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WHICH WEIGHTS ON R
ADMIT L, JACKSON THEOREMS?

D.S. LUBINSKY

ABSTRACT. Let 1 < p < oo and W : R — (0,00) be
continuous. Does W admit a Jackson theorem in L,? That
is, does there exist a sequence {nn}$ ; of positive numbers
with limit 0 such that

degi(rlgf)SnH(f—P)Wlle(R) < TIan'WHLp(R)

for all absolutely continuous f with [|f'W{; (r) finite? We
show that such a theorem is true if and only if

Ill)II;O ”W HLq[O,z] ”W”Lp[a;,oo) =0,

with an analogous limit at —oco. Here g is the conjugate
parameter of p. In an earlier paper, we considered weights
admitting a Jackson theorem for all 1 < p < co.

1. Introduction. Let W : R — (0, 00). Bernstein’s approximation
problem addresses the following question: when are the polynomials
dense in the weighted space generated by W? That is, when is it true
that for every continuous f : R — R with

lim (W) (z) =0,

|z|—00
there exist a sequence of polynomials {P,, }2° ; with
. _ _ 9
Jim [[(f = Po) Wi, m) = 07

This problem was resolved independently by Pollard, Mergelyan and
Achieser in the 1950s [6]. If W < 1 is even, and In1/W(e®) is convex,
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a necessary and sufficient condition for density of the polynomials is [6,
page 170]
T = 00.

/°° Inl/W(zx)
———d
0 1+ 2?2

In particular, for W, (z) = exp(—|z|®), the polynomials are dense if
and only if o > 1.

In the 1950s the search began for a quantitative form of Bernstein’s
theorem. One obvious question is whether there are weighted analogues
of classical theorems of Jackson and Bernstein, namely,

. C
o V= Plicion = S0

with C independent of f and n, and the inf being over (algebraic)
polynomials of degree at most n. For the weights W, where a > 1, it
is known that if 1 < p < oo,

M) PIWalls,m < On W ),

with C independent of f and n [5, page 185] and [11, page 81]. This
inequality is also often formulated in Jackson-Favard form,

degi(flgf)gn 1(f = PYWall, (w)

—1+(1/a) i 1
<Cn deg (}171;27;71 (" = P)Wal, (g, -

More general Jackson type theorems involving weighted moduli of
continuity for various classes of weights were proved in [4, 5, 11].

In a recent paper [10], the author showed that the weight W; does
not admit a Jackson estimate like (1), even though the polynomials
are dense in the weighted space generated by Wj;. The author also
characterized weights that admit Jackson theorems in L, for all 1 <
p < 0o. The main result there was:

Theorem 1.1. Let W : R — (0,00) be continuous. The following
are equivalent:
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(a) There exists a sequence {n,}52, of positive numbers with limit
0 and with the following property. For each 1 < p < oo, and for all
absolutely continuous f with ||f'W||r (r) finite, we have

@) degi(l}vf)gn”(f = P)Wll,®) < mllf' W, ®r), n=>L1
(b) Both

) Jim wie) [T <o

and

(4) lim W (x)™" /:o W =0

with analogous limits as * — —oo.

As a corollary it was shown that if W = e~ @, where Q' exists for
large |z|, then there is a Jackson theorem in L, for all 1 < p < oo,
when +Q’(z) — o0 as ¢ — £oo and there is no Jackson theorem if
Q' (z) is bounded for large |z|. In this paper, we focus on just a single
L, space and ask which weights admit Jackson theorems in that space.
We prove:

Theorem 1.2. Let W : R — (0,00) be continuous. Let 1 < p < co
and 1/p+1/q = 1. The following are equivalent:

(a) There exists a sequence {n,}°2, of positive numbers with limit
0 such that for all absolutely continuous f with ||f'W{|. (r) finite, we
have

. !
6) = PWlp ) < nllf Wis,m, n>1

(6) T [l o) W 0,

1||Lq[0,z] =

with an analogous limit as x — —oo.
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Remarks. (a) Thus, there is a Jackson type theorem in a specific L,
space if and only if (6) holds. In fact, we shall show in Section 3 that
(6) is necessary and sufficient for the existence of a decreasing function
n: (0,00) = (0,00) with limit 0 at oo, such that

1F WL a0y < 1@) I WL 0,00

for all absolutely continuous f with f(0) = 0. This is a “shifting”
weighted Hardy inequality.

