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BLOWUP ALGEBRAS OF SQUARE-FREE
MONOMIAL IDEALS AND SOME LINKS
TO COMBINATORIAL OPTIMIZATION PROBLEMS

ISIDORO GITLER, ENRIQUE REYES AND RAFAEL H. VILLARREAL

ABSTRACT. Let I = (z'1,... ,z"2) be a square-free mono-
mial ideal of a polynomial ring K[z1, ... ,zn] over an arbitrary
field K, and let A be the incidence matrix with column vec-
tors v1,...,vq. We will establish some connections between
algebraic properties of certain graded algebras associated to
I and combinatorial optimization properties of certain poly-
hedra and clutters associated to A and I, respectively. Some
applications to Rees algebras and combinatorial optimization
are presented.

1. Introduction. Let R = K|z, ... ,z,] be a polynomial ring over
a field K, and let I be an ideal of R of height g > 2 minimally generated
by a finite set of square-free monomials F' = {z",... ,z%} of degree
at least two. As usual we use z® as an abbreviation for z{*---z%",
where a = (a1,... ,a,) € N™. A clutter with vertex set X is a family
of subsets of X, called edges, none of which is included in another. We
associate to the ideal I a clutter C by taking the set of indeterminates
X ={x1,... ,x,} as a vertex set and E = {S1,...,S5,} as an edge set,
where

Sk = supp (z"*) = {z; | (ei, v) = 1}.

Here ( , ) denotes the standard inner product and e; is the ith unit
vector. For this reason I is called the edge ideal of C. To stress the
relationship between I and C we will use the notation I = I(C). A basic
example of clutter is a graph. Algebraic and combinatorial properties of
edge ideals and graded algebras associated to graphs have been studied
in [10, 20, 32, 33, 38]. The related notion of facet ideal has been
studied by Faridi [16, 17] and Zheng [44].
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The blowup algebras studied here are the Rees algebra
RIt|]=R&It®--®I't ®--- C R[t],
where t is a new variable, and the associated graded ring
grf(R)=R/I®I/P®---0I'/T" @~ R[It] ®g (R/]),

with multiplication (a + I**1)(b+ I[F+Y) = ab+ 't a € T¢, b e V.

In the sequel A will denote the incidence matriz of order n X ¢ whose
column vectors are vy,...,vs. In order to link the properties of these
algebras with combinatorial optimization problems we consider the set
covering polyhedron

QA)={zeR" |z >0; zA > 1},

and the related system of linear inequalities x > 0; A > 1, where
1 =(1,...,1). Recall that this system is called totally dual integral
(TDI) if the maximum in the LP-duality equation

(1) min{{a,z) |z >0;24 > 1} = max{(y,1)|y > 0; Ay < o}

has an integral optimum solution y for each integral vector a with
finite maximum. If the system is totally dual integral it is seen that
Q(A) has only integral vertices; this follows from [30, Theorem 22.1,
Corollary 22.1.a, pages 310-311].

We are able to express algebraic properties of blowup algebras in
terms of TDI systems and combinatorial properties of clutters, such as
the integrality of Q(A) and the Konig property. An important goal here
is to establish bridges between commutative algebra and combinatorial
optimization, which could be beneficial to both areas. Necessary and/or
sufficient conditions for the normality of R[] and the reducedness of
gr;(R) are shown. Some of our results give some support to a conjecture
of Conforti and Cornuéjols (Conjecture 4.17). Applications to Rees
algebras theory and combinatorial optimization are presented.

In the paper we introduce some of the algebraic and combinatorial
notions that are most relevant. For unexplained terminology and
notation we refer to [26, 28, 29, 30, 35]. See [11] for detailed
information about clutters.
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2. Vertex covers of clutters. The set of nonnegative real numbers
will be denoted by R . To avoid repetitions throughout this article we
shall use the notation and assumptions introduced in Section 1. For
convenience we shall always assume that each variable x; occurs in at
least one monomial of F'.

Definition 2.1. A subset C' C X is a minimal vertex cover of the
clutter C if: (i) every edge of C contains at least one vertex of C' and
(ii) there is no proper subset of C' with the first property. If C' satisfies
condition (i) only, then C' is called a vertex cover of C.

The first aim is to characterize this notion in terms of the integral
vertices of set covering polyhedrons and the minimal primes of edge
ideals.

Notation. The support of % = z{* --- 2%~ is

supp (z%) = {z; | a; > 0}.

Proposition 2.2. The following are equivalent:
(a) p = (z1,... ,2) is a mingmal prime of I = I(C).
(b) C ={x1,...,x.} is a minimal vertex cover of C.

(c) a=e1+ -+ e 15 avertex of Q(A).

