a *-homomorphism from the fact
that (o, ) is a homomorphism of right Hilbert C*-modules. O

’

ST = o™ (2N | < N2 =
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2. Directed sequences of right Hilbert C*-modules. In this
section we discuss a procedure to get, for a given A-correspondence
(X, ¢x), a Hilbert C*-bimodule X, over a C*-algebra A,,. We will

show in the next section that A, X X is isomorphic to 4] X

In order to get a left inner product on X one needs to add to Im ¢
the compact operators IC(X). If one lets Ay C L£(X) be defined by
A; = Im¢ + K(X), then X is an A; — A Hilbert C*-bimodule, but
there is no clear right action of A; on X. This suggests replacing X
by X1 := X ®4 A;. Thus, we end up with an A;-correspondence X,
and the procedure can be iterated. We show how this iteration yields
directed sequences {A,} and {X,,} whose limits A, and X, are such
that X, is a Hilbert C*-bimodule over A,. We will develop this
procedure in a somewhat more general context that will be of use in
the discussion of Morita equivalence in the last section.

Definition 2.1. A directed sequence {(X,,A,,dx,d2)} of right
Hilbert C*-modules consists of a directed sequence {(A,,¢)} of C*-
algebras together with a directed sequence {(X,,, #X)} of vector spaces
such that X,, is a right Hilbert C*-module over A, and (¢, #%) is a
homomorphism of right Hilbert C*-modules for each n € N.

Remark 2.2. Let {(Xn, An, ¢X,¢)} be a directed sequence of right
Hilbert C*-modules. Since the maps ¢ are norm decreasing by
Lemma 1.2, the sequence {X,,, #;X } has a direct limit (X, {\:X}) that
can be described as follows. Let Yy be the vector space

Y, = {x € HX” : there exists ng such that z, 11 = ¢n(zn)

for all n > no},

and let Y = {z € Y, : lim,, ||z,|| = 0}. Then X, is the completion of
Yy/Y for the norm ||z|| = lim,, ||z,||. The canonical maps X, : X, —
Xoo are given by AX = 1o AX, where 7 : Y; — X, is the canonical
projection and A () (k) = ¢7) 1. (zn), for ¢, : X, — X, given by
0 if k<mn
nX,k ={id if k =mn;
§_10¢§_2---o¢f if £ > n.

Note that [ A7 (z)]lx., = limm (|67 (@)l x,, = infm 1675, (20) | x,,-
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If {z,} € Yo, and ng is such that z,,41 = @n(x,) for all n > ng, then
AX (2ny) = m({zn}), which shows that UNY (X,) is dense in X.

It is well known that a similar description holds for the direct limit
(Ao, {A11}) of the directed sequence of C*-algebras {A,,, ¢7*} and that
UM (A,,) is dense in A,,. Note that (¢2,,4X,) is a homomorphism of
right Hilbert C*-modules from (An,an to (Ak,Xk,).

We will say that (Xeo, Ao, {AX},{\A}) is the direct limit of the
directed sequence {(X,,, A, X, o)}

As the referee pointed out to us, a nicer approach to the discussion
of the direct limit in the category of right Hilbert C*-modules consists
of showing that this category is equivalent to that of pairs (A, e) where
A is a C*-algebra and e is a projection in its multiplier algebra and
morphisms ¢ : A — B such that ¢ is a C*-algebra morphism and
d(ex) = fo(x), p(ze) = ¢(z)f for all z € X.

The equivalence can be obtained by mapping a right A-Hilbert C*-
module X to the pair ((X®A), e), where X @A has the usual structure
of right Hilbert C*-module over A and e is the projection onto X.
Morphisms are handled as in Lemma 1.2 for ¢x @ ¢4. At this point,
the existence of the direct limit in the latter category can be easily
obtained. However, since later in this work we will be making use of
the specific construction in the next proposition, we show the existence
of the direct limit in the category of right Hilbert C*-modules.

Proposition 2.3. Let {(X,, An, #X,¢2)} be a directed sequence of
right Hilbert C*-modules with direct limit (Xoo, Ao, {NX }, {NA}). Then
Xoo can be made into a right Hilbert C*-module over A, by setting:

A (@)X (an) = A (2nan), (N (21), A (23)) := AL (2T, 25)),

for an € Ap, Tn,2? € X, i = 1,2. (Therefore, (\X,\2) : (Xn, Ap) —
(Xoo, Aoo) 18 a homomorphism of right Hilbert C*-modules for all n.)

Let M be a right Hilbert C*-module over a C*-algebra B and, for
eachn € N, let (uX,pu2) : (Xn, An) — (M, B) be a homomorphism of
right Hilbert C*-modules, such that the diagrams
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¢X
Xn —— Xn+1
X
H"J Nf—{-l
M

A
A
”"LA

B

commute. If uX : Xoo — M, p? : Ay, — B are the canonical maps
yielded by the universal property of the direct limit, then (uX,p?) is a
homomorphism of Hilbert C*-modules.

Besides, the norm on X, induced by its structure of right A, -Hilbert
C*-module agrees with the original norm.

Proof. We first check that the definition of the action on the right
makes sense. Assume that Af(ax) = Mi(a,) and that A\ (z;) =
\X(z,), for some a,, € A, ar, € Ak, T, € X,, and z1, € X.