(b) Theorem 1.2 actually implies Theorem 1.1. For condition (6)
for p = 1 is equivalent to (4) and for p = oo is equivalent to (3).
Interpolation then gives (2) for 1 < p < oco. Of course, Theorem 1.1
does not imply Theorem 1.2.

(c) It was shown in [10] that there is a weight W admitting an L;
Jackson theorem, but not an L, one (and conversely). Here we show:

Theorem 1.3. Let 1 < p, r < oo with p # r. There exists
W :R — (0,00) such that

1
T2 < W(z)/exp (—a:Q) <1+2z% =z€R,

and W admits an L, Jackson theorem, but not an L, Jackson theorem.
That is, there exist {n,}°2, with limit 0 at co satisfying (5) in the L,
norm, but there does not exist such a sequence satisfying (5) in the L,
norm.

Theorem 1.3 shows that not only rate of decay, but also regularity,
of W is necessary for a Jackson theorem. After all, the Hermite weight
exp(—mz) admits a Jackson theorem in L, for all 1 < p < oo, but W is
close to W», yet admits a Jackson theorem in L, but not L,.

This paper is organized as follows: we prove restricted range inequal-
ities in the next section, and an estimate for the “tails” ||fW/|L, (jz|>x)
in Section 3. In Section 4, we prove Theorem 1.2. In Section 5, we
prove Theorem 1.3.

Throughout C,C1,Cjy,... denote constants independent of n and x
and polynomials P of degree < n. The same symbol may denote differ-
ent constants in different occurrences. If (¢,) and (d,) are sequences
of real numbers, we write
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cp ~ dy,

if there exist Cy,Cs > 0 such that
C’1 S cn/dn S CZ,” Z 1.

Similar notation is used for functions. The linear measure of a set
B C R is denoted by meas (B). The set of all polynomials of degree
< n is denoted P,.

2. Restricted range inequalities. Restricted range (or infinite-
finite range) inequalities are a crucial ingredient in weighted approxi-
mation on the real line [8, 11, 12, 14]. However, none of the standard
ones cover our class of weights. The methods used to prove the form
we need, are similar to, but not the same, as in [10]. In this section,
we fix 1 < p < oo, and let

(7) W(z) = |[w!| Zj[o,z] , z€(0,00),

where 1/¢+1/p=1.
Theorem 2.1. Assume that, for = € [0, 00),
(8) W1z o000 W[ 107 < ¥,
where v is decreasing in [0,00) and
) Jim (@) =0,

with a similar relation in (—o0,0]. There exists g, > 0, n > 1, such
that

(10) gn =o(n), n — oo,
and for n > 1, and all polynomials P of degree < n,
(11) I1PWlL (z1>q.) < C4 " IPWIIL () -

Here C is independent of n and P.
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In the rest of this section, 1 is the function specified in Theorem 2.1.
For n > 1, we choose A,, > 0 such that

"W (@)1, 14, 2,) = 3 J" W @)1, 0 20 = A

(We show below that A,, exists).

Lemma 2.2. (i) For n >0,

12" W)l 1, 1,00
1s finite.

(ii) For n > 1, A, exists, is finite and positive, and

(12) lim A, = cc.

n—o0

(iii) For n > 1,

(2An+2)_2An+2 S ||on(m) ||Lp[1,oo)

(13) —2p 2p+1\1/
< (24,5 2777 )PA L.

(v) If B C [0,2A,12] has linear Lebesgue measure at least 1, then

Wz, =)™ (242042) ") Agnsa.

Proof. Observe that (8) implies
(15) HWHLP[w,OO) < ’QZJ(CE)W(:E), z >0,
and by Hoélder’s inequality, for = > 1,

1< Wleyo1,0 [[W ], < IW ey o100 W™

1
qle—1,z] ||Lq[0,z] ’
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so that

(16) W(z) < Wyt @3> 1.