Proof. (a) < (b). It follows readily by noticing that the minimal
primes of the square-free monomial ideal I are face ideals, that is,
they are generated by subsets of the set of variables, see [39, Proposi-
tion 5.1.3].

(b) = (c¢). Fix 1 < i < r. To make notation simpler fix i = 1. We
may assume that there is an s; such that 2% =xym; for j =1,...,s;
and z1 ¢ supp («¥7) for j > s;. Notice that supp (mg, )N(C\{z1}) = @
for some 1 < k; < sy, otherwise C'\ {z;} is a vertex cover of C strictly
contained in C, a contradiction. Thus, supp (mg,) N C' = & because I
is square-free. Hence, for each 1 < i < r, there is a vg, in {v1,...,v4}
such that z"* = z;mg, and supp (mg,) C {®r+1,-.- ,2,}. The vector
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a is clearly in Q(A), and since {e;}i, 1 U {vky,... 0k, } is linearly
independent, and

(a,e;) =0, i=r+1,...,n; (ou,) =1, i=1,...,m

we get that the vector « is a basic feasible solution. Therefore, by [1,
Theorem 2.3], o is a vertex of Q(A).

(c) = (b). It is clear that C intersects all the edges of the clutter C
because a € Q(A). If C' C C is a vertex cover of C, then the vector
o = Zziec, e; satisfies &’ A > 1 and o/ > 0. Using that « is a basic
feasible solution in the sense of [1], it is not hard to verify that o is
also a vertex of Q(A). By the finite basis theorem [41, Theorem 4.1.3],
we can write

Q(A) =R + conv (V),

where V' is the vertex set of Q(A). As a = B+, for some 0 # 3 € R,
we get
Q(A) = R% + conv (V' \ {a}).

Hence, the vertices of Q(A) are contained in V \ {a}, see [4, Theo-
rem 7.2], a contradiction. Thus, C' is a minimal vertex cover. ]

Corollary 2.3. A vector o € R" is an integral vertex of Q(A) if
and only if o is equal to e;, + -+ + e;, for some minimal vertex cover

{ziy,...,zi,} of C.

Proof. By Proposition 2.2 it suffices to observe that any integral
vertex of Q(A) has entries in {0, 1} because A has entries in {0,1}. See
[34, Lemma 4.6]. O

A set of edges of the clutter C is independent if no two of them
have a common vertex. We denote the smallest number of vertices
in any minimal vertex cover of C by ap(C) and the maximum number
of independent edges of C by (1(C). These numbers are related to
min-max problems because they satisfy:

ag(C) > min{(1,z) |z > 0; zA > 1}
= max{(y,1) |y > 0; Ay <1} > 5;(C).
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Notice that ap(C) = B1(C) if and only if both sides of the equality have
integral optimum solutions.

These two numbers can be interpreted in terms of I. By Proposi-
tion 2.2 the height of the ideal I, denoted by ht (I), is equal to the
covering number ay(C). On the other hand, the independence number
B1(C) is equal to mgrade (I), the monomial grade of the ideal:

B1(C) = max{r | 3 a regular sequence

of monomials z®*,... ,z% € I'}.

The equality ag(C) = 51(C) is equivalent to require z; - - - z,t? € R[It],
where g is the covering number o (C).

Definition 2.4. If oy(C) = $1(C), we say that the clutter C (or the
ideal I) has the Kdnig property.

3. Rees algebras and polyhedral geometry. Let A = {vy,...,
vg} be the set of exponent vectors of z¥1,... ,z%, and let

A’ = {617" - 3 €n, (Ulal)a v 7(Uq7 l)} C RnJrla

where e; is the ¢th unit vector. The Rees cone of A is the rational poly-
hedral cone, denoted by R.A’, consisting of the linear combinations
of A’ with nonnegative coefficients. Note dim(R.A’) = n + 1. Thus,
according to [41] there is a unique irreducible representation

(2) R, A =H!n---nHS nNHINn---NH

€ent1

such that 0 # a; € Q"*! and (a;,enq1) = —1 for all i. As usual H;
denotes the closed half-space

Hf ={a€R"™ | (a,a) > 0}

and H, is the hyperplane through the origin with normal vector a.

Theorem 3.1. The function ¢: Q" — Q"+ given by p(a) = (a, —1)
induces a bijective map

o:V—{ay,...,a-}
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between the set of vertices V of Q(A) and the set {ay, ... ,a,} of normal
vectors that occur in the irreducible representation of Ry A’.