Given € > 0, choose j € N, j > k, j > n, and large enough to have
65 (xn) — &7t (zx)|| < € and [|¢7 ;(an) — éit;(ar)|| < e. Then

XY (znan) — A (zraw)l| < |65 (znan) — 67 j(zrar) |
= 673 (@n) b (an) — Bie;(zx) bk, s (an)
< 19 5 (2n) (915 (an) — $i2 5 (ar))
+ [[(¢nr i (wn) — b5 (1)) D (an )|
< ([lenll + [lak[)e.
Besides,
||)‘7)z((xnan)” = liran H‘ﬁim(mnan)n

= hygl l|¢ff,m($n)¢ﬁm(an)||

)

< (tm 16 (@a) ) (tim 167 (an)]))

= [lz[[lall,
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which shows that the right action of U,A\2(4,) on U, A (X,,) extends
by continuity to a right action of Ao, on X

As for the definition of the right inner product, it makes sense because
if AX(z?) = A\X(zF) for some 27 € X, z¥ € Xi, i = 1,2, then
for any ¢ > 0 we can choose j € N such that j > k, j > n, and
16 ;(a7) — 6% ;(ak)|| < & for i =1,2. Then:

A7 ({1, 25)) = A (27, 25))|
_||¢A,](<$7f,$">) i (21, 25))
= (o7 (1), o 5 (25)) — (¢k,j($1) i i (5))]]
< {on;(=1) — ¢k,]($1) i (@)
+||<¢k,j( zt), ¢ n,j( 2)—¢k,j($§)>‘|
e(llz5 ]l + l7l)-

Also note that, for z,, € X,,, we have

1A (@) A (@) 4 = [N (20, ) [ e
:1im||q5A (<xnvmn>)”Am

_11m||< (fL'n) . m (@) || A
= I (a) k. »

which shows that the two norms on X, agree.

The remaining properties and statements are apparent from the
definitions. O

Example 2.4. The following example will be of importance in this
work. Given a correspondence (X, ¢x) over a C*-algebra A, let X (A)
denote the C*-subalgebra X (A4) = K(X) + Im¢x. Note that X is an
X (A) — A Hilbert C*-bimodule.

Given a right A-Hilbert C*-module M, we define the right X (A)-
Hilbert C*-module X (A) by X(M) := M ®¢4, X(A), where X(A) is
viewed as an Im ¢x — X (A) correspondence in the obvious way.
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Note that

(Domi@ox(a). Y py®éx(b;)) = D (mi ® dx(as).p; @ bx (b))
- Z¢X(ai)*¢x(<miapj>)¢x(bj)
= ¢x((miai, p;b;))

,J

= ¢x << zi:miaia Zj:pjbj>>a

for ms,p; € M, a;,bj € A,and e =1,2,...,n,j=1,2,...,m.

In particular, | X0, mi ® 6x (@)l = léx(| Syma) 2 < |2,
m;a;||?. This shows that one can define a map ¢35, : M — X(M) by
Y (ma) = m ® ¢x(a) so that (¢35, ¢x) is a homomorphism of right
Hilbert C*-modules. When M = X the map ¢35 will be denoted by
¥x. In this case (Yx,dx) is a homomorphism of correspondences.

Now, since X (X) and X (M) are, respectively, a correspondence and
a right Hilbert C*-module over X (A), the construction above can be
iterated to get a sequence {AX },,>o of C*-algebras and, for each n > 0,
a correspondence X,, over AX and a right AX-Hilbert C*-module M;*
by setting Ay = A, Xo = X, Mg® = M, and, for n > 0:

AnX+1 = Xn(AY), Xn41=Xn(X,), and M’f—i—l = Xn(MY).

n

We also get right Hilbert C*-module homomorphisms
(¢%’Xa¢ﬁ’x) (M, AY) — (Mr)erpAv)erl) for all n > 0,

given by ¢4 = ¢x, and M = ¢y, that is, 7% (a) = a ® idax
for all n > 1, and ¢MX (ma) = m® ¢2% (a), for m € MX and a € AX.

When M = X we write ¢ in place of ¢*X. In that case
(DX X, $pAX) and (¢A’X X ¢AX) are, respectively, homomor-

n+1»
phisms of correspondences and Hilbert C*-bimodules:

(0px (za),0x wp)) (2 @ ) =2 ® ¢ (a) (y ® ¢ (b), 2 ® c)
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=z ® ¢ (a)gn ™ (b (y, 2))e
= za(yb,z) @ c

= (¢ﬁ—7|-)i (eza,zb)) (Z X C),

for all z,y,z € X,,, a,b€ A, and c € A, 41.

Let (Xoo, AX, {051, {0A}) and (M, AX {A\M} {A4}) denote the
direct limits of the sequences {(X,, AX,#X ¢AHX)} and {(MX, AX,

pMX | pA4 X)L respectively. By Proposition 2.3, both X, and MX are
right Hilbert C*-modules over AX .

Remark 2.5. In fact, X, is a Hilbert C*-bimodule over AX: since
X, is an A, — Ay Hilbert C*-bimodule for all n € N, the proof
of Proposition 2.3 carries over to the left structure of X.,, and the
compatibility between the left and the right structures on X, is easily
checked.

Proposition 2.6. Let {(X,, An, #X,¢2)} be a directed sequence of
right Hilbert C*-modules with direct limit (X oo, Aco, {NX }, {A2}).

Then (K(Xoo),{(A\X).}) is the direct limit of {(K(Xy,), (X))},
where (A\X). and (¢X). are defined as in Lemma 1.2.

Proof. Tt is well known that for any integer k, (M} (Ao ), {(A2)*)}) is
the direct limit of {Mj(A,), (¢)®)}, which in particular implies that

. k
IODS @) s,y = liml|(6,) (D] for all T € My (4,).

n,m

Now, the commuting diagram X
n

Xn —)Xn+1
)\X

" JA%

Xoo

yields the commuting diagram
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K(x) 2) o, )

(Af)*J/
(A%51)
K(Xoo)

which in turn yields a map H : 11_II>1 K(X,) - K(Xx), defined by
H(1,(T)) = (XN (T) for T € K(X,,), where [,, : K(X,,) — h_n)llC(Xn)
is the canonical map.

Note that {f., : 7,5 € UAX(X,)} is dense in K(X.) because
Xoo = UXS(X,). It follows from that fact that H is onto, since
0)\5(35)7)\5(‘,;) = H(ln(ew)), for T,y € X,

The map H is also isometric: let T' € K(X,,), T = Zle 0z, y;, Where
zi,y; € Xn. Then

k
@)= 10X+ = |3 b oy a0
1
= [AHB X 2YY2),

where [6, 2.1] X;; = (2;,z;) and Y;; = (vi,y;)-
Therefore, by applying [6, 2.1] again,

1H ()= 11D (X2Y )| = lim [[(97,,) B (X2YH2))

=1lim (g7, ,) (D)l = [t (). O

3. Cuntz-Pimsner (C*-algebras and crossed-products by
Hilbert C*-bimodules. In this section we show that the pair
(Aco, Xoo) obtained in Example 2.4 is such that Ay, 3 X, is isomorphic
to Ox. We begin by recalling some well-known facts about adjointable
operators on the direct sum of Hilbert C*-modules.