(i) If p = oo, this was established in Lemma 2.3 (a) in [10]. Suppose
now p < oco. Let 0 < a < b < co. We see using (15) and (16) that

/ "P</ we( )dt)dx</b PP (z)WP (z) da
— / WP(t [ / mln{t7b}x””dm] dt

< z/xp(a)/a WM_IWP@) dt] do

tnp+1 anPt1
(17) / WP(t)———— dt
np +  onp+1

b min{t+1,b}
< ¥(a) / W () [ / P d:c] dt
a—1 max{t,a}
b
< ¥7(a) / (t+ 1) WP (t) dt.
a—1
Here, if a > 2, in the integral on the righthand side, t > a —1 > 1, so

1\"™ 2\"™ (2np)/
(E+ )™=t (14 ) <14 2] <amrelre,
a

Moreover, if t > a2'/("P+1)  then t"P+1 — g™+ > (1/2)t"P*!, Thus,
(17) implies

(18) /b t"P TP (t) dt

a2l/(np+1)
b
< 2P (a)(np + 1)el2nP)/ / PP (L) dt.

a—1
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As a > 2, t"P < t"P*! in the integral on the right, so

b
/ t"P WP (t) dt |1 — 2P (a)(np + 1)e<2"P>/“}
a21/(np+1)
a2/ (np+1)
< 2P (a)(np + 1)e@P)/a / Z"PWP () da.
a—1

If @ is so large that a > 2np and
1
20(a)(np + 1)e < 5,

this gives

q2l/(npt1)

b
/ t"PTLWP(t) dt < / T"PWP(z) dx.

21/(np+1) a1

Letting b — oo gives the finiteness of the norm ||z"W (z)||L,1,00)-

(ii) The existence of A,, € (0,00) follows as the norm in (i) is finite,
and u — [|z"W ()L, [u,24] is @ continuous function of u, with limit 0
as u = 04 and u — oco. (In the case p = oo, this follows from the
finiteness of ||z" ' W (z)||L,[1,00)). Next, for fixed u > 0,

A 2 [[&"W (@) |, w20 = " WLy 20

SO

lim inf AY/™ > u,
n—oo

and hence

lim ATI/" = 00.
n— oo

If a subsequence of {A,} remained bounded, we see that the corre-
sponding subsequence of {A,} cannot admit the growth just proven.

(iii) If p = oo, the righthand inequality in (13) is immediate. Suppose
now that p < co. Choose jg such that

9Jo < An+2 < 9Jo+1
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We see that

An+2
/ z"PWP(z) dx
1

Jo Apyo/29 . 2
< (T g
- jgo ‘/An+z/2j+1 ¢ (An+2/2-7+1> (z) da

Jo
—2p j+1)2p AP
< An+222(J ) PAP
Jj=0
—2p 5 (jo+1)2p+1 AP 2p+1 AP
S An+22(]0 )2 An+2 S 2% An+2

Also,
(19)
00 A Jr22]Jr z 2p
x"PWP(z)dx < / (—> WP(x)dx
/An+2 Z Apg227 Apy22 ( )

< A&%(Z?‘m) AL,y 2457800,
=0

Then the upper bound in (13) follows. The lower bound follows from

1" W (@)1, 1,00) 2 1E" W (@)1 10, 40,240 21
(2An+2 —2 Hmn+2W

= (2An+2) 2An+2-

||L n+2,2An+2}

(iv) If p = oo, this follows from (19) of Lemma 2.3 (a) in [10]. (There
£(n) plays a role similar to A,). Suppose now p < co. If we choose
a4 =ap = Apyp22 /P and b= 24,5, (18) gives for large enough
n’

2An+2
/ t"PLWP (t) dt

Apy2
b
< 207 (ay) (np + 1)e27P)/an / PP () dt

a,—1
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Here by (iii), and choice of a,

b b
/ t"PWP(t)dt < (a, — 1) %P / tM PP () di
a a,—1

n—1
n+2 2Ap42
<CA, +2< / / >t("+2)pr(t) dt
an — An+2

S CA;—?-gQAn+27
with C independent of n. Combining the above two inequalities gives

2An+2
A, = / t PP (1) dt

An+2

2An+2
< (24,42)%P71 / t"PHIWP(t) dt

Any2

< (24542)P 71207 (an) (np + 1)eCrP)/anC A AP,

S Cl n,¢p( ) 2np /anA;D

an

Here (] is independent of n. If we write a,, = §,n, we can recast this
as . )

<y —e?P)/bn

WP(an) = E.C

Since 1 has limit 0 at oo, and a,, = A, 422 Y™+t 5 00, n — o0, it
follows that necessarily §,, = o(1) and so a, = o(n). That is,

Apyo = o(n).