Proof. First we show the containment ¢(V) C {a1,...,a,}. Take in
V. By [1, Theorem 2.3] « is a basic feasible solution. Hence, (o, v;) > 1
fort=1,...,q, @ > 0, and there exist n linearly independent vectors
Vigy oo » Uiy €jqy ... ,€5, i AU{eq,...,en} such that (a,v;,) = 1 and
(a,ej,,) =0 for all h,m. It follows that the set

F = H(a,—l) N R+.AI

has dimension n and R, A" C H(Z —1) Therefore, F' is a facet of
R, A'. Using [41, Theorem 3.2.1] we obtain that F = Ry A’ N H,,
for some 1 < p < r, and consequently H, _1) = H,,. Since the first
n entries of a, are nonnegative and (ap,en41) = —1 it follows that
() = (a, —1) = ay, as desired.

To show the reverse containment, write a, = (a, —1), with 1 <p <r
and a € R™. We will prove that « is a vertex of Q(A). Since equation
(2) is an irreducible representation, one has that the set

F=Hg _1NRyA

is a facet of the Rees cone R A, see [41, Theorem 3.2.1]. Hence, there
is a linearly independent set

{(vi;, 1), ..., (v, 1), €4y 5e5,} CA, k+s=n

such that

(3) ((vi,, 1), (a0, 1)y =0 = (v;,,a) =1, h=1,...,k,

(4) (€jns (,—1)) =0=> (ej,,, ) =0, m=1,...,s.

It is not hard to see that v;,,...,v;,,€;,,... ,¢€;, are linearly indepen-

dent vectors in R™. Indeed, if
Aviy + o+ AUy, e, o psej, =0, Apspm €R,
then taking the inner product with o and using equations (3) and (4)
we get
M4+ A =0
= AUy, 1)+ M0, 1) + gy 00+ psej, = 0.
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Therefore, A\, = 0 and u,, = 0 for all h,m, as desired. From
Ry A" C H and Hf = H(J;’il), we get @ > 0 and {(a,v;) > 1 for
all 7. Altogether we obtain that « is a basic feasible solution, that is,
a is a vertex of Q(A). O

Let py,...,ps be the minimal primes of the edge ideal I = I(C), and
let

Co={zi|zi€p}, k=1,...,s,

be the corresponding minimal vertex covers of the clutter C. By
Proposition 2.2 and Theorem 3.1 in the sequel, we may assume that

ak:< Z ei,l>, k=1,...,s.

z;€C

Notation. Let dj be the unique positive integer such that diay has
relatively prime integral entries. We set ¢, = dpay, for k=1,... ,r. If
the first n rational entries of ay are written in lowest terms, then dy
is the least common multiple of the denominators. For 1 < k < r, we
have di, = — (g, ept1)-

Definition 3.2. The set covering polyhedron Q(A) is integral if all
its vertices have integral entries.

Corollary 3.3. The irreducible representation of the Rees cone has
the form

(5) RyA =H n---nH! NH/N---nH/,

€n+1

di, =1 if and only if 1 < k < s, and Q(A) is integral if and only if
r=Ss.

Proof. 1t follows from Theorem 3.1 and Corollary 2.3. u]

Notation. In the sequel we shall always assume that ¢y,... , £, are
the integral vectors of equation (5).
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Recall that the Simis cone of A is the rational polyhedral cone

Cn(A)=Hfn---NnH} NH/ N---NH/,
1 8

€n+41

and the symbolic Rees algebra of I is the K algebra:
Ry(I)=R+IWt+ 12 4 ... 4 1O ... c R[],

where () = pi N.-.Np? is the ith symbolic power of I. Symbolic Rees
algebras have a combinatorial interpretation [22]. Notice the following
description:

I® = ({2 | ((a,b),£;) > 0fori=1,...,s}).

A first use of the Simis cone is the following expression for the
symbolic Rees algebra. In particular, Rs(I) is a finitely generated K-
algebra [27] by Gordan’s lemma [6].

Theorem 3.4 [15]. If S = Z"*'NCn(A) and K[S] = K[{zt"| (a,b)
€ S} is its semi-group ring, then Rs(I) = K[S].

Let NA’ be the sub semi-group of N®t! generated by A’, consisting
of the linear combinations of .4’ with nonnegative integer coeflicients.
The Rees algebra of I can be written as

(6) RIIt] = K[{2"#"| (a,b) € NA'}

(7) =RoIte---oI't®- - CR[t]

According to [39, Theorem 7.2.28] and [36, page 168| the integral
closure of R[It] in its field of fractions can be expressed as

(8) R[It] = K[{z"t"| (a,b) € Z""' N R, A'}]

(9) =ReTt®---0litt®---,

where It = ({z® € R| dp > 1; (z*)? € IP*}) is the integral closure of

I'. Hence, by equations (6) to (9), we get that R[I¢] is a normal domain
if and only if any of the following two equivalent conditions hold:

(a) NA' = ZH1 AR A,
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(b) I' = I¢ for all i > 1.
If the second condition holds we say that I is a normal ideal.