Given a sequence { X, } of right Hilbert C*-modules over a C*-algebra
147 let £ = EBgoXn If Ko, K1 C N, we ldentlfy E(EBnEKOXna @nEKan)
with a subspace of L(E) by extending T e L(®nekoXn; Prek, Xn) to
T € L(E) so that T|x, =0 for n ¢ K.



1062 BEATRIZ ABADIE AND MAURICIO ACHIGAR

Let J = U, L(®F'X,,) C L(E), and let M denote the idealizer of J
in L(E), that is, M ={T" € L(E) : TS,ST € J for all S € J}.

For an integer k, let

A = {T S ﬁ(E) : T(Xn) - Xn+k
if n > max{0,—k}, T|x, = 0 otherwise}.

Given T € Ay, we denote by T, the map T, € L(X,,, X,, 1) obtained
by restricting 7' to X,,. Then T'= @5°T,, and ||T|| = sup,, ||T,||. Note
that Ay, C M for all k € Z.

Lemma 3.1. If T € Ay, then ||T + J||p/y = limsup,, ||T,|.

Proof. We can assume that k = 0, since T*T € Aq and (T*T),, =
(T,)*T,, for all T € Ay. Let L denote limsup,, ||T;,||.- Given € > 0, let
ng be such that ||T,,|| < L + ¢ for all n > ny.

Then (|7 + Jllap/s < || @53 Toll = supysy, [[Toll < L + ¢, which
shows that ||T' + J|[p;y; < L. On the other hand, if I < L and
S e L(@®fX,) CJ, then

IT-S|=|||PT-5ePT|=|PT.
0 m—+1 m+1

=sup{||T,| : n > m|} > L.
Therefore, ||T' 4 J|[pr/; > [ for all | < L, which ends the proof. O

_We next recall the definitions of the Cuntz-Pimsner algebras Ox and
Ox given in [9]. Given a correspondence X over a C*-algebra A, let
X, = X®" where X®° = A and let E = &L X,,.

If € X® we denote by T, the map T, € Ay C L(E) given by
T.(y) =2z®y if k > 0 and by T,(y) = ay, if a € A, where z ® a is
identified with za, for z € X®* k>0, and a € A.

For M and J defined as above, let 7 : M — M/J be the canonical
projection, and set S, = m(T}), for © € X, k > 0. The Cuntz-Pimsner
C*-algebra Ox and the augmented Cuntz-Pimsner C*-algebra Ox are
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the C*-subalgebras of M/J generated by {S, : z € X} and by {S; :
t € X U A}, respectively. Notice that S;,@use--@zx = Sz19zs *** Szxs
which implies that S, € Ox for all z € X®F, k > 1.

Remark 3.2. Let x € X®™, for m > 0. Since ||(T%)n|| = ||(Te)n-1 ®
idx|| < |[(Tg)n-1]| for all n > 1, we have by Lemma 3.1,

18z = limsup [[(Tz)n || = mf [|(Te)r @ idxen|l,

for all £ > 1.

Lemma 3.3. Let (X;,¢;) be A — B; correspondences for i = 1,2,
and let'Y be a right Hilbert C*-module over A. If ker ¢ C ker ¢, then
IT ®idx, || > ||T ® idx,|| for all T € L(Y).

Proof. Let T € L(Y). Then T ® idx, = 0 if and only if 0 =
Ty @ z||* = |{(z, (Ty,Ty) - z)|| for all z € X;, y € Y. That is,
T ®idx, = 0 if and only if (T'y,Ty) € ker¢; for all y € Y. We can
thus define a map 7' ® idx, — T ® idx,, which is a (norm-decreasing)
*-homomorphism between the C*-algebras {T' ® idx, : T € L(Y)} and
{T X idx2 T e ﬁ(Y)} ]

Corollary 3.4. Let (X,¢x) andY be, respectively, a correspondence
and a right Hilbert C*-module over a C*-algebra A. Let X (A) be as in
Ezample 2.4. Then, for any T € L(Y) we have

IT ®idx|| = |7 ® idx (-

Proof. Tt suffices to notice that an element a of A acts on X(A) by
left multiplication by ¢x(a). Since Im¢px C X(A), we conclude that
a-X(A) = 0if and only if ¢x (a) = 0. Then the previous lemma applies
in both directions and the equality holds. ]

Lemma 3.5. Given a correspondence (X, ¢x) over a C*-algebra A,
let X(X), X(A) and ¥x : X — X(X) be as in Ezample 2.4.

Forn > 1, let B, : X(X)®" — X®" @4, X(A) be the isomorphism
of X (A)-correspondences given by 3, = idx ® L?}T(L;)lx ®idx(a), where
Lx(a),x 1s as in Notation 1.1. Then:
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(1) Bn o §™ = idxon1 ®Yx, for alln > 1.
(2) Bram(Oyen (2 yorw) © Mdxx)om)Brim = Ozw © id(xemgx(a)),
for z,w e X®*, n>1,m>0.

; (3)llﬁm+1(¢x(a) ® dxyexx)em)Bmir = ¢x(a) ® id(xemgx(a)),
or all m > 0.

Proof. (1) Let x; € X, a; € A, for i =1,2,...,n. Then
[Bn oY (z101 @ T2a2 @ + -+ @ Tpan)
= Bn(21 @ dx(a1) @x2 ® dpx(a2) Q- Qxp Q@ px(an))
=71 ® ¢x(a1)r2 ® dx(a2)r3 ® -+ @ dx(an 1)Tn @ ¢x(an)
=2101 ®T203® @ Tp—10n-1 @ Tn ® dx(an)
= (idxern1 @ Px)(T101 @ T202 @+ ® Tpay).
(2) We first prove the statement for m = 0. We assume, without loss

of generality, that z = 2y ® za, w = web, for * € X, 29 € X®n~1,
wo € X®", and a,b € A. Let u € X®", r € X(A). Then, by (1):

<ﬂn9w§"<z),¢;@;"<w>53> (w@r)
= (01d yion-1©x) (2082a),(id y o1 @3bx) (wob)) (1 B T)
=20 @z ® ¢x(a){wo ® ¢x(b),u®r)
= 2o ® za ® ¢x (b" (wo, u))r
= 29 ® za{web,u) @ r = z{w,u) @ r
= (0.0 ®@idx(a))(u®r).

