WHICH WEIGHTS ON R ADMIT L_p JACKSON THEOREMS?

D.S. LUBINSKY

ABSTRACT. Let $1 \leq p \leq \infty$ and $W: \mathbf{R} \to (0,\infty)$ be continuous. Does W admit a Jackson theorem in L_p ? That is, does there exist a sequence $\{\eta_n\}_{n=1}^\infty$ of positive numbers with limit 0 such that

$$\inf_{\deg(P) \le n} \| (f - P)W \|_{L_p(\mathbf{R})} \le \eta_n \| f'W \|_{L_p(\mathbf{R})}$$

for all absolutely continuous f with $\|f'W\|_{L_p(\mathbf{R})}$ finite? We show that such a theorem is true if and only if

$$\lim_{x\to\infty}\|W^{-1}\|_{L_q[0,x]}\|W\|_{L_p[x,\infty)}=0,$$

with an analogous limit at $-\infty$. Here q is the conjugate parameter of p. In an earlier paper, we considered weights admitting a Jackson theorem for all $1 \le p \le \infty$.

1. Introduction. Let $W: \mathbf{R} \to (0, \infty)$. Bernstein's approximation problem addresses the following question: when are the polynomials dense in the weighted space generated by W? That is, when is it true that for every continuous $f: \mathbf{R} \to \mathbf{R}$ with

$$\lim_{|x| \to \infty} (fW)(x) = 0,$$

there exist a sequence of polynomials $\{P_n\}_{n=1}^{\infty}$ with

$$\lim_{n\to\infty} \|(f-P_n)W\|_{L_{\infty}(\mathbf{R})} = 0?$$

This problem was resolved independently by Pollard, Mergelyan and Achieser in the 1950s [6]. If $W \leq 1$ is even, and $\ln 1/W(e^x)$ is convex,

Keywords and phrases. Weighted approximation, polynomial approximation, Jackson-Bernstein theorems.

Research supported by NSF grant DMS-0400446 and Israel-US BSF grant

Research supported by NSF grant DMS-0400446 and Israel-US BSF grant 2004353.

Received by the editors on February 24, 2006, and in revised form on November 28, 2008.

 $^{{\}rm DOI:} 10.1216/{\rm RMJ-}2009-39-1-165 \quad {\rm Copyright @2009 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Mountain \$

a necessary and sufficient condition for density of the polynomials is $[\mathbf{6},$ page 170]

$$\int_0^\infty \frac{\ln 1/W(x)}{1+x^2} \, dx = \infty.$$

In particular, for $W_{\alpha}(x) = \exp(-|x|^{\alpha})$, the polynomials are dense if and only if $\alpha \geq 1$.

In the 1950s the search began for a quantitative form of Bernstein's theorem. One obvious question is whether there are weighted analogues of classical theorems of Jackson and Bernstein, namely,

$$\inf_{\deg{(P)} \leq n} \|f - P\|_{L_{\infty}[-1,1]} \leq \frac{C}{n} \|f'\|_{L_{\infty}[-1,1]},$$

with C independent of f and n, and the inf being over (algebraic) polynomials of degree at most n. For the weights W_{α} , where $\alpha > 1$, it is known that if $1 \le p \le \infty$,

(1)
$$\inf_{\deg(P) \le n} \| (f - P) W_{\alpha} \|_{L_p(\mathbf{R})} \le C n^{-1 + (1/\alpha)} \| f' W \|_{L_p(\mathbf{R})},$$

with C independent of f and n [5, page 185] and [11, page 81]. This inequality is also often formulated in Jackson-Favard form,

$$\begin{split} \inf_{\deg{(P) \le n}} \| (f-P) W_{\alpha} \|_{L_p(\mathbf{R})} \\ & \le C n^{-1 + (1/\alpha)} \inf_{\deg{(P) \le n - 1}} \| (f'-P) W_{\alpha} \|_{L_p(\mathbf{R})} \,. \end{split}$$

More general Jackson type theorems involving weighted moduli of continuity for various classes of weights were proved in [4, 5, 11].

In a recent paper [10], the author showed that the weight W_1 does not admit a Jackson estimate like (1), even though the polynomials are dense in the weighted space generated by W_1 . The author also characterized weights that admit Jackson theorems in L_p for all $1 \le p \le \infty$. The main result there was:

Theorem 1.1. Let $W : \mathbf{R} \to (0, \infty)$ be continuous. The following are equivalent:

(a) There exists a sequence $\{\eta_n\}_{n=1}^{\infty}$ of positive numbers with limit 0 and with the following property. For each $1 \leq p \leq \infty$, and for all absolutely continuous f with $\|f'W\|_{L_p(\mathbf{R})}$ finite, we have

(2)
$$\inf_{\deg(P) \le n} \|(f - P)W\|_{L_p(\mathbf{R})} \le \eta_n \|f'W\|_{L_p(\mathbf{R})}, \quad n \ge 1.$$

(b) Both

(3)
$$\lim_{x \to \infty} W(x) \int_0^x W^{-1} = 0$$

and

(4)
$$\lim_{x \to \infty} W(x)^{-1} \int_x^{\infty} W = 0$$

with analogous limits as $x \to -\infty$.

As a corollary it was shown that if $W=e^{-Q}$, where Q' exists for large |x|, then there is a Jackson theorem in L_p for all $1 \leq p \leq \infty$, when $\pm Q'(x) \to \infty$ as $x \to \pm \infty$ and there is no Jackson theorem if Q'(x) is bounded for large |x|. In this paper, we focus on just a single L_p space and ask which weights admit Jackson theorems in that space. We prove:

Theorem 1.2. Let $W : \mathbf{R} \to (0, \infty)$ be continuous. Let $1 \le p \le \infty$ and 1/p + 1/q = 1. The following are equivalent:

(a) There exists a sequence $\{\eta_n\}_{n=1}^{\infty}$ of positive numbers with limit 0 such that for all absolutely continuous f with $\|f'W\|_{L_p(\mathbf{R})}$ finite, we have

(5)
$$\inf_{\deg(P) \le n} \| (f - P)W \|_{L_p(\mathbf{R})} \le \eta_n \| f'W \|_{L_p(\mathbf{R})}, \quad n \ge 1.$$

(b)

(6)
$$\lim_{x \to \infty} \|W\|_{L_p[x,\infty]} \|W^{-1}\|_{L_q[0,x]} = 0,$$

with an analogous limit as $x \to -\infty$.

Remarks. (a) Thus, there is a Jackson type theorem in a specific L_p space if and only if (6) holds. In fact, we shall show in Section 3 that (6) is necessary and sufficient for the existence of a decreasing function $\eta:(0,\infty)\to(0,\infty)$ with limit 0 at ∞ , such that

$$||f'W||_{L_p[a,\infty)} \le \eta(a) ||fW||_{L_p[0,\infty)}$$

for all absolutely continuous f with f(0) = 0. This is a "shifting" weighted Hardy inequality.

- (b) Theorem 1.2 actually implies Theorem 1.1. For condition (6) for p=1 is equivalent to (4) and for $p=\infty$ is equivalent to (3). Interpolation then gives (2) for 1 . Of course, Theorem 1.1 does not imply Theorem 1.2.
- (c) It was shown in [10] that there is a weight W admitting an L_1 Jackson theorem, but not an L_{∞} one (and conversely). Here we show:

Theorem 1.3. Let $1 \leq p, r \leq \infty$ with $p \neq r$. There exists $W: \mathbf{R} \to (0, \infty)$ such that

$$\frac{1}{1+x^2} \le W(x)/\exp(-x^2) \le 1+x^2, \quad x \in \mathbf{R},$$

and W admits an L_r Jackson theorem, but not an L_p Jackson theorem. That is, there exist $\{\eta_n\}_{n=1}^{\infty}$ with limit 0 at ∞ satisfying (5) in the L_r norm, but there does not exist such a sequence satisfying (5) in the L_p norm.