(v) Exactly as above, Hélder’s inequality gives

1< W]l |W™ < Wiz, W™

1HLq(B) IHLq[O,Azm-ﬂ ’

Using (15), we can continue this as
IWllc, )
W (Agni2)
Y(Azns2) WL, 420400
(1) (2Aang2) " [l W (2
V()7 (242042) P Agnpa. D

v I\/

v

||L [A2n+42,2A2n 2]
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Lemma 2.3. There exists a Cy > 0 such that for n > 1 and all
polynomials P of degree < n,

I1PWIIL, 1160043, 52,000 < C247 " IPWL 10,00 -

Proof. Our approach is similar to that in [9]. Let P be a polynomial

of degree k < n, say
k

P(z) = cH(z — zj).

Jj=1

We assume p > 8, ¢ # 0, and split the zeros into “small” and “large”
zeros: we assume that

lzjl <p, J<14
|$j|>p7 Jj>.

For |u| <1/2p,z>pandi<j <k,

L+ /|| <2<1+§><4£.
1 Jul/ |z T p) = p

< H )

We now apply a famous lemma of Cartan:

a:—a:j

’Ulfl‘j

Then for such x and u,

‘ P(z)
P(u)

i

| JRCEED)

j=1

> ¢

for u outside a set of linear measure at most 4ee [1, page 175], [2, page
350]. Choosing € = p/100, we obtain

‘Izzgx; . (2009:)’“ . <200:v>",
for z > p, u € [0, (1/2)p]\S, Whel;e '
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de 1
S) < — =p.
meas (S) < 100,0< g”

Recall that meas denotes linear Lebesgue measure. Then, for such u,

200" n
@) IPW gy < (200) 1P W s, -

Moreover, [0,(1/4)p]\S has measure at least (1/8)p > 1, so we may
find B C [0, (1/4)p]\S with linear measure at least 1, and hence

IPW |1, 1400p,00) IW]lL,(3)

200\ " n
< (7) WL, ) 2" W ()], fa00p,00) -

Now we choose p = 4As,, 12, at least for n so large that 4As,,2 > 8.
Then [0, (1/4)p]\S C [0, Azn+2]. By (v) of the previous lemma,

Wiz, 5 = %(1) " (242n42) "2 A i,

Combining the above inequalities, we see that if P is not identically 0,

IPWI L, 1400p,00) / IPW |, 10,00)

200\" _ (e
< (20) 1 Wle g [60) 7 (2Asn)™ ™ Mo

1\" " B .
= (ﬁ) ||ac2 W(x)HLpHOUP,OO)/ W(l) ' (242n+2) (2nt2) A2n+2:|
S CS_nAgnJrZa

by (iii) of the previous lemma. Here C' is independent of n and P, and
Aspi2 = o(n), so the result follows. For the remaining finitely many n,
for which 449,12 < 8, a simple compactness argument gives the result,
if C5 is large enough. i

Proof of Theorem 2.1. This follows from Lemma 2.3, its analogue in
(—00,0], and the fact that A,, = o(n). O

We also record:
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Lemma 2.4. Let W : R — (0,00) be continuous, 1 < p < oo, and
assume that for each n > 0,

(21) [z" W ()|, &) < oo

Then there exists an increasing sequence of positive numbers {£,}52
such that for n > 1 and all polynomials P of degree < n,

(22) IPWI|L,(a1>¢0) < C127 " |[PW |1, (-1,1),

where Cy is independent of n,p, P.
Proof. See Theorem 2.2 in [10]. O

Tail estimates. We prove a “shifting” weighted Hardy inequality,
involving the function

8w) = [Wltyfeoy [y 20,

Theorem 3.1. Let W : R — (0,00) be continuous. Let 1 < p < oo
and 1/q+1/p = 1. The following are equivalent:

(I) There exists a decreasing function 1 : [0,00) — (0, 00) with limit
0 at oo such that

(23) WL, (epza) < @) 1F WL, m) >

for all a > 0 and every absolutely continuous function f: R — R with
F(0) =0
(1)

(24) Jim ¢(a) = Um [[Wlz, a0 [W7|, 0.0 = O

with a similar limit as a — —oo.

Lemma 3.2. Let a > 0. Then

17W oy < 17707 (5D 6(2) ) 15 g o
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for every absolutely continuous function f : [a,00) — R with f(a) = 0.
Here, if p= 0o or p = 1, we interpret p*/P¢'/? as 1.

