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ESTIMATES FOR CONE MULTIPLIERS
ASSOCIATED WITH HOMOGENEOUS FUNCTIONS

SUNGGEUM HONG, JOONIL KIM AND CHAN WOO YANG

ABSTRACT. Let p € C°(R™ \ {0}) be homogeneous of
degree one. We show that the convolution operator

|§n+1|

9

Tdf(f’7§n+l) = (1 p(é- ) ) ?(£’7§n+1)7
+
(€',ént1) ER” xR

is bounded from Hardy spaces HP(R"+1) to LP(Rn+1) for
§>n(l/p—1/2)—1/2,0<p< L

1. Introduction. Let f be the Fourier transform of a Schwartz
function f on R"xR!. Let p € C°°(R™\{0}) be homogeneous of degree
one, p(t€) = tp(€¢). We consider a family of convolution operators T
defined by

(1.1)
_— ’ ) N
ToH(E!, ) = (1 pE) ) A€ ensr), (€6nsr) €R™ x RY

|§n+1| +

where t‘i =9 for t > 0 and zero otherwise.

We are interested in obtaining the decay estimates for the kernel
which is the inverse Fourier transform of the multiplier.

In the case of Riesz means, Randol [7] obtained a decay estimate for
the kernel

(1.2 | a-peieeod ¢er
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when p is convex and its boundary Jp is analytic by using asymptotic
expansion. Svensson [10] investigated the case where 9p is flat of order
> [(n+1)/2] + 1 by applying a variant of the van der Corput lemma
and the Hardy-Littlewood maximal inequality. Seeger [8] established
the decay estimates for (1.2) when p € C"T2(R™\ {0}) is homogeneous
of degree one without any finite type condition on p by using the
decomposition by Cérdoba in [2]. For the problems of a radial cone
multiplier, Wolff in [11] provided a geometric decomposition of cone
into rectangles on a piece of cone distant 1 from the boundary to obtain
LP boundedness on R3. Later, Laba and Wolff in [4] extended it to
higher dimensions R™, n > 3. One can also refer to Mockenhaupt,
Seeger and Sogge [6] for related results on the wave equations.

We note that we only assume homogeneity and smoothness of p
without any finite type condition. To do this we perform a careful
analysis based on the geometry of our multiplier. We observe that our
multiplier has singularities along the level surface 1 — p(¢')/|én+1| = 0.
Since p is assumed to be homogeneous of degree one, the level surface
is a cone. This leads us to a natural dyadic decomposition of the
multiplier according to the height. To analyze the behavior of the
operator caused by the singularities along the cone p(¢') = |41/, we
use dyadic decomposition with respect to the distance from the cone.

When p is radial, that is, p(§) = ||, the kernel can be expressed
by Bessel functions so the decay of the kernel can be obtained by the
above decomposition and the properties of Bessel functions. However,
expression of special functions for our kernel is not available because
we don’t have any symmetric assumption on our distance function p.
For Riesz means, this type of decomposition has been used to obtain
decay estimates for the kernel in general context in [2]. However,
our multiplier has different feature caused by extra direction along a
straight line on the cone. This forces us to perform additional analysis
for the direction.

In this paper we obtain uniform boundedness of 79 from HP(R"t1)
to LP(R™*!) at the index § > n(1/p—1/2)—1/2,0 < p < 1, as a main
application of the decay estimates for that kernel. We note that H?
are the standard real Hardy spaces as defined in [9].
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Theorem 1. Suppose 0 <p <1 and § >n(l/p—1/2) —1/2. Then
T is bounded from HP to LP in R™*!, i.e., for all f € HP(R™T!),
there is a constant C' so that

(1-3) ||T6f||Lp(Rn+1) < C ||f‘|HP(R"+1)7

where the constant C' is independent of f.

Remark 1. (i) As an example we introduce p as follows: let 2 be a
convex set with a smooth boundary 92 containing the origin. We may
take

p(€) = inf{t: t71¢ € Q}.
Then it is obvious that p is homogeneous of degree one. If we take this
p in (1.1), Theorem 1 still holds.