Theorem 1.3 shows that not only rate of decay, but also regularity, of W is necessary for a Jackson theorem. After all, the Hermite weight $\exp(-x^2)$ admits a Jackson theorem in L_p for all $1 \le p \le \infty$, but W is close to W_2 , yet admits a Jackson theorem in L_p but not L_p .

This paper is organized as follows: we prove restricted range inequalities in the next section, and an estimate for the "tails" $||fW||_{L_p(|x| \ge \lambda)}$ in Section 3. In Section 4, we prove Theorem 1.2. In Section 5, we prove Theorem 1.3.

Throughout C, C_1, C_2, \ldots denote constants independent of n and x and polynomials P of degree $\leq n$. The same symbol may denote different constants in different occurrences. If (c_n) and (d_n) are sequences of real numbers, we write

$$c_n \sim d_n$$

if there exist $C_1, C_2 > 0$ such that

$$C_1 \leq c_n/d_n \leq C_2, n \geq 1.$$

Similar notation is used for functions. The linear measure of a set $B \subset \mathbf{R}$ is denoted by meas (B). The set of all polynomials of degree $\leq n$ is denoted P_n .

2. Restricted range inequalities. Restricted range (or infinite-finite range) inequalities are a crucial ingredient in weighted approximation on the real line [8, 11, 12, 14]. However, none of the standard ones cover our class of weights. The methods used to prove the form we need, are similar to, but not the same, as in [10]. In this section, we fix $1 \le p \le \infty$, and let

(7)
$$\widetilde{W}(x) = \|W^{-1}\|_{L_{q}[0,x]}^{-1}, \quad x \in (0,\infty),$$

where 1/q + 1/p = 1.

Theorem 2.1. Assume that, for $x \in [0, \infty)$,

(8)
$$\|W\|_{L_{p}[x,\infty)} \|W^{-1}\|_{L_{q}[0,x]} \le \psi(x),$$

where ψ is decreasing in $[0,\infty)$ and

$$\lim_{x \to \infty} \psi(x) = 0,$$

with a similar relation in $(-\infty,0]$. There exists $q_n > 0$, $n \geq 1$, such that

$$(10) q_n = o(n), \quad n \to \infty,$$

and for $n \geq 1$, and all polynomials P of degree $\leq n$,

(11)
$$||PW||_{L_p(|x| \ge q_n)} \le C4^{-n} ||PW||_{L_p(\mathbf{R})}.$$

Here C is independent of n and P.

In the rest of this section, ψ is the function specified in Theorem 2.1. For $n \geq 1$, we choose $A_n > 0$ such that

$$\|x^nW(x)\|_{L_p[A_n,2A_n]} = \max_{u>1} \|x^nW(x)\|_{L_p[u,2u]} =: \Lambda_n.$$

(We show below that A_n exists).

Lemma 2.2. (i) For $n \ge 0$,

$$||x^n W(x)||_{L_n[1,\infty)}$$

 $is\ finite.$

(ii) For $n \geq 1$, A_n exists, is finite and positive, and

$$\lim_{n \to \infty} A_n = \infty.$$

(iii) For $n \geq 1$,

(13)
$$(2A_{n+2})^{-2} \Lambda_{n+2} \le ||x^n W(x)||_{L_p[1,\infty)}$$
$$\le (2A_{n+2}^{-2p} + 2^{2p+1})^{1/p} \Lambda_{n+2}.$$

(iv)

(14)
$$A_n = o(n), \quad n \to \infty.$$

(v) If $\mathcal{B} \subset [0, 2A_{n+2}]$ has linear Lebesgue measure at least 1, then

$$||W||_{L_p(\mathcal{B})} \ge \psi(1)^{-1} (2A_{2n+2})^{-(2n+2)} \Lambda_{2n+2}.$$

Proof. Observe that (8) implies

(15)
$$||W||_{L_p[x,\infty)} \le \psi(x)\widetilde{W}(x), \quad x > 0,$$

and by Hölder's inequality, for $x \ge 1$,

$$1 \leq \|W\|_{L_p[x-1,x]} \, \big\|W^{-1}\big\|_{L_q[x-1,x]} \leq \|W\|_{L_p[x-1,x]} \, \big\|W^{-1}\big\|_{L_q[0,x]} \, ,$$

so that

(16)
$$\widetilde{W}(x) \le ||W||_{L_p[x-1,x]}, \quad x \ge 1.$$

(i) If $p = \infty$, this was established in Lemma 2.3 (a) in [10]. Suppose now $p < \infty$. Let $0 \le a < b < \infty$. We see using (15) and (16) that

$$\begin{split} \int_a^b x^{np} \bigg(\int_x^\infty W^p(t) \, dt \bigg) \, dx &\leq \int_a^b x^{np} \psi^p(x) \widetilde{W}^p(x) \, dx \\ \Longrightarrow \int_a^\infty W^p(t) \left[\int_a^{\min\{t,b\}} x^{np} \, dx \right] dt \\ &\leq \psi^p(a) \int_a^b x^{np} \left[\int_{x-1}^x W^p(t) \, dt \right] dx \end{split}$$

SO

(17)
$$\int_{a}^{b} W^{p}(t) \frac{t^{np+1} - a^{np+1}}{np+1} dt$$

$$\leq \psi^{p}(a) \int_{a-1}^{b} W^{p}(t) \left[\int_{\max\{t,a\}}^{\min\{t+1,b\}} x^{np} dx \right] dt$$

$$\leq \psi^{p}(a) \int_{a-1}^{b} (t+1)^{np} W^{p}(t) dt.$$

Here, if $a \geq 2$, in the integral on the righthand side, $t \geq a - 1 \geq 1$, so

$$(t+1)^{np} = t^{np} \left(1 + \frac{1}{t}\right)^{np} \le t^{np} \left(1 + \frac{2}{a}\right)^{np} \le t^{np} e^{(2np)/a}.$$

Moreover, if $t \ge a2^{1/(np+1)}$, then $t^{np+1} - a^{np+1} \ge (1/2)t^{np+1}$. Thus, (17) implies

(18)
$$\int_{a2^{1/(np+1)}}^{b} t^{np+1} W^{p}(t) dt$$

$$\leq 2\psi^{p}(a)(np+1)e^{(2np)/a} \int_{a-1}^{b} t^{np} W^{p}(t) dt.$$

As $a \geq 2$, $t^{np} \leq t^{np+1}$ in the integral on the right, so

$$\int_{a2^{1/(np+1)}}^{b} t^{np+1} W^{p}(t) dt \left[1 - 2\psi^{p}(a)(np+1)e^{(2np)/a} \right]$$

$$\leq 2\psi^{p}(a)(np+1)e^{(2np)/a} \int_{a-1}^{a2^{1/(np+1)}} x^{np} W^{p}(x) dx.$$

If a is so large that $a \geq 2np$ and

$$2\psi^p(a)(np+1)e \le \frac{1}{2},$$

this gives

$$\int_{a2^{1/(np+1)}}^b t^{np+1} W^p(t) dt \le \int_{a-1}^{a2^{1/(np+1)}} x^{np} W^p(x) dx.$$

Letting $b \to \infty$ gives the finiteness of the norm $||x^n W(x)||_{L_p[1,\infty)}$.