Proposition 3.5. For 1 < i < r we write a; = (a},—1). Let

2
B be the matriz with column vectors al,... ,a;, and let Q@ = Q7 +
conv (v1,...,vq). Then

(a) I' = ({z° € R | a €iQ NZ"}).
(b) @ =Q(B) ={z |z >0; B > 1}. In particular Q(B) is integral.

Proof. Part (a) follows from equation (9) and part (b) follows from
equation (2). o

In the sequel J,gd’“) will denote the ideal of R[It] given by
I = ({2 € R[] | ((a,b), 6x) > di}), k=1,...,r,
and Jj will denote the ideal of R[It] given by
Jr = ({zt" € R[It] | {(a,b),4) > 0}), k=1,...,r,

where d, = — (l,en11). If dp, = 1, we have J,ﬁl) = Ji. In general Jkd’“)
might not be equal to the dith symbolic power of J;. The localization
of R[It] at R\ pi is denoted by R[It],,.

Proposition 3.6. Ji,...,J,. are height one prime ideals containing
IR[It], and Jy is equal to ppR[It],, N R[It] for k =1,...,s. If Q(A)
1s integral, then

rad (IR[It]) = Jy N Jy N--- N J,.

Proof. IR[It] is clearly contained in Jj for all k& by construction. To
show that Jy is a prime ideal of height one, it suffices to notice that
the righthand side of the isomorphism:

R[IY]/J, ~ K[{zt* € R[It] | {(a,b), (x) = 0}]
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is an n-dimensional integral domain, because Fj, = R A'NHy, is a facet
of the Rees cone for all k. Set P, = prR[It],, NR[It] for 1 < k < s. This
ideal is a minimal prime of IR[I¢], see [25], and admits the following
description

b, = kaPk[kaPkt] N R[1t]
=P (L N D+ (RN I)E -+ (T NI -

Notice that z* € p?™ if and only if (a, > e.cc, €) > b+ 1. Hence,
Ji = Py.

Assume that Q(A) is integral, i.e., » = s. Take x°t® € J, for all
k. Using equation (5) it is not hard to see that (a,b+ 1) € Ry A,
that is, z*t"*! is in R[I{] and z*t**t! e I+1+1. Tt follows that
z%t® is a monomial in the radical of IR[It]. This proves the asserted
equality. a

For use below recall that the analytic spread of I is given by

¢(I) = dim R[If])/mR[It]; m = (z1,...,2n).

Corollary 3.7. If Q(A) is integral, then ¢(I) < n.

Proof. Since Q(A) is integral, we have r = s. If {(I) = n, then the
height of mR[It] is equal to 1. Hence, there is a height one prime ideal P
of R[It] such that IR[It] C mR[It] C P. By Proposition 3.6 the ideal P
has the form py R[It],, NR[It]; this readily yields a contradiction. o

Theorem 3.8. [9, 13]. inf {depth (R/I%) | i > 1} < dim(R) — ¢(I).
If gr;(R) is Cohen-Macaulay, then the equality holds.

By a result of Brodmann [3], the depth of R/I* is constant for k
sufficiently large. Broadmann improved this inequality by showing that
the constant value is bounded by dim(R) — ¢(I). For a study of the
initial and limit behavior of the numerical function f(k) = depth R/I*,
see [21].
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Lemma 3.9. Let xy € Cy for some 1 < k < s. If ¥ = xlx”; for
1<i<p andx ¢supp(xz’) fori> p, then there is an z° such that
supp (xv;) NCy = 2.

Proof. If supp (z5) N Cy # @ for all j, then Cy \ {x1} is a vertex
cover of C, a contradiction because C} is a minimal vertex cover. a

Proposition 3.10. If P € {Jy,...,Js}, then R[It|NIR[It]p = P.

Proof. Set P = J,. We may assume that zi,...,z,,, respectively
Ve, ..., x'»t, is the set of all z;, respectively zVit, such that z; € P,
respectively z¥it € P. Notice that py is equal to (z1,...,2,,) and set
C ={z1,...,Zm}. In general, the lefthand side is contained in P. To
show the reverse inclusion, we first prove the equality
(10) P=(z1,...,&m, 2", ... ,z"?t)R[I1].

Let z°t® € P. Thus, z%® = z{*...zkn(2V1t)* ... (z%t) e and

((a,b),€x) > 0. Hence, (e;,¢;) > 0 for some ¢ or ((v;,1),€x) > 0
for some j. Therefore, 2z°t® belongs to the righthand side of equation
(10), as required.