Proof. Let

B= sup )HWHLP{z,oo) W=l

z€(a,0 a,2]

The classical weighted Hardy inequality asserts that, for every f as
above,
1FW I, 00y < PPV IB|F W,

P[avoo) :

(See [13, page 13, Theorem 1.14] for the proof when 1 < p < co. Take
g = p there and w = v = WP. For p =1 or p = o0, see [13, page 49,
Lemma 5.4]. An alternative reference is [7].) Since

B < S Wz, 2,00 (Wl p0.0 = S‘;E‘ﬁ(x)v

€T

the result follows. m|

Lemma 3.3. Let a > 0. Then

Wz, oy < (1497707 (5p6(2)) 15 W, o)
for every absolutely continuous function f : [0,00) — R with f(0) = 0.
Proof. Write for z > a,

Y A .
f(z) /0 f +/a f + fi(z)
Then

(25) HfWHLP[a,oo) < ”CWHLP[a,oo) + ||f1W||Lp[a,oo) .

Here, by Hélder’s inequality applied to C,

||CW||Lp[a,oo) < HfIW”Lp[o,a) HW_lHLq[o,a] W[, [a,00)
= Hle”Lp[O,a) ¢(a).
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Moreover, by Lemma 3.2, as fi(a) =0,
Wl g0y < 2707 (500 6(@)) W 0
Combining the above three inequalities gives the result. u]

Proof of Theorem 3.1. Sufficiency of (24) and its analogous limit at
—00. This follows directly from Lemma 3.3. We can choose

n4(a) = (1 +p1/"q1/‘1) supp(z), a>0,

z>a

with a similar function n_ to handle (—o0,0), and then set n =
max{n_,n4}.

Necessity of (24) and its analogous limit at —oo. For p = 1 and
p = oo, the necessity was established in the proof of Theorem 3.1 in
[10]. Suppose now 1 < p < co. Let a > 0 and

min{z,a}
fz) = / W4z >0.
0
Then

a 1/p -
Wl = ([ W07) =

SO
1F' Wz, 0,000 2(a) = 1F Wz 10,00 W 0.0 Wl las00)

= W o Wz, o,

Lg4[0,a]
= </0 Wq> WL, [a,00) = HfWHLP[a,oo)'
Our hypothesis gives
WL, 4,00
n(a) > 2 = ¢(a).
HfIWHLp[O,oo)

So ¢ has limit 0 at co. Similarly, the analogous limit follows at —oo. O
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4. Weighted approximation. We begin with two lemmas, which
are similar to corresponding lemmas in [10]. We shall use notation
specific to this section: we use integers n > 4 and 1 < m < (n/4), as
well as parameters

1

where {g,}5 ; are as in Theorem 2.1. We let p(m) denote an increasing
function that depends on m and W, while o()\) denotes a function
increasing in A\. These functions change in different occurrences. The
essential feature is that o is independent of m,n,p and functions f,
while p is independent of A, p and functions f. At the end, we choose
m to grow slowly enough as a function of n, and then A — oo sufficiently
slowly. We let P,, denote the set of polynomials of degree < m with
real coefficients.

Lemma 4.1. Let W : R — (0,00) be continuous and satisfy (6),
with an analogous limit at —oo.

(a) There exists an increasing function o : [0,00) — [0,00) with the
following properties: let m,\ > 1. For 1 < p < oo and all absolutely
continuous f with f'W € L,(R), there exists R, € Py, such that

o(A
IF = Ba) Wil ony < 2 Wl

(b) There is an increasing function p : Z, — (0,00) depending only
on W such that

1Ry < 20m) (17W1 g,y + 1 W Ly ) -

Proof. (a) By the classical Jackson’s theorem [3, (6.4), Theorem 6.2,
page 219], there exists R,, € P, such that

TA
IIf— Rm||Lp[_2)\72)\] < mrl ||fl||Lp{—2)\,2)\] :
Then
1(f = Bn) WL, —2x25)

A _
< IWllzwr-2x,20 W7 1 oo 1 Wi, ) -
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So we may take

o(A) = TAW/|L 25,24 ||W_1HL(X,[72/\,2/\] :

(b) From our restricted range of inequalities, and continuity of W,
1B WL, m) < CllBmlL, =g qm) WL =g g
Moreover, from the proof of (a),
B2, 1—2x.2x
™

< A et

<N fllzy—2x20 + m 102, (27,20

< HWﬂHLm[fz,\,z,\] |:||fWHLp[72>\,2>\] T WL, —anan]| -

We shall show that

m+(1/p)
dm
20 Wl gy < O (%) IRl ana

where C' is independent of m, A, ¢m, {Rm}- (Recall that 2X < g¢,,).
Then, on combining the above inequalities, we obtain

IR W, gy < 00m) [IIW i —an o0 + 1 W g, on2g]

where
p(m) = Cm?*/Pgn /P,

oL P

oo [=qm,qm]

—qm,qm] (1 + ﬂ-qm)

Now we proceed to establish (26). Recall the Chebyshev inequality [3,
page 101, Proposition 2.3], valid for polynomials P of degree < m:

[P (@) < |Ton (@) | Pllpot-1,05 2] > 1.