(ii) The existence of $A_n \in (0, \infty)$ follows as the norm in (i) is finite, and $u \to \|x^n W(x)\|_{L_p[u,2u]}$ is a continuous function of u, with limit 0 as $u \to 0+$ and $u \to \infty$. (In the case $p=\infty$, this follows from the finiteness of $\|x^{n+1}W(x)\|_{L_p[1,\infty)}$). Next, for fixed u>0,

$$\Lambda_n \ge \|x^n W(x)\|_{L_p[u,2u]} \ge u^n \|W\|_{L_p[u,2u]}$$

 \mathbf{so}

$$\liminf_{n\to\infty} \Lambda_n^{1/n} \geq u,$$

and hence

$$\lim_{n\to\infty} \Lambda_n^{1/n} = \infty.$$

If a subsequence of $\{A_n\}$ remained bounded, we see that the corresponding subsequence of $\{\Lambda_n\}$ cannot admit the growth just proven.

(iii) If $p = \infty$, the righthand inequality in (13) is immediate. Suppose now that $p < \infty$. Choose j_0 such that

$$2^{j_0} \le A_{n+2} \le 2^{j_0+1}$$
.

We see that

$$\begin{split} \int_{1}^{A_{n+2}} x^{np} W^{p}(x) \, dx \\ & \leq \sum_{j=0}^{j_{0}} \int_{A_{n+2}/2^{j+1}}^{A_{n+2}/2^{j}} x^{np} \bigg(\frac{x}{A_{n+2}/2^{j+1}} \bigg)^{2p} W^{p}(x) \, dx \\ & \leq A_{n+2}^{-2p} \sum_{j=0}^{j_{0}} 2^{(j+1)2p} \Lambda_{n+2}^{p} \\ & \leq A_{n+2}^{-2p} 2^{(j_{0}+1)2p+1} \Lambda_{n+2}^{p} \leq 2^{2p+1} \Lambda_{n+2}^{p}. \end{split}$$

Also,

(19)
$$\int_{A_{n+2}}^{\infty} x^{np} W^{p}(x) dx \leq \sum_{j=0}^{\infty} \int_{A_{n+2} 2^{j+1}}^{A_{n+2} 2^{j+1}} x^{np} \left(\frac{x}{A_{n+2} 2^{j}}\right)^{2p} W^{p}(x) dx \\
\leq A_{n+2}^{-2p} \left(\sum_{j=0}^{\infty} 2^{-2jp}\right) \Lambda_{n+2}^{p} \leq 2A_{n+2}^{-2p} \Lambda_{n+2}^{p}.$$

Then the upper bound in (13) follows. The lower bound follows from

$$\begin{split} \|x^nW(x)\|_{L_p[1,\infty)} &\geq \|x^nW(x)\|_{L_p[A_{n+2},2A_{n+2}]} \\ &\geq (2A_{n+2})^{-2} \left\|x^{n+2}W(x)\right\|_{L_p[A_{n+2},2A_{n+2}]} \\ &= (2A_{n+2})^{-2}\Lambda_{n+2}. \end{split}$$

(iv) If $p = \infty$, this follows from (19) of Lemma 2.3 (a) in [10]. (There $\ell(n)$ plays a role similar to A_n). Suppose now $p < \infty$. If we choose $a = a_n := A_{n+2} 2^{-1/(np+1)}$, and $b = 2A_{n+2}$, (18) gives for large enough n,

$$\int_{A_{n+2}}^{2A_{n+2}} t^{np+1} W^p(t) dt$$

$$\leq 2\psi^p(a_n)(np+1)e^{(2np)/a_n} \int_{a_n-1}^b t^{np} W^p(t) dt.$$

Here by (iii), and choice of a_n ,

$$\int_{a_{n-1}}^{b} t^{np} W^{p}(t) dt \leq (a_{n} - 1)^{-2p} \int_{a_{n-1}}^{b} t^{(n+2)p} W^{p}(t) dt$$

$$\leq C A_{n+2}^{-2p} \left(\int_{a_{n-1}}^{A_{n+2}} + \int_{A_{n+2}}^{2A_{n+2}} \right) t^{(n+2)p} W^{p}(t) dt$$

$$\leq C A_{n+2}^{-2p} 2 \Lambda_{n+2}^{p},$$

with C independent of n. Combining the above two inequalities gives

$$\begin{split} \Lambda_{n+2}^p &= \int_{A_{n+2}}^{2A_{n+2}} t^{(n+2)p} W^p(t) \, dt \\ &\leq (2A_{n+2})^{2p-1} \int_{A_{n+2}}^{2A_{n+2}} t^{np+1} W^p(t) \, dt \\ &\leq (2A_{n+2})^{2p-1} 2 \psi^p(a_n) (np+1) e^{(2np)/a_n} C A_{n+2}^{-2p} \Lambda_{n+2}^p \\ &\leq C_1 \frac{n \psi^p(a_n)}{a_n} e^{(2np)/a_n} \Lambda_{n+2}^p. \end{split}$$

Here C_1 is independent of n. If we write $a_n = \delta_n n$, we can recast this as

$$\frac{1}{\psi^p(a_n)} \le C_1 \frac{1}{\delta_n} e^{(2p)/\delta_n}.$$

Since ψ has limit 0 at ∞ , and $a_n = A_{n+2}2^{-1/(np+1)} \to \infty$, $n \to \infty$, it follows that necessarily $\delta_n = o(1)$ and so $a_n = o(n)$. That is,

$$A_{n+2} = o(n)$$
.

(v) Exactly as above, Hölder's inequality gives

$$1 \le \|W\|_{L_p(\mathcal{B})} \|W^{-1}\|_{L_q(\mathcal{B})} \le \|W\|_{L_p(\mathcal{B})} \|W^{-1}\|_{L_q[0,A_{2n+2}]}.$$

Using (15), we can continue this as

$$||W||_{L_{p}(\mathcal{B})}$$

$$\geq \widetilde{W}(A_{2n+2})$$

$$\geq \psi(A_{2n+2})^{-1}||W||_{L_{p}[A_{2n+2},\infty)}$$

$$\geq \psi(1)^{-1}(2A_{2n+2})^{-(2n+2)} ||x^{2n+2}W(x)||_{L_{p}[A_{2n+2},2A_{2n+2}]}$$

$$= \psi(1)^{-1}(2A_{2n+2})^{-(2n+2)}\Lambda_{2n+2}. \quad \Box$$

Lemma 2.3. There exists a $C_2 > 0$ such that for $n \geq 1$ and all polynomials P of degree $\leq n$,

$$||PW||_{L_n[1600A_{2n+2},\infty)} \le C_2 4^{-n} ||PW||_{L_n[0,\infty)}.$$

Proof. Our approach is similar to that in [9]. Let P be a polynomial of degree $k \leq n$, say

$$P(z) = c \prod_{j=1}^{k} (z - x_j).$$

We assume $\rho>8,\,c\neq0,$ and split the zeros into "small" and "large" zeros: we assume that

$$|x_j| \le \rho, \quad j \le i;$$

 $|x_j| > \rho, \quad j > i.$

For $|u| \le 1/2\rho$, $x \ge \rho$ and $i < j \le k$,

$$\left|\frac{x-x_j}{u-x_j}\right| \leq \frac{1+x/\left|x_j\right|}{1-\left|u\right|/\left|x_j\right|} \leq 2\left(1+\frac{x}{\rho}\right) \leq 4\frac{x}{\rho}.$$

Then for such x and u,

$$\left| \frac{P(x)}{P(u)} \right| \le \left(\prod_{j=1}^{i} \frac{2x}{|u - x_j|} \right) \left(4\frac{x}{\rho} \right)^{k-i}.$$