Case (I). Consider z, with 1 < ¢ < m. By Lemma 3.9 there is a j
such that 2% = zyz* and supp (z®) N C = &. Thus, since z* is not in
P (because of the second condition), we obtain z, € R[It] N IR[It]p.

Case (II). Consider z¢t with 1 < ¢ < p. Since
<(Wa ]-)) €1 + et + €m — en+1> Z ]-)

the monomial z"¢ contains at least two variables in C. Thus, we may
assume that zy,x9 are in the support of z¥¢. Again, by Lemma 3.9,
there are j,j; such that z¥ = xyx®, %1 = z9z”, and the support of
x“ and z7 disjoint from C. Hence, the monomial z“¢z**"7t belongs to
I’*t and z®T7 is not in P. Writing

TVt = (a:v‘:vo‘+7t)/xa+7,

we get zV¢t € R[It] N IR[It]p. o
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Lemma 3.11. rad (J,ﬁd’“)) =Jg for1<k<r.

Proof. By construction one has rad (J,gd’“)) C Ji. The reverse inclu-
sion follows by noticing that if z9® € Jy, then (z9¢%)% € J,gd’“). o

Proposition 3.12. If R[It] is normal, then IR[It] = Jl(dl) NN
(d'f‘)
.

Proof. “C.” Let z%® € IR[It]. Since z* € I**! we obtain
(a,b+1) € NA'. In particular, we get (a,b+ 1) € Ry A". Therefore,

0< <((L,b+ 1)’&9) = <(aab)azk> - dka

and consequently z%t® € J(4) for 1 < k < r.

“3.7 Let z%t® € J@) for all k. Since (a,b+ 1) € Ry A" NZ*H
using that R[It] is normal yields (a,b + 1) € NA'. It follows that
z? € I C IR[It]. O

A similar formula is shown in [8]. The normality of R[] can
be described in terms of primary decompositions of IR[It], see [24,
Proposition 2.1.3].

The following two nice formulas, pointed out to us by Vasconcelos,
describe the difference between the symbolic Rees algebra of I and the
normalization of its Rees algebra. If qy = JyNR for k=1,...,r, then

R.(I) = ﬂ R[It],, NR]t;  R[I{ = ﬂ R[4, N RIY.

These representations are linked to the so-called Rees valuations of the
ideal I, see [37, Chapter 8] for further details.

Proposition 3.13. The following conditions are equivalent
(a) Q(A) is integral.
b)RLA =Hn---NnHS ﬂHZﬂ---ﬂHz, i.e., r=s.

€n+1
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(c) Rs(I) = R[It].
(d) The minimal primes of IR[It] are of the form pyR[It],, N R[It].

Proof. (a) < (b) < (c). These implications follow from Theo-
rems 3.1 and 3.4. The other implications follow readily using Proposi-
tion 3.6. ]

Definition 3.14. Let z"* =[]
vertex covers of C is the ideal

z:€C Ti for 1 < k < s. The ideal of

L(C) = (z*,... ,2") C R.

The clutter of minimal vertex covers, denoted by D or b(C), is the
blocker of C.

In the literature I.(C) is also called the Alezander dual of I because if
A is the Stanley-Reisner complex of I, then I.(C) is the Stanley-Reisner
ideal of the Alexander dual of A. The survey article [20] explains
the role of Alexander duality to prove combinatorial and algebraic
theorems.

Example 3.15. Let I = (212225, 212324, T2X3%6, T42526). The
clutter of I is denoted by Qg. Using Normaliz [7] and Proposition 3.13.
we obtain:

R[It] C Ry(I) = R[It] = RIt][z; - - - w6t?]

and

R[1(Qs)t] = R[1(Qs)1]-

Proposition 3.16 [18]. If R[It] = Rs(I) and J = I.(C), then

R[JY = R.(J).

Corollary 3.17 [11, Theorem 1.17]. If Q(A) is integral and A’ is
the incidence matriz of the clutter of minimal vertex covers of C, then
Q(A') is integral.
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Proof. 1t follows at once from Propositions 3.13 and 3.16. u]

Definition 3.18. Let X' = {z;,,... ,2; ,%j,,...,%;,} be a subset
of X. A minorof I is a proper ideal I’ of R' = K[X \ X'] obtained from
I by making z;, =0 and z;, =1 for all k,¢. The ideal I is considered
itself to be a minor. A minor of C is a clutter C’ that corresponds to a
minor (0) CI' C R'.

Notice that C’ is obtained from I’ by considering the unique set of
square-free monomials of R’ that minimally generate I'.

Proposition 3.19. If It = 1) for somei > 2 and J = I’ is a minor
of I, then Jt = J®).