(i) If0 <p<1landd > n(l/p—1/2) —1/2, one can easily show
that 79 is bounded from H? to H? in R"*!. To prove this, we apply
Holder’s inequality, Plancherel’s theorem, maximal characterization of
HP spaces, and kernel estimates in Lemma 1 of Section 2, see [9,
Chapter 3.

(iii) When § > (n — 1)/2, it is not hard to show that T° is of weak
type (1,1) by using Calderén-Zygmund theory, see [9, pages 16-22].
It is open whether 79 is of weak type (p,p) at the critical index
dp = n(l/p —1/2) — 1/2 on HP spaces, 0 < p < 1. In the case of
radial cone multipliers, it was shown that 7° is of weak type (p,p) at
the critical index J, on H? spaces, 0 < p < 11in [3].

(iv) For p > 1 we refer interested readers to [1, 5, 6].

In what follows, the letters C' and ¢ denote some positive constants
that may not be the same at each occurrence.

2. Decay estimates. In this section we mainly obtain the decay
estimates of the kernel. Let p,9 € C§°(R) be supported in (1/2,2)
such that >, 5 ¢(27s) =1 and Y, ,9¥(27%) = 1 for s, > 0. For
j > 1, we set

6 = (1= 20 (31 22 ) e

‘§n+1| + ‘§n+1|
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and

’ 8
(E) > 1/1 En—l—l Z\IIJO E £n+1)

‘§n+1| §>0

Vo o(&,&nt1) = (1 -

Since ¥y o behaves nicely, we only consider the case where j > 0.

i(n=1)/
For each j > 0, we choose X € Cg°(B(0,1)) such that 22 v

X(29/2(¢ — €)) = 1 for all £,,¢ € {¢ : p(¢') = 1}, where B(O 1)
denotes the unit ball in R™ centered at the origin and {&,/|£., |}23(" v
is a set of equally distributed unit vectors in S™~!.

For fixed j, v and [ we define

Piea€ o) = o (1= £ )X (g ) vt

We shall need pointwise estimates for the kernels of

T3,08@0) = gy [, [ il = ot = w)f (. w) dydu
where

KJ,VO Z, t

é
/ / < ) q)jv’/yo (glv €n+1)ei<z,§')+it§n+1 dﬁl d£n+1-
R! JR™ |'£n+1|

We note that K, ¢ has the dilation property

(2'1) Kj,Vyl('v ) = 2l(n+1) {KJ}V,O(zl" 2l')}'
We define

Q= {(€,&n+1) 1 1/2 < p(€')/€n1 £ 2,1/2 < €nya < 2.
In what follows we only consider a point £ = (£, £,,+1) such that

&€ QnNsupp ®; 0.
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We shall use integration by parts along the three types of directions
based on the geometry of the multiplier. To do this we precisely define
those three directions. We define the first type of direction as

& = (waen°)

which is the outer unit normal vector of Q N {§,+1 = 1} at (&, &n+1)-
The second type of directions is defined as unit vectors e4(€), d =
1,...,n — 1, satisfying

(ea(€); e0(€)) = (ea(§), eny1) =0
where e,+1 = (0,...,0,1). The third direction is defined as

e(§) = =¢/I¢l

which is a tangential unit vector to the surface €2 from £ to the origin.

We note that

1 . —
W S mln{l, |Q}'| N}

Lemma 1. There is an estimate as follows: for all N € N, v € N**+1
with |v| =1,2,3,... and for some & = (&§;,1) in the support of ®; .0

Kjvolz, )+ > |(Kju0) P (,1)|
lv|I=N

2-7
(L4277 (z, e0(&0)) )™
9—j(n—1)/2 1

% 4
(127972520} e ealeo) > |2)N (L+ Jet + (z, )NV

where the constant C is independent of the choice of & and c is a
constant between 1/2 and 2.

Proof. We denote mjy,0(€',ént1) = (1 — (p(€)/|€nt1]))% B0 X
(&',&n+1). For a unit vector e, let D, f denote the directional derivative

(e, Vf).