We now apply a famous lemma of Cartan:

$$\left| \prod_{j=1}^{i} (u - x_j) \right| \ge \varepsilon^i$$

for u outside a set of linear measure at most $4e\varepsilon$ [1, page 175], [2, page 350]. Choosing $\varepsilon = \rho/100$, we obtain

$$\left| \frac{P(x)}{P(u)} \right| \le \left(\frac{200x}{\rho} \right)^k \le \left(\frac{200x}{\rho} \right)^n$$

for $x \ge \rho$, $u \in [0, (1/2)\rho] \backslash \mathcal{S}$, where

$$\operatorname{meas}(\mathcal{S}) \le \frac{4e}{100}\rho < \frac{1}{8}\rho.$$

Recall that meas denotes linear Lebesgue measure. Then, for such u,

(20)
$$||PW||_{L_p[400\rho,\infty)} \le \left(\frac{200}{\rho}\right)^n |P(u)| ||x^n W(x)||_{L_p[400\rho,\infty)}.$$

Moreover, $[0, (1/4)\rho] \setminus \mathcal{S}$ has measure at least $(1/8)\rho \geq 1$, so we may find $\mathcal{B} \subset [0, (1/4)\rho] \setminus \mathcal{S}$ with linear measure at least 1, and hence

$$\begin{split} \|PW\|_{L_{p}[400\rho,\infty)} \, \|W\|_{L_{p}(\mathcal{B})} \\ & \leq \left(\frac{200}{\rho}\right)^{n} \|PW\|_{L_{p}(\mathcal{B})} \, \|x^{n}W(x)\|_{L_{p}[400\rho,\infty)} \, . \end{split}$$

Now we choose $\rho = 4A_{2n+2}$, at least for n so large that $4A_{2n+2} > 8$. Then $[0, (1/4)\rho] \setminus S \subset [0, A_{2n+2}]$. By (v) of the previous lemma,

$$||W||_{L_n(\mathcal{B})} \ge \psi(1)^{-1} (2A_{2n+2})^{-(2n+2)} \Lambda_{2n+2}.$$

Combining the above inequalities, we see that if P is not identically 0,

$$\begin{split} & \|PW\|_{L_{p}[400\rho,\infty)} \, / \, \|PW\|_{L_{p}[0,\infty)} \\ & \leq \left(\frac{200}{\rho}\right)^{n} \|x^{n}W(x)\|_{L_{p}[400\rho,\infty)} \, / \, \left[\psi(1)^{-1} \, (2A_{2n+2})^{-(2n+2)} \, \Lambda_{2n+2}\right] \\ & \leq \left(\frac{1}{2\rho^{2}}\right)^{n} \|x^{2n}W(x)\|_{L_{p}[400\rho,\infty)} \, / \, \left[\psi(1)^{-1} \, (2A_{2n+2})^{-(2n+2)} \, \Lambda_{2n+2}\right] \\ & \leq C8^{-n} A_{2n+2}^{2}, \end{split}$$

by (iii) of the previous lemma. Here C is independent of n and P, and $A_{2n+2}=o(n)$, so the result follows. For the remaining finitely many n, for which $4A_{2n+2}<8$, a simple compactness argument gives the result, if C_2 is large enough. \square

Proof of Theorem 2.1. This follows from Lemma 2.3, its analogue in $(-\infty, 0]$, and the fact that $A_n = o(n)$.

We also record:

Lemma 2.4. Let $W: \mathbf{R} \to (0, \infty)$ be continuous, $1 \le p \le \infty$, and assume that for each $n \ge 0$,

Then there exists an increasing sequence of positive numbers $\{\xi_n\}_{n=1}^{\infty}$ such that for $n \geq 1$ and all polynomials P of degree $\leq n$,

(22)
$$||PW||_{L_n(|x|>\xi_n)} \le C_1 2^{-n} ||PW||_{L_n(-1,1)},$$

where C_1 is independent of n, p, P.

Proof. See Theorem 2.2 in [10].

Tail estimates. We prove a "shifting" weighted Hardy inequality, involving the function

$$\phi(x) = \|W\|_{L_p[x,\infty)} \, \big\|W^{-1}\big\|_{L_q[0,x]} \,, \quad x \geq 0.$$

Theorem 3.1. Let $W: \mathbf{R} \to (0, \infty)$ be continuous. Let $1 \le p \le \infty$ and 1/q + 1/p = 1. The following are equivalent:

(I) There exists a decreasing function $\eta:[0,\infty)\to(0,\infty)$ with limit 0 at ∞ such that

(23)
$$||fW||_{L_p(|x| \ge a)} \le \eta(a) ||f'W||_{L_p(\mathbf{R})} ,$$

for all a>0 and every absolutely continuous function $f:\mathbf{R}\to\mathbf{R}$ with f(0)=0 .

(II)

(24)
$$\lim_{a \to \infty} \phi(a) = \lim_{a \to \infty} \|W\|_{L_p[a,\infty)} \|W^{-1}\|_{L_q[0,a]} = 0,$$

with a similar limit as $a \to -\infty$.

Lemma 3.2. Let a > 0. Then

$$||fW||_{L_p[a,\infty)} \le p^{1/p} q^{1/q} \left(\sup_{x>a} \phi(x) \right) ||f'W||_{L_p[a,\infty)},$$

for every absolutely continuous function $f:[a,\infty)\to \mathbf{R}$ with f(a)=0. Here, if $p=\infty$ or p=1, we interpret $p^{1/p}q^{1/q}$ as 1.

Proof. Let

$$B = \sup_{x \in (a,\infty)} \|W\|_{L_p[x,\infty)} \|W^{-1}\|_{L_q[a,x]}.$$

The classical weighted Hardy inequality asserts that, for every f as above,

$$||fW||_{L_p[a,\infty)} \le p^{1/p} q^{1/q} B ||f'W||_{L_p[a,\infty)}$$
.

(See [13, page 13, Theorem 1.14] for the proof when 1 . Take <math>q = p there and $w = v = W^p$. For p = 1 or $p = \infty$, see [13, page 49, Lemma 5.4]. An alternative reference is [7].) Since

$$B \leq \sup_{x \in (a,\infty)} \|W\|_{L_p[x,\infty)} \|W^{-1}\|_{L_q[0,x]} = \sup_{x \geq a} \phi(x),$$

the result follows.

Lemma 3.3. Let a > 0. Then

$$||fW||_{L_p[a,\infty)} \le \left(1 + p^{1/p}q^{1/q}\right) \left(\sup_{x>a} \phi(x)\right) ||f'W||_{L_p[0,\infty)},$$

for every absolutely continuous function $f:[0,\infty)\to\mathbf{R}$ with f(0)=0.

Proof. Write for $x \geq a$,

$$f(x) = \int_0^a f' + \int_a^x f' =: C + f_1(x).$$

Then

$$(25) ||fW||_{L_p[a,\infty)} \le ||CW||_{L_p[a,\infty)} + ||f_1W||_{L_p[a,\infty)} \,.$$

Here, by Hölder's inequality applied to C,

$$\begin{split} \|CW\|_{L_p[a,\infty)} &\leq \|f'W\|_{L_p[0,a)} \|W^{-1}\|_{L_q[0,a]} \|W\|_{L_p[a,\infty)} \\ &= \|f'W\|_{L_p[0,a)} \, \phi(a). \end{split}$$

Moreover, by Lemma 3.2, as $f_1(a) = 0$,

$$||f_1W||_{L_p[a,\infty)} \le p^{1/p} q^{1/q} \left(\sup_{x>a} \phi(x) \right) ||f'W||_{L_p[a,\infty)}.$$

Combining the above three inequalities gives the result.

Proof of Theorem 3.1. Sufficiency of (24) and its analogous limit at $-\infty$. This follows directly from Lemma 3.3. We can choose

$$\eta_{+}(a) = \left(1 + p^{1/p} q^{1/q}\right) \sup_{x>a} \phi(x), \quad a > 0,$$

with a similar function η_- to handle $(-\infty,0)$, and then set $\eta=\max\{\eta_-,\eta_+\}$.