Let us denote by L the map Lx(4) x defined in Notation 1.1. For
m > 1 we have

Brtm = (idxen ® L™ @idx(a)) (B @ idx(x)em) -
Therefore,

Bntm (91113‘?"(:4)@;";"(1») © idX<x>®m) Brtm
= (idx®n ® L% ® idX(A)) (Hz,w ® idX(A) ® idX(X)®m)
x (idxen @ (L) ®idx (a))
= 0.0 ®idxemgx(a)-
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(3)

Bmt1 (0x(a) ® idx () x(x)2m) Brni1
= (idX QL @ idX(A))(¢X(a) ® id(X(A)®X)®m X idX(A))
x (idx ® (L®™)* @ idx(a))

= ¢x(a) ®idxemgx(a)- o

Remark 3.6. As discussed in [9, Remark 1.2, (2)], the automorphism
of X given by x — Az for A € S yields an automorphism vy of o X,
determined by v,(S;) = kS, for x € X®F k > 0. In fact, this
automorphism of X extends to an automorphism 4, of E defined by
(%2 (n)) (k) = Men(k), for n € E. Conjugation by ¥y is an automorphism
of L(E) that maps T, into \*T}, for z € X®* k > 0, and it leaves J
invariant.

Thus, one gets an action 7 of S on 6X that is easily checked to
be strongly continuous. The fixed-point subalgebra of this action is
Eo(Ox) = span{S.S; : =,y € X® n > 0}, and its first spectral
subspace E;(Ox) = span{S,S; : xz € X®tl, y e X®" n >0} =
span{Sye : ¢ € X, e € Ey(Ox)}. This last statement is shown
by means of the usual argument, since span {SwS’; T € X®y ¢
X®™ n,m > 0} is dense in Ox, and the maps P; : Ox — Ei((ax)
given by

Pi(u) = /S1 27y, (u)dz for ue Oy

are surjective contractions, see [4] for details, and v5(5,S;) = A" ™S,
Sy, for z € X®", y € X®™, and n,m >0, i =0, 1.

Now, since Oy is generated as a C*-algebra by Eo(éx) and El(éx),
Theorem 3.1 in [1] applies, and Ox is isomorphic to the crossed-product
Eo(OX) Dal El(OX)

Proposition 3.7. Let (X, ¢x) be a correspondence over a C*-algebra
A, and let X(A), X(X) and ¢ x be as in Example 2.4. Then there is an
isomorphism of Hilbert C*-bimodules (n1,m0) : (E1(Ox), Eo(Ox)) —
(B1(Ox(x)), Eo(Ox(x))) carrying Sy and S, to Sy, (z) and Sy (a),
respectively, for x € X and a € A.
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Besides, if (ix,ia) : (X,4) — Ox is given by ix(z) = S, and
ia(a) = S, and similarly for (X (X),X(A)), then

(Yx,ox)

(X, 4)
(iX,iA)J J(iX(X)aiX(A))

(E1(Ox), Eo(Ox)) {m,mo), (E1(Ox(x))s Bo(Ox(x)))

is a commuting diagram of homomorphisms of correspondences.

(X(X), X(4))

Proof. We would like to define 1 : Eo(Ox) — Eo((aX(X)) by

k
o <S + Z 235y, > = Soxto) 2 52 o) Spem (4,
i=1

where a € A, z;,y; € X®", andn; >0foralli=1,... k.

We first show that the definition above makes sense. Let a, z;,y; be
as above, and let mm = max{n; : i =1,... ,k}. Then (see the beginning
of Section 1 in [9] for the first equality)

T, + ZT%T; @ <29z“yz ® idxen-—n; > (mod J)

i=1 n=m
o0
@ T({a,zi,y; }) ®idxen-—m,

n=m

where 7({a, z;,¥;i}) = ¢x(a) @idxem—1 + >, 0,4y, @ idyem—n,.
Now, by parts (2) and (3) of Lemma 3.5:

T({a, T;, yz}) ® idX®"®X(A)
= ¢x (a) Qidxem-14n ® idX(A)

+ Z ewiyyi ® idX®m*”¢+n & idX(A)

= Brtm (¢X (a) ® id-X(A) 2 idX(X)®m71+n
* Z 0 0m (a1 27 (g @ M (x () 2mmitn ) B

= Brrm (T({ox (a), ™ (2:), ™ (4:)}) ® idx(x)2n) B 4m-
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Therefore, by Lemma 3.1 and Corollary 3.4,

IS +25zz 5l =l 7 ({0, 22, 3:}) ® idcon |
= lim [|7({a, 5, yi}) @ idxen @ idx(a)ll
= lim |r({¢x (), $F™ (1), ¥F" (4)}) ® idx ()l

This shows that 79 can be extended to an isometry 7o : Eo((ax) —
Ey(Ox(x)) which is easily checked to be an isometric *-homomorphism,
in view of the properties listed in [9, Proposition 1.3].