Here T, is the classical Chebyshev polynomial of the first kind. By
dilating this, and using the bound

T (2)] < (22))", || > 1,

we obtain
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am \"
Roltetaman) < (%) 1Rl onan

Using Nikolskii inequalities [3, page 102, Theorem 2.6], we continue
this as

1Rl 2, (= grsam] < (20m)"" 1 Ronll 1o [ =]

X HRmHLP[—ZA,ZA],
and then we have (26). O
Lemma 4.2. There ezists C > 0 such that for large enough n, and

for 1 < X\ < (1/2)qy, there are nonnegative polynomials V,, of degree
< 3n/4 such that

(27) 11—V, ()] gc%, z €=\ A
(28) 0< Va(z) <O, |z| €[ 2)];
(29) 0< Vp(z) < c<%> Lzl € 22X, gn)-

Here C is independent of n, A and x.
Proof. See Lemma 4.2 in [10]. o

Proof of the sufficiency part of Theorem 1.2. This is quite similar to
that of Theorem 1.1 in [10], but there is an important difference: there
we introduced estimates for R,,W in the uniform norm, while here we
need to restrict ourselves to a given L, norm. So we include all the
details.

We may assume that f(0) = 0. (If not, replace f by f — f(0) and
absorb the constant f(0) into the approximating polynomial). We
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choose n > 1 and 1 <m < n/4, and let X satisfy 1 < X < (1/2)gy,. Let
R,, and V,, denote the polynomials of Lemma 4.1 and 4.2 respectively,
and let

P,=R,V,.

Then P, is a polynomial of degree < n, and
(30) inf |[(f = P)Wl,®)

deg (P)<n
< (f = P) WL, m)
<= Pa) WL, —gn.an] T IFWIL, R\ [=gn,an])
AP WLy R\ [ g00])
S = Pa) WL, —gnsan] T WL, R\[A,A])
+ C4 Y|P WL

p[_q"a‘Zn]’

by Theorem 2.1 and as ¢, > \. Here,

(B1) [(f = Po) WllL,—gn.qn]
SN = Pa) Wz, —an + W]z, \=aa)
NP WL, (1= gn,qn\ = AA)
— T 4Ty +Ts.

Firstly,

(32)
Ty < || (f = Ro) WllL, oo + |1 Rm (1= Vo) Wil -
< (f = Bin) WL, A
F R W LA lll = Vallo o j=aa)

o(A

< 2w,
+p(m) (1 WLz, ) + 11 Wiz, ) 11 = Vil oA
o(A 4n

< T W, )+ o) W 0y (0(0) + O,

by Lemmas 4.1, 4.2 and Theorem 3.1. Note that since f(0) = 0, the
latter gives

1fWllL,®) < 2O WiL,m)-
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The crucial thing in (32) is that C,7(0),c0 and p are independent of
f,n,p. Next, Theorem 3.1 gives

(33) Ty < (MWL, w)-

Of course this estimate also applies to the middle term in the righthand
side of (30). Next,

Ts < [|PaWllL,(x<lei<en) + 1P WL, 2a<01<qn)
=: T31 + T30.
Here

(34)
T3y < |RmW |1, (a<lzl<2n) [ Vall Lo (A< ol <22)
S C(Bm — HWllL,a<ie1<2n) + I WL, (a<jzi<2n))

o(A
< (TR + O Wy ).
by Lemmas 4.1, 4.2 and Theorem 3.1. Also,

T3 < ||RmW||Lp(2,\g|z\gqn)||VnHLoo(2>\§\z|Sqn)
2
an
< o) £ i (%)

by Lemmas 4.1, 4.2 and another application of Theorem 3.1. Combin-
ing this and the estimates in (31) to (34) gives

(35) 1 (f = Pn) WllL,[~gn.an]

< |fIW||Lp(R)C{% + p(m)%" + n()\)}.