Necessity of (24) and its analogous limit at $-\infty$. For p=1 and $p=\infty$, the necessity was established in the proof of Theorem 3.1 in [10]. Suppose now 1 . Let <math>a > 0 and

$$f(x) = \int_0^{\min\{x,a\}} W^{-q}, x \ge 0.$$

Then

$$||f'W||_{L_p[0,\infty)} = \left(\int_0^a W^{(1-q)p}\right)^{1/p} = ||W^{-1}||_{L_q[0,a]}^{1/(p-1)},$$

so

$$\begin{split} \|f'W\|_{L_p[0,\infty)}\,\phi(a) &= \|f'W\|_{L_p[0,\infty)}\, \|W^{-1}\|_{L_q[0,a]}\, \|W\|_{L_p[a,\infty)} \\ &= \|W^{-1}\|_{L_q[0,a]}^{((1/(p-1))+1)}\, \|W\|_{L_p[a,\infty)} \\ &= \left(\int_0^a W^{-q}\right) \|W\|_{L_p[a,\infty)} = \|fW\|_{L_p[a,\infty)} \;. \end{split}$$

Our hypothesis gives

$$\eta(a) \ge \frac{\|fW\|_{L_p[a,\infty)}}{\|f'W\|_{L_p[0,\infty)}} = \phi(a).$$

So ϕ has limit 0 at ∞ . Similarly, the analogous limit follows at $-\infty$. \square

4. Weighted approximation. We begin with two lemmas, which are similar to corresponding lemmas in [10]. We shall use notation specific to this section: we use integers $n \geq 4$ and $1 \leq m \leq (n/4)$, as well as parameters

$$1 < \lambda \le \frac{1}{2}q_m,$$

where $\{q_n\}_{n=1}^{\infty}$ are as in Theorem 2.1. We let $\rho(m)$ denote an increasing function that depends on m and W, while $\sigma(\lambda)$ denotes a function increasing in λ . These functions change in different occurrences. The essential feature is that σ is independent of m, n, p and functions f, while ρ is independent of λ, p and functions f. At the end, we choose m to grow slowly enough as a function of n, and then $\lambda \to \infty$ sufficiently slowly. We let \mathcal{P}_m denote the set of polynomials of degree $\leq m$ with real coefficients.

Lemma 4.1. Let $W: \mathbf{R} \to (0, \infty)$ be continuous and satisfy (6), with an analogous limit at $-\infty$.

(a) There exists an increasing function $\sigma:[0,\infty)\to[0,\infty)$ with the following properties: let $m,\lambda\geq 1$. For $1\leq p\leq \infty$ and all absolutely continuous f with $f'W\in L_p(\mathbf{R})$, there exists $R_m\in\mathcal{P}_m$ such that

$$\|(f - R_m) W\|_{L_p[-2\lambda, 2\lambda]} \le \frac{\sigma(\lambda)}{m} \|f' W\|_{L_p(\mathbf{R})}.$$

(b) There is an increasing function $\rho:\mathbf{Z}_+\to(0,\infty)$ depending only on W such that

$$||R_m W||_{L_p(\mathbf{R})} \le \rho(m) \left(||f W||_{L_p(\mathbf{R})} + ||f' W||_{L_p(\mathbf{R})} \right).$$

Proof. (a) By the classical Jackson's theorem [3, (6.4), Theorem 6.2, page 219], there exists $R_m \in \mathcal{P}_m$ such that

$$||f - R_m||_{L_p[-2\lambda,2\lambda]} \le \frac{\pi\lambda}{m+1} ||f'||_{L_p[-2\lambda,2\lambda]}.$$

Then

$$\| (f - R_m) W \|_{L_p[-2\lambda, 2\lambda]}$$

$$\leq \frac{\pi \lambda}{m} \| W \|_{L_{\infty}[-2\lambda, 2\lambda]} \| W^{-1} \|_{L_{\infty}[-2\lambda, 2\lambda]} \| f' W \|_{L_p(\mathbf{R})} .$$

So we may take

$$\sigma(\lambda) = \pi \lambda \|W\|_{L_{\infty}[-2\lambda,2\lambda]} \|W^{-1}\|_{L_{\infty}[-2\lambda,2\lambda]}.$$

(b) From our restricted range of inequalities, and continuity of W,

$$||R_m W||_{L_p(\mathbf{R})} \le C ||R_m||_{L_p[-q_m,q_m]} ||W||_{L_\infty[-q_m,q_m]}.$$

Moreover, from the proof of (a),

$$\begin{split} \|R_m\|_{L_p[-2\lambda,2\lambda]} \\ &\leq \|f\|_{L_p[-2\lambda,2\lambda]} + \frac{\pi\lambda}{m} \|f'\|_{L_p[-2\lambda,2\lambda]} \\ &\leq \|W^{-1}\|_{L_{\infty}[-2\lambda,2\lambda]} \left[\|fW\|_{L_p[-2\lambda,2\lambda]} + \pi\lambda \|f'W\|_{L_p[-2\lambda,2\lambda]} \right]. \end{split}$$

We shall show that

(26)
$$||R_m||_{L_p[-q_m,q_m]} \le C m^{2/p} \left(\frac{q_m}{\lambda}\right)^{m+(1/p)} ||R_m||_{L_p[-2\lambda,2\lambda]},$$

where C is independent of m, λ , q_m , $\{R_m\}$. (Recall that $2\lambda \leq q_m$). Then, on combining the above inequalities, we obtain

$$||R_m W||_{L_n(\mathbf{R})} \le \rho(m) \left[||fW||_{L_n[-2\lambda,2\lambda]} + ||f'W||_{L_n[-2\lambda,2\lambda]} \right]$$

where

$$\begin{split} \rho(m) &= C m^{2/p} q_m^{m+1/p} \|W\|_{L_{\infty}[-q_m,q_m]} \\ &\times \left\|W^{-1}\right\|_{L_{\infty}[-q_m,q_m]} (1+\pi q_m). \end{split}$$

Now we proceed to establish (26). Recall the Chebyshev inequality [3, page 101, Proposition 2.3], valid for polynomials P of degree $\leq m$:

$$|P(x)| \le |T_m(x)| ||P||_{L_{\infty}[-1,1]}, \quad |x| > 1.$$

Here T_m is the classical Chebyshev polynomial of the first kind. By dilating this, and using the bound

$$|T_m(x)| \le (2|x|)^m$$
, $|x| > 1$,

we obtain

$$\|R_m\|_{L_\infty[-q_m,q_m]} \le \left(\frac{q_m}{\lambda}\right)^m \|R_m\|_{L_\infty[-2\lambda,2\lambda]}.$$

Using Nikolskii inequalities [3, page 102, Theorem 2.6], we continue this as

$$||R_m||_{L_p[-q_m,q_m]} \le (2q_m)^{1/p} ||R_m||_{L_\infty[-q_m,q_m]}$$

$$\le (2q_m)^{1/p} \left(\frac{q_m}{\lambda}\right)^m \left(\frac{(p+1)m^2}{2\lambda}\right)^{1/p}$$

$$\times ||R_m||_{L_p[-2\lambda,2\lambda]},$$

and then we have (26).

Lemma 4.2. There exists C > 0 such that for large enough n, and for $1 \le \lambda \le (1/2)q_n$, there are nonnegative polynomials V_n of degree $\le 3n/4$ such that

(27)
$$|1 - V_n(x)| \le C \frac{q_n}{n\lambda}, \quad x \in [-\lambda, \lambda];$$

(28)
$$0 \le V_n(x) \le C, \quad |x| \in [\lambda, 2\lambda];$$

(29)
$$0 \le V_n(x) \le C \left(\frac{q_n}{n\lambda}\right)^2, \quad |x| \in [2\lambda, q_n].$$

Here C is independent of n, λ and x.