We next show that 7y is onto. First note that wa(z)S*X(y) = ng,y
forallz,ye X. Let m1: M — M/J D 6X(X) be as in the beginning of
this section. By [9, 1.3]:

Sux(@)Spx(y) = T (Bl (@)4x (v) ® idx(x)on) = S, ,

because
elﬁx(z)ﬂl’x (y) — b0,y ® ic]-X(A) = ¢7X(X) (ez,y)-

Also, by [9, 1.3],
S2a@0,,. = Sz@p(@)ty,. = Sux(2a)50,,. = Spx(2a)Spx (1) ()

Since S¢X(a) = no(Sa), Sez’y = T]o(SzS;), and Su1®u2® Qun T
SuySuy - - Su,,, it only remains to show that Sy, Sy, - Sy, Ss --- S5 S

Un vy, v My

€ Imnyp for all u;,v; € X(X) and n > 1. We proceed by 1nduct10n on
n. The case n = 1 follows from the fact that, by the identities above:

Se@(px (a)+6,, Z)S;'®(¢X(a')+9y,,z,)
<S¢x (za) t STZ’X I)Sd)X y)S:sz(z)>
X

(wa (a'a’) T S¢x Sz/)x(y )wa )
=)o (SmSz,a/ + S'MSZIS;, o T SzSyS;S;/a, + SzSy<szr>S;,S;,)
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for all a,a’ € A and z,2',y,y', 2,2’ € X. The induction step follows
from the fact that for all a,a’ € A and z,2',y,y',2,2' € X

Sz®(¢x(a)+0y,1) (Imﬁo) S;/®(¢X(a/)+9y,,zl) C Imno,

which is checked by applying the action vy of Remark 3.6 (or by direct
computation).

We now define

m : B1(Ox) — E1(Ox(x)) by m (Z Sziei) = Syx@nmoles),

for z; € X and e; € Ey ((5X) To check that the map 7; thus defined
makes sense and extends to an isometric map on F;(Ox), notice that

2

> Syr@amolen)| =11 n0(ei) S} (aSux (o)M0(€5)
i i,7

=m0 (152, 50,05) H

%,J

= ZS’zlel

2

Straightforward computations show that (ng,71) is a Hilbert C*-
bimodule homomorphism. Besides, the map 7; is onto because so is
No- It is clear from the definitions that the diagram commutes. Finally,
it follows from [9, Proposition 1.3] that (ix,74) is a homomorphism of
correspondences and it was shown in Example 2.4 that so is (¢ x, ¢x). O

By considering the composition of the inclusion with the maps
(¥x,dx) in the proposition below, one gets, in the terminology of [5],
a Cuntz-Pimsner covariant representation of (X, A) on the C*-algebra
6x(x), and the existence of (19, 71) follows from [5, 1.3]. However, we
still need to go through the computations in the proof of that propo-
sition in order to show that (np,7;) is an isomorphism because, since
the representation might not be faithful, [5, 4.1] does not apply.
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Corollary 3.8. Let (X,¢x) be a correspondence over a C*-algebra
A, and let X (A) and X (X) be as in Ezample 2.4. Then Ox and Ox (x)
are isomorphic.

Proof. The isomorphism of Hilbert C*-bimodules (11,79) obtained
in Proposition 3.7 induces an isomorphism from Eo(éx) X E1(6X)
to Eg(@x(x)) X E1(6X(X)). The statement now follows from Re-
mark 3.6. O

Theorem 3.9. Let X be a correspondence over a C*-algebra A, and
let (Xoo, AX) be as in Ezample 2.4. Then Ox =2 AX x X,.

Proof. As in Example 2.4, let (X0, AX, {\X},{\41) be the direct
limit of the directed sequence {(X,, AX, ¢X,»2X)}, and let

(ixariax) + (Xa, 4%) — (E1(Ox.), Bo(Ox.,))
and
o) + (B1(Ox,) Bo(Ox,)) — (E1(Ox,..), Bo(Ox, )

be as in Proposition 3.7.

Let T7 : Ei((axn) — E;(Ox) be the isomorphism of Hilbert C*-
bimodules defined by Y7 = (pin}! .- nP ")~ foralln >1,i=0,1.

By Propositions 2.3 and 3.7 and Remark 2.5, there are homomor-

phisms of Hilbert C*-bimodules (iX,i4 ) making Diagram 1 commute.

Since by Proposition 2.3 the pair (iX,i%) : (Xo,4X) — Ox is
covariant in the sense of [1, 2.1], it induces, by the universal property
of the crossed product, a *-homomorphism i : AX x X, — 5)(, which
is onto because its image contains {S, : € X U A}. It only remains
to check that iZ is injective, since this would imply by [4, 2.9] that so
is 4, 7 being covariant for the dual action, [1, 3], on the crossed product

and the action - discussed in Remark 3.6 on Ox.
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(63 00 X)

(Xn, A7) (Xn+1, A7)

n; n: n+1 n+1l;
(TIZXnYTOZA%() (Tl zxn+1,To ZA§+1)

(E1(Ox), Eo(Ox))
DIAGRAM 1.
First notice that
||¢nX(an) ® idx;‘?’“” = [lan ® idx®fz'1 I,

forn > 1, k >0, a, € AX C L£(X,_1). In fact, the unitary
idx, ,®LG% y  ®idyx, for Lax x, , asin Notation 1.1, intertwines

X (an) ® idyer and a, ® ide?fl ®1ida, . Now, by Corollary 3.4:
6 (an) ®@ idyex || = [lan ® idyor ®idaxl = [lan ®idyors].
It now follows by induction on m — n that
6% m(@n)]| = lan @ idomn ],
formZnZlandanEAr)f.

We next show that 2 is injective by showing that its restriction to
MA(AX) is isometric for all n > 1. Take a,, € AX for n > 1. Then:

A2 (@n)]| = tim 9., (@)
= lim [la, @ idyom |
= lim [la, ® idgon |
— [/
— i (an)]

= [l (e (an))ll. o
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4. Morita equivalence for Cuntz-Pimsner C*-algebras. We
establish in this section a sufficient condition for the Morita equivalence
of two augmented Cuntz-Pimsner C*-algebras. In order to do so, we
view these algebras as crossed products by Hilbert C*-bimodules as in
Theorem 3.9, and then we use the condition for the Morita equivalence
of crossed products given in [1, 2, 4]. Within this section we will be
making extensive use of the construction described in Example 2.4.

Lemma 4.1. Let (Y,dy) be a correspondence over a C*-algebra
B, and let M be a right Hilbert C*-module over B. For Y (B) and
Y (M) as in Ezample 2.4, there is an isometric x-homomorphism O :

KMY)— K(Y(M)) such that

[01(0m1®y1,m2®y2)](m ® T) =m1® 9y1,yz ¢Y(<m27 m))r,

for all mymy,me € M, y1,y2 € Y, and r € Y(B), where Y(M) is
viewed as a Y (B)-right Hilbert C* module.