<C2779
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We first claim
2-7
(1 +279|(z,e0(&0)))N
9—j(n—1)/2

(1+ 272/ s eateo)))

Since the righthand side of (2.2) is independent of the choice of
e1(€o), .- ,en—1(&), we may assume that e (§) is on the plane spanned
by eg(&o) and x. We note that

@, ex(60))] = (Z |>m,ed<fo><|2)l/2

because (z,e2(&)) = -+ = (z,e,—1(&)) = 0. We note that (x,eq(&))
can be considered as an inner product in R™ because the last coordinate
of e4(&o) is zero. Furthermore, we may assume that |eq(&o) — eq(§)] <
279/2/100 for all d = 0,... ,n — 1 and £ € supp ®;,.0.

Let v be an angle between z and ey(&;). We consider two cases: (i)
T —279/2 < yory<277/%and (ii) m —279/2 > 4 > 279/2,

(2.2) |Kj,o(z,t) <C279°

X

Case (i). 1 —277/2 <y or v < 279/2, In this case we note that

(2.3) 277 |, e0(0))| > 27972 [(z, €1(&))]
and
(24) 277 |(z,e0(€)) — (x,e0(&0))| < 1(1)—02_j (2 €0(&0))|-

We integrate by parts with respect to the eg(£) direction to obtain
KJ v, 0 Z, t

(z,&" ) +itént1 m],V0(£ £n+1):|
/Rl /n DBO(&) |: ( <:l7 eo(g))) df d§n+1-

By the product rule we write

DY ¢ [m0(' €nrr) /{z, €0(€))™]
' R 1
= Z Cky ko DS;(&) mj,u,O(f v£n+1) D]:o(ﬁ) <W>

ki1+kz=N
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Due to the support of m;, o and the smoothness of ey(§), we obtain
DKL 10 (€ )| < C 279923

and use (2.4) to obtain

P2 (e | 2 ™

where C is independent of £. After we integrate with respect to &' and
&n+1, we therefore have

92-J
(1 + 277, eo(&)))™
9—J
(1+ 279 (z, eo(€0)) ) s
9—i(n—1)/2
T+ 297(z, ex(€0))) N

9-i(n-1)/2

Kjuolz,t)| <C279°

<(C2779

where the last inequality follows from (2.3).
Case (ii). 7 —279/2 > 4 > 279/2, In this case we note

(2.5) 277 |, e0(&0))| < 2777 |(z, ex(é0))]

and

—j/2 1 —j/2
2772 (&, e1(€)) — (@, 1 (€0))] < 155277 s e1(€0))]-

We repeat the same argument as above to obtain
k e
|DE ) M0 (€', nia)| < C 2770 29N2,
and

20 (@a@m)| < T
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Thus, after we integrate with respect to £’ and £,41, we have

. —i(n-1)/2 .
|Kjuo(x,t)] <C277° 2 ~ 27
o (1+27972[(z, e1(€0))])
2-7
(14277 [(z, eo(€0)) )™
9-i(n-1)/2

“ 292z, er(€0)))N?

<2790

where the last inequality follows from (2.5). This completes the proof
of (2.2).

Now we claim

1
(1 + [et + (z, &) DN

(2.6) |K,0(z,t)| < C2790 273 (n+1)/2

We choose an arbitrary (£§;,1) € supp ®;,,0 and consider two cases:
(i) [(z,&" = &)| < (1/100) [(2, &) + tntal, and (i) [(z, € — &) >
(1/100) [z, &) + t&n+1l-

Case (i). [{z,& — &) < (1/100) [{z,&}) + t€rr1|- In this case

99

(2.7) 100 [(, &) + tény1| < [, &) + tEnial.

We apply integration by parts with respect to the é(£) direction to
obtain

Kj,y,O Z, t

(z,t)
_ (@ &) Fitenps N m',y,0(§',§n+1)|§|N] ,
o Do [ Zittey Sig i) €t

By the product rule we write

D{V |:mj,u,0(€,7£n+l)|£|N:|
e N

1 ! 2 |£|N

k1+ka=N
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To treat the first factor we recall Euler’s differential equation for
homogeneous functions:

A YP e
)= & 9 (&)
=1
By using this formula we can easily check that
!
peole(* (1 fg1))]
|‘£n+1|

_ g ’ j _ p(fl) >> |: :| _
1k (23 (1 il ) ) Tenn] Z&a@
and

sl ()
S )eli B )

where Xy is the partial derivative of X with respect to the kth variable.
By using these two identities we obtain

&

D~(§) m;juo(€, £n+1)‘ <c2?.