Proof. See Lemma 4.2 in [10].

Proof of the sufficiency part of Theorem 1.2. This is quite similar to that of Theorem 1.1 in [10], but there is an important difference: there we introduced estimates for R_mW in the uniform norm, while here we need to restrict ourselves to a given L_p norm. So we include all the details.

We may assume that f(0) = 0. (If not, replace f by f - f(0) and absorb the constant f(0) into the approximating polynomial). We

choose $n \geq 1$ and $1 \leq m \leq n/4$, and let λ satisfy $1 \leq \lambda \leq (1/2)q_m$. Let R_m and V_n denote the polynomials of Lemma 4.1 and 4.2 respectively, and let

$$P_n = R_m V_n$$
.

Then P_n is a polynomial of degree $\leq n$, and

(30)
$$\inf_{\deg(P) \leq n} \| (f - P)W \|_{L_{p}(\mathbf{R})}$$

$$\leq \| (f - P_{n}) W \|_{L_{p}(\mathbf{R})}$$

$$\leq \| (f - P_{n}) W \|_{L_{p}[-q_{n},q_{n}]} + \| fW \|_{L_{p}(\mathbf{R}\setminus[-q_{n},q_{n}])}$$

$$+ \| P_{n}W \|_{L_{p}(\mathbf{R}\setminus[-q_{n},q_{n}])}$$

$$\leq \| (f - P_{n}) W \|_{L_{p}[-q_{n},q_{n}]} + \| fW \|_{L_{p}(\mathbf{R}\setminus[-\lambda,\lambda])}$$

$$+ C4^{-n} \| P_{n}W \|_{L_{p}[-q_{n},q_{n}]},$$

by Theorem 2.1 and as $q_n > \lambda$. Here,

(31)
$$\| (f - P_n) W \|_{L_p[-q_n, q_n]}$$

$$\leq \| (f - P_n) W \|_{L_p[-\lambda, \lambda]} + \| f W \|_{L_p(\mathbf{R} \setminus [-\lambda, \lambda])}$$

$$+ \| P_n W \|_{L_p([-q_n, q_n] \setminus [-\lambda, \lambda])}$$

$$=: T_1 + T_2 + T_3.$$

Firstly,

(32)
$$T_{1} \leq \| (f - R_{m}) W \|_{L_{p}[-\lambda,\lambda]} + \| R_{m} (1 - V_{n}) W \|_{L_{p}[-\lambda,\lambda]}$$

$$\leq \| (f - R_{m}) W \|_{L_{p}[-\lambda,\lambda]}$$

$$+ \| R_{m} W \|_{L_{p}[-\lambda,\lambda]} \| 1 - V_{n} \|_{L_{\infty}[-\lambda,\lambda]}$$

$$\leq \frac{\sigma(\lambda)}{m} \| f' W \|_{L_{p}(\mathbf{R})}$$

$$+ \rho(m) (\| f W \|_{L_{p}(\mathbf{R})} + \| f' W \|_{L_{p}(\mathbf{R})}) \| 1 - V_{n} \|_{L_{\infty}[-\lambda,\lambda]}$$

$$\leq \frac{\sigma(\lambda)}{m} \| f' W \|_{L_{p}(\mathbf{R})} + \rho(m) \frac{q_{n}}{n} \| f' W \|_{L_{p}(\mathbf{R})} (\eta(0) + C),$$

by Lemmas 4.1, 4.2 and Theorem 3.1. Note that since f(0) = 0, the latter gives

$$||fW||_{L_p(\mathbf{R})} \le \eta(0)||f'W||_{L_p(\mathbf{R})}.$$

The crucial thing in (32) is that $C, \eta(0), \sigma$ and ρ are independent of f, n, p. Next, Theorem 3.1 gives

(33)
$$T_2 \le \eta(\lambda) ||f'W||_{L_p(\mathbf{R})}.$$

Of course this estimate also applies to the middle term in the righthand side of (30). Next,

$$T_3 \le ||P_n W||_{L_p(\lambda \le |x| \le 2\lambda)} + ||P_n W||_{L_p(2\lambda \le |x| \le q_n)}$$

=: $T_{31} + T_{32}$.

Here

(34)
$$T_{31} \leq \|R_{m}W\|_{L_{p}(\lambda \leq |x| \leq 2\lambda)} \|V_{n}\|_{L_{\infty}(\lambda \leq |x| \leq 2\lambda)}$$

$$\leq C(\|(R_{m} - f)W\|_{L_{p}(\lambda \leq |x| \leq 2\lambda)} + \|fW\|_{L_{p}(\lambda \leq |x| \leq 2\lambda)})$$

$$\leq C\left(\frac{\sigma(\lambda)}{m} \|f'W\|_{L_{p}(\mathbf{R})} + \eta(\lambda) \|f'W\|_{L_{p}(\mathbf{R})}\right),$$

by Lemmas 4.1, 4.2 and Theorem 3.1. Also,

$$T_{32} \leq \|R_m W\|_{L_p(2\lambda \leq |x| \leq q_n)} \|V_n\|_{L_\infty(2\lambda \leq |x| \leq q_n)}$$

$$\leq \rho(m) \|f' W\|_{L_p(\mathbf{R})} C_1 \left(\frac{q_n}{n}\right)^2,$$

by Lemmas 4.1, 4.2 and another application of Theorem 3.1. Combining this and the estimates in (31) to (34) gives

(35)
$$\| (f - P_n) W \|_{L_p[-q_n, q_n]}$$

$$\leq \| f' W \|_{L_p(\mathbf{R})} C \left\{ \frac{\sigma(\lambda)}{m} + \rho(m) \frac{q_n}{n} + \eta(\lambda) \right\}.$$

Then using this estimate and Theorem 3.1, we deduce that

$$||P_n W||_{L_p[-q_n,q_n]} \le ||f' W||_{L_p(\mathbf{R})} C \left\{ \frac{\sigma(\lambda)}{m} + \rho(m) \frac{q_n}{n} + 1 \right\}.$$

Combining this estimate, (30) and (35) give

$$\begin{split} \inf_{\deg{(P)} \leq n} \| (f-P)W \|_{L_p(\mathbf{R})} \\ & \leq \| f'W \|_{L_p(\mathbf{R})} C \left\{ \frac{\sigma(\lambda)}{m} + \rho(m) \frac{q_n}{n} + \eta(\lambda) + 4^{-n} \right\}, \end{split}$$

with C independent of n, m, λ, ρ and σ . The functions σ and ρ obey the conventions listed at the beginning of this section, and are independent of f, n, m and p, as is the constant C. For a given large enough $n \ge 1$, we choose m = m(n) to be the largest integer $\le n/2$ such that

$$\rho(m)\frac{q_n}{n} \le \left(\frac{q_n}{n}\right)^{1/2}.$$

Since (by Theorem 2.1) $q_n/n \to 0$ as $n \to \infty$, while ρ is increasing and finite-valued, necessarily m = m(n) approaches ∞ as $n \to \infty$. Next, for the given m = m(n), we choose the largest $\lambda = \lambda(n) \le m$ such that

$$\sigma(\lambda) < \sqrt{m}$$

As σ is finite-valued, necessarily $\lambda(n) \to \infty$, so $\eta(\lambda(n)) \to 0$, $n \to \infty$. Then, for some sequence $\{\eta_n\}_{n=1}^{\infty}$ with limit 0, and which is independent of f,

$$\inf_{\deg(P) \le n} \|(f-P)W\|_{L_p(\mathbf{R})} \le \eta_n \|f'W\|_{L_p(\mathbf{R})}.$$