Proof. Assume that J is the minor obtained from I by making z; = 0.
Take z* € J®. Then z® € I) = Ii because J C I. Thus, 2% € I'.
Since z; ¢ supp (z%), it follows that z* € Ji. This proves J® C Ji.
The other inclusion is clear because J® is integrally closed.

Assume that J is the minor obtained from I by making x; = 1. Take
% € JW, Notice that riz® € I® = Ti. Indeed, if z; € py, then
zt € pi, and if 1 ¢ py, then J C pi and z* € p}. Since z1 ¢ supp (z%)
it follows that 2% € J°. O

Corollary 3.20. If Rs(I) = R[It], then Rs(I') = R'[I't] for any
minor I' of I.

Proposition 3.21. Let D be the clutter of minimal vertex covers of
C. If R[It] is equal to Rs(I) and |[ANB| <2 for A€ C and B € D,
then R[It] is normal.

Proof. Let x4t = z{*...z97t® € R[It] be a minimal generator, that
is, (a,b) cannot be written as a sum of two nonzero integral vectors in
the Rees cone R, . A". We may assume a; > 1 for 1 <7 <m, a; =0 for
i >m,and b > 1.
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Case (I). ((a,b),4;) > 0 for all . The vector v = (a,b) — ey satisfies
(v, 4;) > 0 for all 7, that is, v € R .A’. Thus, since (a,b) = e; + 7, we
derive a contradiction.

Case (II). ((a,b),¢;) = 0 for some i. We may assume
(] (@b),6) = 0} = {fn,... 0},

Subcase (IL.a). e; € Hy, N---N Hy, for some 1 <4 < m. It is not
hard to verify that the vector v = (a,b) — e; satisfies (v, ¢x) > 0 for all
1<k <s. Thus v € R} A, a contradiction because (a,b) = e; + 7.

Subcase (IL.b). e; ¢ Hy, N ---N Hy, for all 1 <4 < m. Since the
vector (a,b) belongs to R A’, it follows (see the proof of Theorem 4.1)
that we can write

(11) (avb) :)\1(1}1,1)+"'+)\q(’l)q,1), )\i ZO

By the choice of 29t® we may assume 0 < \; < 1. Set v = (a,b)—(v1,1)
and notice that by equation (11) this vector has nonnegative entries.
We claim that v is in the Rees cone. Since by hypothesis one has
0 < {(v1,1),4;) <1 for all j, we readily obtain

((ay0),lk) — ((v1,1),4,) =0 if 1 <k <p,

(v, 4k) = { {(a,b), ) — {(v1,1),€;) > 0 otherwise.

Thus, v € R4 A" and (a,b) = (v1,1) +v. As a result v = 0 and
z9° € R[It], as desired. o

4. Konig property of clutters and normality. Let us introduce
a little bit more notation and definitions. Recall that the Ehrhart ring
of the lattice polytope P = conv (v1,... ,vq) is the subring

A(P) = K[{z' | a € Z" NiP;i € N}] C R[t],

and the homogeneous monomial subring generated by Ft = {z"'¢,...,
xz¥et} over the field K is the subring K[Ft] C R[t].

Theorem 4.1. If R[It] = Rs(I) and K[Ft] = A(P), then R[It] is
normal.
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Proof. Let z9t® = z{*...297t® € R[It] be a minimal generator, that
is, *t® cannot be written as a product of two nonconstant monomials
of R[It]. We may assume a; > 1 for 1 <i <m, a; =0 for ¢ > m, and
b>1.

Case (I). ((a,b),¢;) > 0 for all i. The vector v = (a,b) — e
satisfies (v, ;) > 0 for all 4, that is, v € Ry A’. Thus, since x; and
12> - xntb are in R[Tt], we get a contradiction. In conclusion,

this case cannot occur.

Case (II). ((a,b),¢;) = 0 for some i. We may assume

(€] ((a,b),6) = 0} = {&1,...,0,}.

simplicity of notation, assume ¢ = 1. The vector v = (a, b) — e; satisfies

Subcase (Il.a). e; € Hy N---N Hy, for some 1 < i < m. For

< €>7 <(a7b)aek>*<€1,€k>:0 1f1§k§p,
Tk ((a,b), L) — (e1,ry > 0 otherwise.

Thus, v € R;.A’". Proceeding as in Case (I), we derive a contradiction.