In view of the support of m;, o and (2.7), it is easy to see that

(2 8) ‘Dkz ( |§|N ) < C
‘ é® (7<xafl> - t‘fn-i-l)N - ‘<xa‘£6> + tfn+1|N

Case (ii). [(z,& —&})| > (1/100) |(z, &)) +t&n+1|- In this case since,
by the mean value theorem and the boundedness of the curvature

(z,€ - &) = < 21/22%&1 >
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where S~ 1 0% < 1, and
1 ! ! !
= 1@, &) + téntal < [(2,€ = &)

(2 9) 100
. n—1 1/2
<292 (Z |<w,ed<n>>|2) -

By combining the estimates (2.2) and (2.9), we obtain
(2.10) | Kjuo(z,t)|

—§(6+1)
<Cc2 /1/2 (1+2_j/2\/23;11 |<m,6d(§0)>|2>

2
: 1
§C27]{5+(n+1)/2}/ dé.n )
1/2 (@, §0) + téna |V i

2 9-i(n-1)/2

N d£n+1

By applying the integral version of mean value theorem to (2.8) and
(2.10), we obtain (2.6).
Moreover, for v € N™*! and |y| = 1,2,3,..., since m;, is com-
pactly supported,
(Kj0)? =6 % Kj 0

for some Schwartz function ¢, and (K, )" satisfies the same esti-
mates as Kj, 0. O

3. Estimates on H?(R"!), 0 < p < 1. We define the characteri-
zation of the Hardy spaces via atomic decompositions.

Definition 1. Let 0 < p < 1, and let k£ be an integer that satisfies
k> (n+1)(1/p — 1). Let Q be a cube in R""1. We say that a is
a (p, k)-atom associated with @Q if a is supported on Q@ C R™*! and
satisfies

(@) llafl oo sy < 1QI7HP;
(i) Jgnss a(z) 2P dz =0,

where 8 = (81,82, .- ,Bn+1) is an (n+1)-tuple of nonnegative integers
satisfying |B| < By + B2 + -+ + Bns1 < k, and 2 = zP1aP2 ... ghnt1,
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If {a;} is a collection of (p, k)-atoms and {c;} is a sequence of complex
numbers with 7% [¢;|? < oo, then the series f = Y777, c;a; converges
in the sense of distributions, and its sum belongs to H? with the quasi-

norm
00 1/p
sy = it (Llel)
Zj:l Cjaj:f j=1
see [9].

Now we shall prove the uniform estimates T°f when f is a (p, N)-
atom with N > (n+1)(1/p — 1) defined on R"*!,

We denote Tﬁ,,’lf =Kj,* fand T} = Zj > Tf,u,l-

Proposition 1. Suppose that § > n(l/p—1/2) —=1/2 for0 <p < 1
and f is a (p,N)-atom, N > (n+ 1)(1/p — 1), on R"*"L. Then the
inequality

IT° || Lo i1y < C

holds where C is independent of f.

Proof. By translation invariance, we may assume that ) with
diameter 1 is centered at the origin and write

/R1 / . |7 f (2, t) [P dz dt

:// |T6f(m,t)\dedt+// T (a2, )P der it
* (Q*)C
=1+ J.

For I we take g such that p/2+1/q = 1 and apply Plancherel’s theorem
and Holder’s inequality to obtain

< CIT f [ gnnny Q717 < CAI QY < ©

where QQ* is a cube centered at the origin with diameter Cy which will
be chosen to be large enough that the following arguments hold. For J
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we write
oo 2i(n—1)/2

<y > 2 Tl

I=—0c0 j=1 k=1
Since the domain of the integration J is (Q*)¢, we may assume that
|z| 4 |t| > Co when we treat J. We first consider the case where [ > 0.
We have

3100 =20 [[ 1102 e = ), 2 = )09l dyds
Q

< 2779 9ln+D) / / 2 N
Q (1 +2-92l|(z — y,eo(ﬁo)H)
9—i(n—1)/2

X N
(1+2-97220 /5202 G~ eal€o)) )
1

dyds.