Besides, 01 (0m1®y1<y27z2>7m2®zl) = eml®0y1,y27m2®921,22 .

Proof. It was shown in [9, 2.2] that K(M ® Y) and K(M ® K(Y))
are isomorphic. Now (M ® K(Y)) can be viewed as contained in
K(Y(M)), since MRK(Y) is a closed Y (B)-right Hilbert C*-submodule
of Y(M): In fact, if z;,y; € M @ K(Y) for i = 1,...,n, we have by [6,
2.1]:

n

>0

= ”Al/QCl/QHMn(Y(B)) = H 20M®IC(Y)
i=1

ZiYi

7

>Y(M) >M®IC(Y

where A;; = (x4, x; = (@;,x; ), and analogously for C.

In this way we can obtain an isometric *-homomorphism I : (M ®
K(Y)) = K(Y(M)), defined by I(92 M) = 622 The map O,
is now defined to be the composition of the isomorphism P in [9, 2.2]
with I. By keeping track of the proof in [9, 2.2], we get the formulas in

the statement. In fact, let us identify w; ® wa with 0y, 4,, for w; € Y,
1=1,2.

Then, according to [9, 2.2], [P(0m,ey:,meoy:)](M & Ouw, w,)] gets
identified with
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(Ormy @y, ma @y, (M @ w1)) @ Wa = m1 @ y1(ye, Py ((m2, m))w1) @ wa,

which gets identified with mq ® 0y, 4, dy ((Mm2,Mm))0w, w,-

Straightforward computations now show that

[P(0m1®y1(y2,22>,m2®21)](§) = 0m1®9y1,y2,m2®9z1,z2 (5)

when £ € M ® K(Y). Then, by applying the map I we get:

O1 (eml ®y1 <y2722)7m2®z1) = eml ®by, ,yo M2®@b2 25

which yields the formulas in the statement. |

Proposition 4.2. Let (Y, ¢y) be a correspondence over a C*-algebra
B, and let M be a right Hilbert C*-module over B. Let Ly and Lo
be the C*-subalgebras of LIM ®Y) defined by Ly = K(M ®Y) and
Ly ={T®idy : T € K(M)}, and let L = Ly + Lo be the C*-subalgebra
of LIM ®Y) generated by Ly U Ly. Then there is an isomorphism
O:L— K(Y(M)).

Proof. We first set O; : L; — K(Y(M)), for i = 1,2, as follows:
O is the *-homomorphism defined in Lemma 4.1 and, in view of
Corollary 3.4, we set O2(T ® idy) = T' ® idy (), for T' € K(M).

Our aim is to define O(Ty + T») = O1(T1) + O2(T3) for T; € L;,
1 = 1,2. To make sense of this, first note that
0;i(T) ®idy = (idy ® Ly(p),y) "T(idy ® Ly s,y ),
for T'€ L;, i = 1,2, and Ly ),y as in Notation 1.1.
The equality is easily checked for ¢ = 2 whereas, if T = 0, 9y, m2@ys»
for my,me € M, y1,y2 € Y,and m®rQ®y e M Y (B)®Y, then:
[(idas ® Ly (p),y) "' T(ids © Ly () y)|(m @7 @ y)
=m1 @ Ly () y (y1(m2 ® y2,m @ ry))
=m; & L;%B),y (y1(y2, dy ((m2, m))ry))
=m1® 0y17yz¢Y(<m2a m))r QY
= (01(T) @idy)(m@T@yY).
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On the other hand, it is straightforwardly verified that

0;(T) ® idy(p) = (idm ® Ly (5),y(5)) 'O:(T)(idm @ Ly (p),v(5))
forT € L, i =1,2.

By virtue of Corollary 3.4 and the identities above, we have, for
T, € Li,i=1,2:

|01(T1) + O2(T2)||

= [|(idm ® Ly ),y (8))[(O1(T1) + O2(T2)) ® idy (5]
x (idp ® Ly s,y (m) |l

[1(O1(T1) + O2(T2)) ® idy (p,||
[1(01(T1) + O2(T3)) ® idy ||
= ||(idy @ Ly (s),y) *(T1 + T2)(idm ® Ly (m),v)|l
=Ty + Tz},

which shows that O can be defined as above, and it is an isometric
linear map that preserves the involution.

Now, if T; € L;, T1 = Om,0y1,ms0y, and 1o = S @ idy, then

O1(T2T1) = O1(0sm,0y1,ma0ys)

= (S ®idy())O01(0m, 0y, ms®ys)
= O2(T2)01(T1)-

It follows that O is multiplicative from the preceding and from the
fact that O; and Oy are *-homomorphisms. It only remains to show
that O is onto. This fact follows from the following identities that can
be verified directly from the definitions:

° 9m1®¢¥(b1)7ﬂ12®¢y(b2) = by, maby @ idY(B) = O(emlbl,m2b2 ®idy)
b 9m1®9y1,y2,m2®¢y(b) = O(9m1®y17mzb®yz)

o 0m1®‘9y1,y27m2®9z1,22 = O(9m1®y1(yzvzz>,mz®21)v
where my,mg € M, y1,y2,21,22 € Y, and b,b1,b2 € B. ]

Remark 4.3. Notice that we have shown at the beginning of the proof
of Proposition 4.2 the identity

(idy ® Ly(B)7y)71T(idM ® Ly(B)7y) =0(T) ®idy
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for any T belonging to the C*-subalgebra of £L(M ® Y') generated by
KMeY)u{T'®idy : T € K(M)}.

Proposition 4.4. Let X and Y be correspondences over C*-algebras
A and B, respectively, and let M be an A— B Hilbert C*-bimodule that
is full on the left and such that there is an isomorphism J : X @ M —
MQ®Y of A— B correspondences.

Let I: X(A) — K(Y(M)) be given by I(T) = O(J(T ®idpr)J 1), for
O as in Proposition 4.2. Then I is an isomorphism, and I(¢x(a)) =
dm(a) ® idy(p) for all a € A.