Then using this estimate and Theorem 3.1, we deduce that

o(A Qn
PNy < W, O 2 oy 22 1,

m
Combining this estimate, (30) and (35) give

degi(flgf)gn I(f = P)WL,®)

< |f’W||L,,(R)C{7 + p(m)%" +n(\) + 4_”},
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with C independent of n, m, A, p and 0. The functions ¢ and p obey the
conventions listed at the beginning of this section, and are independent
of f, n, m and p, as is the constant C'. For a given large enough n > 1,
we choose m = m(n) to be the largest integer < n/2 such that

p(m) 22 < (q—")m.

n

Since (by Theorem 2.1) g,/n — 0 as n — oo, while p is increasing and
finite-valued, necessarily m = m(n) approaches co as n — oo. Next,
for the given m = m(n), we choose the largest A = A(n) < m such that

o(A) < vim

As o is finite-valued, necessarily A(n) — oo, so n(A(n)) — 0, n —
0o. Then, for some sequence {n,}32; with limit 0, and which is
independent of f,

w0 = PIW sy < 7l Wil

For the remaining finitely many n, we can set 7, = (0) and use

w8 = PW iy < 1w < 2O W i@ 0

Proof of the necessity part of Theorem 1.2. We assume that (5) is true
for every absolutely continuous f with || f'W ||, ) finite. In particular,
if we choose f to be 0 outside [—1,1], and not almost everywhere
a polynomial in [—1,1], we obtain for some sequence {P,}°, of
polynomials with degrees tending to oo,

||PnW||LP(\z|21) — 0, n — o0.
As P, behaves for large |z| like its leading term, this forces
llz" W ()|, &) < o0,

for each n > 0. Then the hypothesis (21) of Lemma 2.4 is fulfilled,
and consequently there exist {£,}22; such that (22) holds for all
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polynomials P, of degree < n. Let us consider an absolutely continuous
f with f(0) = 0 and || f'W||z,(r) finite. Our hypothesis asserts that
there are for large n polynomials {P,}2° ; of degree < n with

| (f = Po) WL, ) < mnllf' Wlle,m)
= 1fWlL,(212) < Mllf Wz, @) + 1PaW L, (j2)>¢.)-
By Lemma 2.4, and then our hypothesis on {P,}>° ,
IPaW L, o12¢.) < C2 " (1PaW |z, [~111
<C27"(IfW L, 10y + 0l f Wiz, m))-

/0 ’ f'(t)dt

< Wil 11z, 0,1
<MW Loty W Lo,y 1F Wl 0,17 -

Here,

Wz, 01 < IWllLwo

Lp[0,1]

A similar inequality holds over [—1,0], and hence

W,y < 2W e oW ew gl Wl 1,1

Combining all of the above inequalities gives

1fW L, (2260 < Ml WL, ®)

where {1} }2° ; has limit 0 and is independent of f. The same inequality
then holds for the L, norm of fW over |z| > A, where A € [{,, &nt1]-
It follows that there is a positive decreasing function n with limit 0 at
oo such that (23) holds for absolutely continuous f with f(0) = 0 and
| f'WlL,®r) finite. Then Theorem 3.1 gives the limit (6). O

5. Proof of Theorem 1.3. In this section, we let
Wa(z) = exp(—2?), = €R,

denote the Hermite weight. Moreover, we determine ¢, s by the equa-
tions

1 1 1 1
—+-=1and -+ -=1.
r s P q
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The construction is more complicated than that in [10], but the general
idea is the same. We choose intervals

[j_Oéj,j+Olj], .7237

where o; < 1/(25), j > 3. We set

(36) W (z) = Wa(z), :UER\U(j—aj,j—i—aj).

(I) For the case where p < r, we set

Wa(34)

37 W()=—"% 723
(37) () [j log 5]
choose
(38) B € (s,q)
and
(39) 1 >3
= ——, > 3.
77 2j(log )P’

(II) For the case where p > r, we set
(40) W(j) =W2(j)ljlogjl, Jj=>3,
and choose
(41) B € (r,p)
and

1

(42) j>3.

Q; = A /1. N2 =
7 2j(log j)?

In both cases we then define W so that W/W5 is linear in [j — a;, j]
and in [j, j + o;]. This ensures that W is continuous in R. (Of course,
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we could ensure it is C*° by smoothing at j and j £a;). It also implies
under (38) that

1

and under (40),
(44) 1< W(z)/Wa(z) <1+2% =z€R.