For the remaining finitely many n, we can set $\eta_n = \eta(0)$ and use

$$\inf_{\deg(P) < n} \|(f - P)W\|_{L_p(\mathbf{R})} \le \|fW\|_{L_p(\mathbf{R})} \le \eta(0) \|f'W\|_{L_p(\mathbf{R})}. \qquad \Box$$

Proof of the necessity part of Theorem 1.2. We assume that (5) is true for every absolutely continuous f with $||f'W||_{L_p(\mathbf{R})}$ finite. In particular, if we choose f to be 0 outside [-1,1], and not almost everywhere a polynomial in [-1,1], we obtain for some sequence $\{P_n\}_{n=1}^{\infty}$ of polynomials with degrees tending to ∞ ,

$$||P_nW||_{L_n(|x|>1)} \longrightarrow 0, \quad n \to \infty.$$

As P_n behaves for large |x| like its leading term, this forces

$$||x^n W(x)||_{L_n(\mathbf{R})} < \infty,$$

for each $n \geq 0$. Then the hypothesis (21) of Lemma 2.4 is fulfilled, and consequently there exist $\{\xi_n\}_{n=1}^{\infty}$ such that (22) holds for all

polynomials P_n of degree $\leq n$. Let us consider an absolutely continuous f with f(0) = 0 and $||f'W||_{L_p(\mathbf{R})}$ finite. Our hypothesis asserts that there are for large n polynomials $\{P_n\}_{n=1}^{\infty}$ of degree $\leq n$ with

$$\| (f - P_n) W \|_{L_p(\mathbf{R})} \le \eta_n \| f' W \|_{L_p(\mathbf{R})}$$

$$\implies \| f W \|_{L_p(|x| > \xi_n)} \le \eta_n \| f' W \|_{L_p(\mathbf{R})} + \| P_n W \|_{L_p(|x| > \xi_n)}.$$

By Lemma 2.4, and then our hypothesis on $\{P_n\}_{n=1}^{\infty}$,

$$||P_n W||_{L_p(|x| \ge \xi_n)} \le C2^{-n} ||P_n W||_{L_p[-1,1]} \le C2^{-n} (||f W||_{L_p[-1,1]} + \eta_n ||f' W||_{L_p(\mathbf{R})}).$$

Here,

$$||fW||_{L_{p}[0,1]} \leq ||W||_{L_{\infty}[0,1]} ||\int_{0}^{x} f'(t) dt||_{L_{p}[0,1]}$$

$$\leq ||W||_{L_{\infty}[0,1]} ||f'||_{L_{p}[0,1]}$$

$$\leq ||W||_{L_{\infty}[0,1]} ||W^{-1}||_{L_{\infty}[0,1]} ||f'W||_{L_{p}[0,1]}.$$

A similar inequality holds over [-1, 0], and hence

$$||fW||_{L_p[-1,1]} \le 2||W||_{L_\infty[-1,1]}||W^{-1}||_{L_\infty[-1,1]}||f'W||_{L_p[-1,1]}.$$

Combining all of the above inequalities gives

$$||fW||_{L_p(|x|\geq \xi_n)} \leq \eta_n^* ||f'W||_{L_p(\mathbf{R})},$$

where $\{\eta_n^*\}_{n=1}^{\infty}$ has limit 0 and is independent of f. The same inequality then holds for the L_p norm of fW over $|x| \geq \lambda$, where $\lambda \in [\xi_n, \xi_{n+1}]$. It follows that there is a positive decreasing function η with limit 0 at ∞ such that (23) holds for absolutely continuous f with f(0) = 0 and $||f'W||_{L_p(\mathbf{R})}$ finite. Then Theorem 3.1 gives the limit (6).

5. Proof of Theorem 1.3. In this section, we let

$$W_2(x) = \exp(-x^2), \quad x \in \mathbf{R},$$

denote the Hermite weight. Moreover, we determine q, s by the equations

$$\frac{1}{r} + \frac{1}{s} = 1$$
 and $\frac{1}{p} + \frac{1}{q} = 1$.

The construction is more complicated than that in [10], but the general idea is the same. We choose intervals

$$[j - \alpha_i, j + \alpha_i], \quad j \ge 3,$$

where $\alpha_j \leq 1/(2j), j \geq 3$. We set

(36)
$$W(x) = W_2(x), \quad x \in \mathbf{R} \setminus \bigcup_{j=3}^{\infty} (j - \alpha_j, j + \alpha_j).$$

(I) For the case where p < r, we set

(37)
$$W(j) = \frac{W_2(j)}{[j \log j]}, \quad j \ge 3,$$

choose

$$\beta \in (s, q)$$

and

(39)
$$\alpha_j = \frac{1}{2j(\log j)^{\beta}}, \quad j \ge 3.$$

(II) For the case where p > r, we set

(40)
$$W(j) = W_2(j)[j \log j], \quad j \ge 3,$$

and choose

$$\beta \in (r, p)$$

and

(42)
$$\alpha_j = \frac{1}{2j(\log j)^{\beta}}, \quad j \ge 3.$$

In both cases we then define W so that W/W_2 is linear in $[j-\alpha_j,j]$ and in $[j,j+\alpha_j]$. This ensures that W is continuous in \mathbf{R} . (Of course,

we could ensure it is C^{∞} by smoothing at j and $j \pm \alpha_j$). It also implies under (38) that

(43)
$$1 \ge W(x)/W_2(x) \ge \frac{1}{1+x^2}, \quad x \in \mathbf{R},$$

and under (40),

(44)
$$1 \le W(x)/W_2(x) \le 1 + x^2, \quad x \in \mathbf{R}.$$

(Since $\log x = o(x)$, these inequalities are clear for large |x|. However they are even true for "small" |x|, as shown by some simple calculations.) We shall make repeated use of the fact that, uniformly in j and x.

$$W_2(x) \sim W_2(j), \quad x \in [j - \alpha_j, j + \alpha_j],$$

as follows since $\alpha_j \leq 1/(2j)$. We now show that W fulfills the asymptotic behavior required for Theorem 1.3.

Lemma 4.2. (a) Let p < r and W satisfy (37), (38) and (39). Then

(45)
$$\limsup_{x \to \infty} \|W^{-1}\|_{L_q[0,x]} \|W\|_{L_p[x,\infty)} = \infty,$$

but

(46)
$$\lim_{x \to \infty} \|W^{-1}\|_{L_s[0,x]} \|W\|_{L_r[x,\infty)} = 0.$$

(b) Let p > r and W satisfy (40), (41) and (42). Then (45) and (46) are valid.

Proof. (a) Note that, as $1 \le p < r$, so $p, s < \infty$. Let c > 0. Some simple calculations show that, for $1 \le a \le b$,

(47)
$$\int_{a}^{b} W_{2}^{-c} \sim W_{2}^{-c}(b) \min\left\{\frac{1}{b}, b - a\right\},$$

and if also $b \leq 2a$,

(48)
$$\int_a^b W_2^c \sim W_2^c(a) \min\left\{\frac{1}{b}, b-a\right\}.$$

Since $\alpha_j = O(1/j)$, we see that $W_2(j+\alpha_j) \sim W_2(j)$, and hence applying (48),

(49)
$$\int_{j}^{\infty} W^{p} \ge \int_{j+\alpha_{j}}^{j+1-\alpha_{j+1}} W_{2}^{p} \ge \frac{C}{j} W_{2}(j)^{p}.$$

Moreover, by (47), if $q < \infty$,

$$\int_0^j W^{-q} \ge C(j\log j)^q \int_{j-(\alpha_j/2)}^j W_2^{-q} \ge C(j\log j)^q \alpha_j W_2(j)^{-q}.$$

Then

$$\begin{split} \left\| W^{-1} \right\|_{L_q[0,j]} \left\| W \right\|_{L_p[j,\infty)} & \geq C[j \log j] \alpha_j^{1/q} j^{-1/p} \\ & = C(\log j)^{1-\beta/q} \to \infty, \end{split}$$

 $j \to \infty$, by (38). We then have (45) for the case $1 < p, q < \infty$. If $q = \infty$, it is easy to see that (45) persists, by minor modifications of the above arguments.