Subcase (IL.b). e; ¢ Hy, N---N Hy, for all 1 <4 < m. The vector
(a,b) belongs to the polyhedral cone

C=HyN---NHy, NRLA".
Hence, we can write
(aab) - >\1(’Ula 1) R Aq(vqa 1) +,u'161 +--- 4+ Hn€n
<(aa b)vzk> = )\1<(Ul7 1)a£k> et )‘q<(v¢17 1)a£k>
+ ,u1<ela€k> +oee+ :u‘n<en7£k> =0

for Kk = 1,...,p. From the first equality, we get p; = 0 for i > m
because a; = 0 for ¢ > m. If y; > 0 for some 1 < i < m, then (e;, lx) =0
for 1 < k < p, a contradiction. Hence, u; = 0 for all i. Therefore,
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a/b € P and a € Z" NbP. This proves 2°t* € A(P) = K[Ft] C R[It],
as desired. ]

Proposition 4.2 [40]. If ¢, = diay, has the form

gk:ei1+"'+€ik_dken+1a 1<y << <,

fork=1,...,r, then A(P)[zy,...,z,] = R[It].

Proof. The Ehrhart ring is contained in R[[¢]. Thus, the equality
follows using the proof of Theorem 4.1. o

Proposition 4.3. If z*,... ,x% have degree d > 2 and I =10
for all b, then I® is generated by monomials of degree bd for b > 1.

Proof. The monomial ideal I® has a unique minimal set of generators
consisting of monomials. Take z* in this minimal set. Notice that
(a,b) € Ry A'. Thus, we may proceed as in the proof of Theorem 4.1
to obtain that (a,b) is in the cone generated by {(v1,1),...,(vq,1)}.
This yields deg (z*) = bd. O

Proposition 4.4. If z%',... ,z% have degree d > 2, then I' = I®
for all i > 1 if and only if Q(A) is integral and K[Ft] = A(P).

Proof. =. By Proposition 3.13 the polyhedron Q(A) is integral.
Since I®) is integrally closed [39, Corollary 7.3.15], we get that R[]
is normal. Therefore, applying [14, Theorem 3.15] we obtain K[F't] =
A(P); here the hypothesis on the degrees of z% is essential.

<. By Proposition 3.13, I* = I) for all 4; thus, applying Theo-
rem 4.1 gives that R[[t] is normal and we get the required equality.
Here the hypothesis on the degrees of V¢ is not needed. o

Definition 4.5. The clutter C satisfies the maz-flow min-cut
(MFMC) property if both sides of the LP-duality equation

(12) min{(e,z) |z >0; A > 1} =max{(y,1) |y > 0; Ay < a}
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have integral optimum solutions  and y for each nonnegative integral
vector a.

It follows from [30, pages 311-312] that C has the MFMC property
if and only if the maximum in equation (12) has an optimal integral
solution y for each nonnegative integral vector cw. Thus the system
x > 0; A > 1 is TDI if and only if C has the max-flow, min-cut

property.

A ring is called reduced if 0 is its only nilpotent element. For conve-
nience, let us state some known characterizations of the reducedness of
the associated graded ring.

Theorem 4.6 [15, 19, 25]. The following conditions are equivalent
(i) gry(R) is reduced.

(ii) R[It] is normal and Q(A) is an integral polyhedron.

(i) I is normally torsion free, that is, I' = I®) for all i > 1.

(iv) 2 > 0; A > 1 is a TDI system.

(v) C has the maz-flow, min-cut property.

Corollary 4.7 [12, Theorem 1.3]. Let D be the clutter of minimal
vertex covers of C. If Q(A) is integral and |ANB| <2 for A€ C and
B €D, thenx > 0; xA > 1 is a TDI system.

Proof. By Proposition 3.21, the Rees algebra R[[t] is normal. To
complete the proof apply Theorem 4.6. o

Lemma 4.8. If I is a monomial ideal of R, then the nilradical of
the associated graded ring of I is given by

nil (gr;(R)) = ({z® € I'/T"™ | 2*> € I i > 0; s > 1}).

Proof. The nilradical of gr;(R) is graded with respect to the fine
grading, and thus it is generated by homogeneous elements. ]
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Definition 4.9. The matrix A is balanced if A has no square
submatrix of odd order with exactly two ones in each row and column.
A is totally unimodular if each i X 4 minor of A is 0 or £1 for all 7 > 1.

Proposition 4.10. If A is balanced, then gr;(R) is reduced.

Proof. Let z& € I*/I'*! be in nil (gr;(R)), that is, z°* € I**T! for
some 0 # s € N. By Lemma 4.8 we need only show z& = 0. It
follows rapidly that the maximum in equation (1) is greater than or
equal to ¢ + 1/s. By [30, Theorem 21.8, page 305] the maximum in

equation (1) has an integral optimum solution y = (y1,...,yq). Thus,
y1 + - +yg > i+ 1. Since y satisfies y > 0 and Ay < a we obtain
xz® € I't!. This proves z& = 0, as required. O

Proposition 4.11. If A is balanced and J = I.(C), then R[Jt] =
R(J).