Proof. By Proposition 4.2, it suffices to show that T+ J(T®idps)J !
is an isomorphism from X (A) to the C*-subalgebra L of L(M ® Y)
generated by (M) ®idy and K(M @ Y').

The image of X (A) by the map T' — T ®ids is the C*-subalgebra C
of £L(X ® M) generated by K(X @ M) U {¢x(a) ®idp : a € A}, since
0Z1<m1,m2>A,E2 ®idy = 9z1®m1,w2®m2 for all z1,x2 € X, my,mg € M.

Besides, if T ® idpys = 0 for some T' € L(X), then 0 = (T2 @ m, Tz ®
m) = (m,(Tz,Tx)m), for all m € M, z € X. It follows that T'= 0
because A acts faithfully on M.

Notice now that conjugation by J carries C' isomorphically into L
because

J (911®m1712®m2) J = 0J(z1®m1),J(zz®mz)v
J(¢x(a) ®idu))J " = dum(a) ®idy,

for all 1,25 € X, my,ms € M, and a € A. Besides, {¢p(a) : a €
A} = K(M).

Finally, I(¢x(a)) = O(¢m(a) ® idy) = ém(a) ® idy(p), for all
ac€A. O

Proposition 4.5. Let X, Y, and M be as in Proposition 4.4.
Let {( X, AX, 6% 0N} and {(MY,BY ,pMY ¢B)} be the directed se-
quences defined in Ezample 2.4, and let (Xoo, AX {NX},{0A}) and
(MY, BY, {uM}, {uB}), respectively, denote their direct limits.

(oo}

Then MY, is an AX — BY. is a Hilbert C*-bimodule that is full on the
left.
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Besides, the canonical maps (A2, uM, uB) : (AX, MY ,BY) — (AX,
MY ,BY)) are homomorphisms of Hilbert C*-bimodules.

If M is also full on the right, and Y is left nondegenerate as a B-
module, that is, if ¢y(B)Y =Y, then MY is an AX — BY Morita
equivalence bimodule.

Proof. All the statements involving the right structure except for
the last one, which we discuss at the end, were taken care of in
Proposition 2.3, so we focus on the left structure. We have shown
that MY is an A — BY left full Hilbert C*-bimodule by identifying
AF with K(MY') via the isomorphism I of Proposition 4.4.

Our aim is to show, in the notation of Example 2.4, that M) is an
AX — BY Hilbert C*-bimodule that is full on the left in a compatible
way with the corresponding directed sequences, which will provide MY
with a structure of AX — BY Hilbert C*-bimodule.

First notice that the map J; : X; ®ax My — MY ®py Y1 given by
Jy = (idy ® L;llyy ®idpy )(J @idpy )(idx ® Lax ary)
is an isomorphism of A;X — By correspondences. Note that J; preserves
the left action of A because, by Remark 4.3:
(idp ® L;lly’y ®idpy)(J ®idpy )(r @ idpy)
= [(idpy ® LE%,,Y)J(T ®idp)] ® idpy
=[(0(J(r®idy)J ") ®idy)(idy ® L;lly ) @idgy
= (I(r) @idy,)(idy ® Ly o ®idpy)(J @ idpy),
¥
for 7 € AX. Besides, J; is onto and preserves the right action of BY

and the B} -valued inner product because so do the maps composed to
get J.

Notice also that

X ®a M % M®pY
¢é‘®¢é”'YJ JW’Y@%
J1

X1 ®@ax My —=— M) @py V1

commutes because
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(idy ® L;llyy ®idpy)(J ®@idpy)
x (idx ® Lax iy ) (60 ® 65" )(za @ mb)

= (idy ® L;:yy ®idgy)(J @ idgy)

x (idx ® Lax yy)(z ® ¢x(a) ® m @ ¢y (b))
= (idy ® L;:yy ®idpy)(J ®idpy)

x [z @ I(¢x(a))(m® dy(b))]
= (idy ® L,;jyyy ®idpy)(J ®idgy)(x @ am ® ¢y (b))
= (idy ® L;%’,Y ®idpy)J(za ®m) @ ¢y (b)
= (0" @ ¢ )J(za @ mb),

forre X,ac A,me M and b € B.

Now this yields, by Proposition 4.4, an isomorphism I, : AX —
K(MY). Furthermore, the diagram

ax b oy

¢fJ J(¢>i”’y)*

LIC(MQY)

commutes, since by Proposition 4.4 we have, for r € A::

L6 (1) = éan, (1) @ idpy = L(r) @ idgy = [(6MY),1(12(r)),
the last equality being due to the fact that

0

¢f4’y(m1b1),¢§v[’y(m2b2) = 0m1®¢f’y(b1),m2®¢'f’y(b2) = 6m1b17m2b2 ®1dB;/7

for m; € My, b; € By, and i = 1, 2.

It is clear now that, by iterating this construction, we get isomor-
phisms I, such that the diagram
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AX I o

¢>;"XJ J(%M'Y)*
I,
AnX—|—1 —nt, ’C(M‘I’}L/-I—l)

commutes for all n > 0.

This shows that AX is isomorphic to the direct limit of {(K(MY),
(#M:Y),)}, which by Proposition 2.6 is (K(MY), (u).). Therefore,
MY is an AX — BY Hilbert C*-bimodule that is full on the left, with
left structure defined by
)‘ﬁ(an)/‘nM(mn) = ,unM(anmn), <U7Az/1(mn)a/1nM(m/n)>A§°

= An ((mn, m,) ax),

for m,,,m!, € MY and a,, € AX, where we write, as we will do from now
on, a,my and (my,m;)ax instead of [I,,(a,)|(m,) and I;l(Qmmm;l),
respectively.

Notice that the last equality shows that (A2, z*) is a homomorphism
of left Hilbert C"*-modules.