The proof of (46) is a little more difficult because it involves a full limit. Let $x \geq 2$ and j_0 denote the least integer $\geq x$. We see that, as $\alpha_j = O(1/j)$,

$$\int_{0}^{x} W^{-s} \leq \int_{(0,x)\setminus \bigcup_{j=3}^{j_{0}} (j-\alpha_{j},j+\alpha_{j})} W_{2}^{-s} + \sum_{j=3}^{j_{0}-1} \int_{j-\alpha_{j}}^{j+\alpha_{j}} W^{-s}
+ \int_{[j_{0}-\alpha_{j_{0}},x]} W^{-s}
\leq \int_{0}^{x} W_{2}^{-s} + C \sum_{j=3}^{j_{0}-1} \alpha_{j} W_{2}^{-s}(j) (j \log j)^{s}
+ C \alpha_{j_{0}} W_{2}^{-s}(x) (j_{0} \log j_{0})^{s}
\leq C W_{2}(x)^{-s}/x + C W_{2}^{-s}(x) x^{s-1} (\log x)^{s-\beta},$$

as for large enough j, and some $\theta < 1$ independent of j,

$$\frac{\alpha_j W_2^{-s}(j) (j \log j)^s}{\alpha_{j-1} W_2^{-s}(j-1) ((j-1) \log (j-1))^s} < \theta.$$

We also used (47). Then this and (43) give

$$\begin{aligned} \|W^{-1}\|_{L_s[0,x]} \|W\|_{L_r[x,\infty)} \\ &\leq CW_2^{-1}(x)x^{1-1/s}(\log x)^{1-\beta/s} \|W_2\|_{L_r[x,\infty)} \\ &\leq CW_2^{-1}(x)x^{1-1/s}(\log x)^{1-\beta/s}W_2(x)x^{-1/r} \\ &= C(\log x)^{1-\beta/s} \longrightarrow 0, \end{aligned}$$

 $x \to \infty$ as $\beta > s$, recall (38).

(b) This is similar to (a). Note that, as $p > r \ge 1$, so $r, q < \infty$. By (40), if $p < \infty$,

$$\int_j^\infty W^p \geq C \int_j^{j+\alpha_j/2} (j\log j)^p W_2^p \geq C \alpha_j j^p (\log j)^p W_2(j)^p.$$

Moreover,

$$\int_0^j W^{-q} \ge \int_{j-1+\alpha_{j-1}}^{j-\alpha_j} W_2^{-q} \ge Cj^{-1}W_2(j)^{-q},$$

by (47). Then

$$\begin{aligned} \|W^{-1}\|_{L_q[0,j]} \|W\|_{L_p[j,\infty)} &\geq C j^{-1/q} \alpha_j^{1/p} j \log j \\ &= C (\log j)^{1-\beta/p} \to \infty, \end{aligned}$$

as $\beta < p$ (recall (41)). If $p = \infty$, this argument requires minor modifications. So we have (45). Next, if j_1 is the largest integer $\leq x$,

$$\begin{split} \int_{x}^{\infty} W^{r} &\leq \int_{(x,\infty)\backslash \cup_{j=j_{1}}^{\infty}(j-\alpha_{j},j+\alpha_{j})} W_{2}^{r} \\ &+ \sum_{j=j_{1}}^{\infty} \int_{j-\alpha_{j}}^{j+\alpha_{j}} W_{2}^{r} (j\log j)^{r} + \int_{[x,j_{1}+\alpha_{j_{1}}]} W_{2}^{r} (j_{1}\log j_{1})^{r} \\ &\leq \int_{x}^{\infty} W_{2}^{r} + C \sum_{j=j_{1}+1}^{\infty} \alpha_{j} (j\log j)^{r} W_{2}^{r} (j) \\ &+ C W_{2}^{r} (x) \alpha_{j_{1}} (j_{1}\log j_{1})^{r} \\ &\leq C W_{2}(x)^{r} / x + j_{1}^{r-1} (\log j_{1})^{r-\beta} W_{2}^{r} (x) \\ &\leq C x^{r-1} (\log x)^{r-\beta} W_{2}^{r} (x), \end{split}$$

by (48) and as again for large j and some $\theta < 1$,

$$\frac{\alpha_j(j\log j)^r W_2^r(j)}{\alpha_{j-1}((j-1)\log(j-1))^r W_2^r(j-1)} < \theta.$$

Then (46) and (47) give

$$\begin{aligned} \|W^{-1}\|_{L_{s}[0,x]} \|W\|_{L_{r}[x,\infty)} \\ &\leq C \|W_{2}^{-1}\|_{L_{s}[0,x]} W_{2}(x) x^{1-1/r} (\log x)^{1-\beta/r} \\ &\leq C W_{2}^{-1}(x) x^{-1/s} W_{2}(x) x^{1-1/r} (\log x)^{1-\beta/r} \\ &= C (\log x)^{1-\beta/r} \longrightarrow 0, \end{aligned}$$

 $x \to \infty$, as $\beta > r$ (recall (41)).

Proof of Theorem 1.3. This follows directly from the limit conditions in Lemma 4.2 and from Theorem 1.2. \Box

REFERENCES

- ${\bf 1.}$ G.A. Baker, Essentials of Padé approximants, Academic Press, New York, 1975.
- 2. P. Borwein and T. Erdelyi, *Polynomials and polynomial inequalities*, Springer, New York, 1993.
- 3. R. DeVore and G.G. Lorentz, Constructive approximation, Springer, Berlin, 1993.
- **4.** Z. Ditzian and D. Lubinsky, Jackson and smoothness theorems for Freudweights in L_p (0 , Constr. Approx.**13**(1997), 99–152.
 - 5. Z. Ditzian and V. Totik, Moduli of smoothness, Springer, New York, 1987.
- ${\bf 6.}$ P. Koosis, $\it The\ logarithmic\ integral\ I,$ Cambridge University Press, Cambridge, 1988.
- ${\bf 7.}$ A. Kufner and L-E. Persson, Weighted inequalities of Hardy type, World Scientific, Singapore, 2003.
- 8. E. Levin and D.S. Lubinsky, Orthogonal polynomials for exponential weights, Springer, New York, 2001.
- $\bf 9.~$ D.S. Lubinsky, A weighted polynomial inequality, Proc. Amer. Math. Soc. $\bf 92$ (1984), 263–267.
- 10. —, Which weights on R admit Jackson theorems?, Israel J. Math. 155 (2006), 253–280.
- 11. H.N. Mhaskar, Introduction to the theory of weighted polynomial approximation, World Scientific, Singapore, 1996.

- $\bf 12.$ P. Nevai, Geza Freud orthogonal polynomials and Christoffel functions: A case study, J. Approx. Theory $\bf 48~(1986),~3–167.$
- 13. B. Opic and A. Kufner, *Hardy-Type inequalities*, Pitman Research Notes Math. 219, Longman, Harlow, 1990.
- ${\bf 14.}$ E.B. Saff and V. Totik, Logarithmic potentials with external fields, Springer, New York, 1997.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160

Email address: lubinsky@math.gatech.edu