(Since logx = o(x), these inequalities are clear for large |z|. However
they are even true for “small” |z|, as shown by some simple calcula-
tions.) We shall make repeated use of the fact that, uniformly in j and
m’

W2($)NW2(J)5 IE[j*Oéj,j—i-Oéj],

as follows since o; < 1/(2j). We now show that W fulfills the
asymptotic behavior required for Theorem 1.3.

Lemma 4.2. (a) Let p < r and W satisfy (37), (38) and (39). Then

(45) lim sup ||W_1||Lq[07£] IWllL,z,00) = 00,
T—>00

but

(46) lim ||W_1| L.[0,2] WL, [z,00) = 0.

Tr—r0o0

(b) Let p > r and W satisfy (40), (41) and (42). Then (45) and (46)
are valid.

Proof. (a) Note that, as 1 < p < 7, s0 p,s < co. Let ¢ > 0. Some
simple calculations show that, for 1 <a <b,

b
1
(47) / W2C~W26(b)min{g,b—a},

and if also b < 2a,

(48) /abewa(a)min{%,b—a}.
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Since ai; = O(1/j), we see that Wa(j+a;) ~ Wa(j), and hence applying
(48),

S Jtl—ajta C
(19) [wr= wg > SwaGy.
J Jjtaoy J

Moreover, by (47), if ¢ < oo,
J J
[ Wz oot [ Wy Clilogd)iaWali)
0 J—(a;/2)

Then "
W, 051 112, 5,00 = Clilog jlay’ %5717

— Cllog )" /7 oo,
j — oo, by (38). We then have (45) for the case 1 < p, ¢ < co. If

g = oo, it is easy to see that (45) persists, by minor modifications of
the above arguments.

The proof of (46) is a little more difficult because it involves a full
limit. Let x > 2 and jy denote the least integer > x. We see that, as

a; = 0(1/j),

x Jo—1 j+aj
/ W g/ _ Wy + Z/ W
0 07z)\U;0=3(j_aj7j+o‘j) j_aj

( j=3
e
[Jo—ajy ]

T Jjo—1
< / Wit +C Y a; Wy (j)(jlog j)*
0 =

+ Cajy Wy *(z) (jo log jo)*
< CWala)*fo + CWy ()" (log )",

as for large enough j, and some 6 < 1 independent of j,

a; Wy °(5)(51og §)*

WG (G 1)legG D)
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We also used (47). Then this and (43) give
W=

ot Wz, o
< OWy @)z (log ) ~P/* [ Walp, 14 o)
< CWy Ha)z' Y5 (log 2) P/ s Wy (z)z~4/"
= C(logz)'=P/* — 0,

x — oo as 8 > s, recall (38).

(b) This is similar to (a). Note that, as p > r > 1, so r,q < co. By
(40), if p < oo,

o0 ]+a]/2
/ we > C/ (j1og j)PW3 > Ca;j¥ (log j)F Wa ()P
j i

Moreover,
J j—ay
/ w2 / Wy > G Wa(5) 7,
0 j_1+0tj71
by (47). Then
- . 1/p . )
[ 1HLq[o,j] WL, [j,00) = Ci l/qaj Pjlogj
= C(log])lfﬂ/p — 00,

as B < p (recall (41)). If p = oo, this argument requires minor
modifications. So we have (45). Next, if j; is the largest integer < z,

| wrs / wy
T (z,00)\U52 ;) (G—aj,i+a;)

J -71
Jt+o
+Z/ WiGlogd) + [ WiGiilogiy
J=i [@,j1+0, ]
/ WErC S ay(log) WiG)
Jj=j1+1

+ CWy(z)a, (j1log j1)"
< CWa(z)" [z + ji~ ' (log j1)" " W; ()
< Ca" Ylogz)"~PW5 (x),
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by (48) and as again for large j and some 6 < 1,

a;(jlogj)"W3(5)
aj—1((j — 1) log(j —1))"W3(j — 1)

Then (46) and (47) give

< 0.

W1 0.0 Wl z,00)
<C ||W2*1HLS[07$] Wo(z)z! =Y/ (log )1 A/
< CW2_1(l’)l’il/SWQ(m)mlfl/r(logx)lfﬁ/T
= C(logz)'P/" — 0,

x — 00, as 3 > r (recall (41)). O

Proof of Theorem 1.3. This follows directly from the limit conditions
in Lemma 4.2 and from Theorem 1.2. a
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