“ A2t —s) + (z—y, DN

Since |z| + |¢| > Co and {eo (&), - ,en—1(£0), &0} is linearly indepen-
dent,

n—1 1/2
(@, eoE))| > 2, (erdgo ) >,
d=1

or

et + (z, &))| > 2.
We shall only treat the case where [(z,e0(&))| > 2. Arguments for
other cases are similar so we leave the remaining cases to interested
readers. In this case, since [(y, eo(&))| < 1,

1
[(z =y, e0(&0))| = §|<$,€0(§0)>\-
We therefore obtain
9—J

(142772 |(z, e0(€0)) )™

117,16 (@, 0)] < C277° 21+

9-i(n-1)/2
X
I (12792250 (o = eateal?)
1
Wt 2elt—s5) + (& — g, )N

dy ds.
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By using a change of variables we obtain

|T]§,V,lf($7t)|
027]'6 2l(n+1) 2-J
~ (L+ 2772 (, e0(§0))))Y
2-J
(142772 |(z, o ($0)) )™

9—i(n-1)/2 (2*]’/22l)7n+1 (2l)71

= (27999

Hence,
// T, f(e )P dedt < C 2P~ 23 0opH(ntDp/D—(nt1/2)}

Since 6 > n(1/p — 1/2) — 1/2, for I > 0 we obtain

oo 2i(n—1)/2

HTll?fHIzp < 21 Z Z 9—i{op+((n+1)p/2)—(n+1/2)}
j=1 wv=1

<C ol(p—1)

(3.1)

Now we fix I < 0. Let Pj,,;(y,s) denote the Nth order Taylor
polynomial of the function (y,s) = Kj,(x —y,t — s) expanded about
the origin, the center of the cube. Now P;,; = 2/"*DP; (2!, 2L) for
fixed j,v and [. Then, using the moment Condltlons on f ,

Tt @0 = [[| 50,9508 K000 @ =), 2t = ) dyds

/ f Y, s 2[ n+1

x [Kj, V0(2 (z—y), 2! (t—s))— Pjyu,o(Qly,le)] dy ds.

A straightforward calculation shows that the absolute value of the last
term is dominated by

c| /Q |F(y, )| 210D

xS KD @ - y), 2t - 5)] 124y, 5) N dy ds.
[v|=N+1
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We apply Lemma 1, (2.1), and the same arguments as above, and thus
obtain

T8, f (2, 1)] = 22N / /
Q |y|=N+1

x [K (2@ — ), 2 (¢ — 9))|1/(y, 5)| dy ds
2-J

< @298 Qln+2+N) //
(1+2792((z — y), eo(&0)) )N
9—i(n—1)/2

(1 +2-9/22 \/Zg;ll {(z —y), ed(ao)>\2)N
1
U+ 2t —9) + (@ —p). ))¥

X

dy ds.

We use the same arguments as above and use the assumption § >
n(1/p—1/2) — 1/2 to obtain

NTP fIIP, < € 2lln+2+N)p=(n+1)}

oo 2i(n=1)/2
(3.2) A3 T o) (r41/2)
=1 wv=1
< ¢ 2{l(n+2+N)p—(n+1)}

We combine (3.1) and (3.2) and use the assumption N > (n + 1)
((1/p) — 1) to obtain

12 fl2, < Z 17 f115,

l=—o0

0 [e%s)
<C Z otl(n+2+N)p—(n+1)} | 0221(17*1) <C.
I=—0o0 =1

Now we suppose that f is a (p, N)-atom (N > (n + 1)((1/p) — 1)),
supported in a cube @ of diameter 2F centered at (zg,tg). By
translation invariance, we can assume (zg,tg) = (0,0). Let h(xz,t) =
2R("+1)/”f(2Ra:,2Rt). Then h is an atom supported in the cube of
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diameter 1 centered at (0,0) and we write

Tofet) = [ [ 2 M RE e - )2 e - 9)Ki(y,5) dyds
,,.1 n
=2 ROD/p p o (27 Be, 27 R,
which implies

T f(w,t) =2 B2 N 1) h(2 R, 27 Be).
I+R

We therefore have

p
1T I, = |27/ ST, (2R 27
I+R
<C (2R(n+1)/P)*P oR(n+1)

Lp

This completes the proof. a

Therefore, from Definition 1 for H? spaces and Proposition 1, one
can easily see that Theorem 1 holds.
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