If Y is nondegenerate on the left, and M is a Morita equivalence
bimodule, then M} is an A — BY Morita equivalence bimodule
because (m ®@r,n ® s) = r*¢y((m,n)r)s, for m,n € M and r,s € BY .
Therefore, as one sees by taking an approximate identity for BY,
(MY, M} )r contains Im ¢y and ¢y (B)K(Y). But nondegeneracy
implies that ¢y (B)K(Y) = K(Y') since, given z,y € Y, then

ez,y = 6¢y(b)$',y = ¢Y(b)ez’,ya

for some ' € Y and b € B. Thus we conclude that M; is full on the
right as well.

It will follow by induction that M, is full on the right for all n > 0
once we show that Y,, is always nondegenerate on the left as a BY-
module. In fact:

¢y, (By )Yn = ¢y, (By) (Yo 1®By) = B Y, 1@ B, =Y, 1®B,,

n

since BY 2 K(Y,—1)-
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Finally, we conclude that in that case MY is full on the right because
(MY, MY) contains uZ((MY,MY)) for all n > 0. o

Remark 4.6. Let (Y,¢y) be a correspondence over a C*-algebra
B, and let Y, B}{ and Mz be as in Example 2.4. The proof of
Proposition 4.5 shows that

(1) The BY -left module Y,, is nondegenerate for all n > 1. Of course,
this might fail for n = 0.

(2) If X, Y and M are as in Proposition 4.5, M is full on the right,
and Y is nondegenerate, then M) is an AX — BY Morita equivalence
bimodule such that the AX — BY correspondences X, ® M} and
MY ®Y,, are isomorphic for all n > 0.

Theorem 4.7. Let (X, ¢x) and (Y, ¢y ) be correspondences over the
C*-algebras A and B, respectively. If, in the notation of Example 2.4,
there exists an Afo - B},’LO Morita equivalence bimodule M such that
Xno®@M and M QY,,, are isomorphic as Afo —B,’fm correspondences for
some ng > 0, mo > 1, then the augmented Cuntz-Pimsner C*-algebras

Ox and Oy are Morita equivalent.

Proof. The bimodules X, and Y, and the C*-algebras AX and BY
of Example 2.4 can be obtained as the limits of the corresponding
directed sequences starting, respectively, at ng and mg. Besides,
the directed sequence {(MY,¢MY)}, >, can be constructed as in
Example 2.4. Our aim is to show that Xo ®4x MY and MY ®pY Yoo
are isomorphic as AX — BY Hilbert C*-bimodules. It follows from the
remarks above that we can assume that ng = mg = 0 and, in view of
the last part of Remark 4.6, that Y is left nondegenerate over B. The
result will then follow from Theorem 3.9, Proposition 4.5 and [1, 4.2].

As in Proposition 4.5 and Example 2.4 we have the commuting
diagrams:

o x ¥ x
X —— Xn11 A, ——— An+1
AfJ A1 )‘;?J A
X AX

oo oo



CUNTZ-PIMSNER C*-ALGEBRAS 1079

by y o2 Y
Y, — s Yo BY ——B) |
Yoo BY,
MY MY, X @ax MY —T MY @py Y,
u,ny M ¢if®¢ﬁ”J Jm’i”"mﬁ
Mg; Xnt1 ®A§+1 M7}11+1 &M n+1 ®BY " Yot1-

Notice that, if m,m’ € MY, y,y’ € Y,, then by Propositions 2.3 and
4.5,

(! (m) @ iy (), ' (M) @ gy (4')) = (pag, (), 11z, ((m,m")) ()
= pz, ({y, (m,m")y'))

f(<m®y,m ®y))

and

A (@) @ ! (m), A (2') @ gy (m)) = (' (m), A (0, @) g (m))
= (! (m), ! ((z, 2"ym’))

= pl ((x@m,z’ @m'))

for z,2' € X,, and m,m’ € MY .
We now want to define Jo : Xoo ®ax MY — MY ®py Yoo by

Joo(()\f ® N%)(wn ®my)) = (NnM ® NZ)Jn(xn ® my,).

Now,

(10! ® 9 ) I (@0 @ M), (1) © iy ) I (7, @ m21,))
= i1, ((Jn(@n @ M), I (2, @ m3,)))
= 13, ((Tn @ M, @7, @ My,))
= (O ® ") (@n @ mn), (A7 @ ') (27, @ my,)).
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This shows that J, as defined above extends to a right Hilbert C*-
module homomorphism that preserves the left action of A.,. In fact,
by Proposition 4.5, given a,, € A, =, € X,, and m,, € M,,, we have

Joo[An(an) - ()‘f(xn) ® N%(mn))]
=Jw [)‘1)1( (anxn) ® Nﬁl(mn)]
= (' ® i, ) I (an@n ® M)
= (,uﬁ/[ &® ,u,}:)((;ﬁMn (an) ®idy, ) Jn(zn ® my)
= M(an) - Joo(Tr, @ my,).
Analogous computations show that J,, preserves the right action.

Besides, J, is onto because its image contains U, (uM (M,,) ®@ uY (Yy,)),
which is dense in M 01; ® Yoo

It remains to show that J., preserves the left inner product. This
follows as in [2, 1.2]: if &y, £1,&2 € X ® M, then

(Joo(60), oo (61)) ax Joo (€2) = Joo(€0) (oo (61), Joo (€2)) BY,
= Joo(60)(€1,€2) BY,

= Joo (€0(€1,€2) B.,)
= Joo (€0, €1) ax &2)
= (£0,€1) ax Joo (§2)- o

Remark 4.8. A similar result was shown by Muhly and Solel [8] for
Cuntz-Pimsner C*-algebras Ox of correspondences (X, ¢x) such that
¢x is injective and X left nondegenerate. Our result for augmented
Cuntz-Pimsner C*-algebras does not require the faithfulness of ¢.
Nondegeneracy, however, might play a role, as the following corollary
shows.

Corollary 4.9. Let (X, ¢x) and (Y, ¢y ) be correspondences over the
C*-algebras A and B, and let M be a Morita equivalence A—B bimodule
such that X @ M and M QY are isomorphic as A— B correspondences.
If Y is left nondegenerate, then the augmented Cuntz-Pimsner C*-
algebras Ox and Oy are Morita equivalent.

Proof. By Remark 4.6 the conditions in Theorem 4.7 are then met. O
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