Proof. Let D be the blocker of C. By [31, Corollary 83.1a(v), page
1441], we get that D satisfy the max-flow, min-cut property. Thus, the
equality follows at once from Theorem 4.6. u]

Proposition 4.12. Ifgr;(R) is reduced, respectively R[It] is normal,
and I' is a minor of I, then gr; (R') is reduced, respectively R'[I't] is
normal.

Proof. Notice that we need only show the result when I’ is a minor
obtained from I by making x; = 0 or ; = 1. Using Lemma 4.8 both
cases are quite easy to prove. O

Definition 4.13. A clutter C satisfies the packing property (PP) if
all its minors satisfy the Konig property, that is, ap(C") = B1(C’) for
any minor C’ of C.

Corollary 4.14. If the ring gr;(R) is reduced, then ao(C') = $1(C’)
for any minor C' of C.
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Proof. Let C’' be any minor of C, and let I’ be its clutter ideal.
We denote the incidence matrix of C' by A’. By Proposition 4.12 the
associated graded ring gr;,(R’) is reduced. Hence, by Theorem 4.6
the clutter C’ has the max-flow, min-cut property. In particular, the
LP-duality equation

min{(1,z) |z > 0; zA' > 1} = max{(y,1) |y > 0; A’y <1}

has optimum integral solutions z, y. To complete the proof, notice
that the lefthand side of this equality is a(C’) and the righthand side
is B1(C"). O

Remark 4.15. If T is the facet ideal of a simplicial tree, then gr;(R)
is reduced. This follows from [16, page 174] using the proof of [32,
Corollary 3.2, page 399]. In particular, C has the Konig property; this
was shown in [17, Theorem 5.3].

Corollary 4.16. If C has the maz-flow, min-cut property, then C
has the packing property.

Proof. 1t follows at once from Theorem 4.6 and Corollary 4.14. o
Conforti and Cornuéjols conjecture that the converse is also true:

Conjecture 4.17 [11, Conjecture 1.6]. If the clutter C has the
packing property, then C has the maz-flow, min-cut property.

Next we state the converse of Corollary 4.14 as an algebraic version
of this interesting conjecture which to our best knowledge is still open:

Conjecture 4.18. If ao(C") = B1(C') for all minors C' of C, then
the ring gr;(R) is reduced.

It is known [11, Theorem 1.8] that clutters with the packing prop-
erty have integral set covering polyhedrons. As a consequence, using
Theorem 4.6, this conjecture reduces to the following:
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Conjecture 4.19. If ag(C') = B1(C’) for all minors C' of C, then
RI[It] is normal.

In this paper we will give some support for this conjecture using an
algebraic approach.

Proposition 4.20. Let J; be the ideal obtained from I by making
xz; = 1. If Q(A) is an integral polyhedron, then the ideal I is normal if
and only if J; is normal for all i and depth (R/I*) > 1 for all k > 1.

Proof. =-. The normality of an ideal is closed under minors [15,
Proposition 4.3], hence J; is normal for all i. Using Theorem 3.8 and
Corollary 3.7 we get that depth (R/I*) > 1 for all i.

<. It follows readily by adapting the arguments given in the proof
of the normality criterion [15, Theorem 4.4]. O

By Proposition 4.20 we obtain that Conjecture 4.18 also reduces to:

Conjecture 4.21. If ap(C') = $1(C’) for any minor C' of C, then
depth (R/T') > 1 for all i>1.

Notation. For an integral matrix B # (0), the greatest common
divisor of all the nonzero r x r subdeterminants of B will be denoted

by A,(B).

Corollary 4.22. If z",... ,x% are monomials of degree d > 2 such
that gr;(R) is reduced and the matriz

o Ul ... Uq
so(n )

has rank r, then A,.(B) = 1 and B diagonalizes over Z to an identity
matric.

Proof. By Proposition 4.4 we obtain A(P) = K[Ft]. Hence, a direct
application of [14, Theorem 3.9] gives A,.(B) = 1. o
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This result suggests the following weaker conjecture of Villarreal:

Conjecture 4.23. If ag(C') = B1(C") for all minors C' of C and
¥, ..., x"% have degree d > 2, then A,.(B) = 1, where r = rank (B).

Let G be a matroid on X of rank d, and let B be the collection of
bases of . The set of all square-free monomials z;, ---z;, € R such
that {z;,,...,2;,} € B will be denoted by F and the sub semi-group
(of the multiplicative semi-group of monomials of R) generated by Fg
will be denoted by M. The basis monomsial ring of G is the monomial
subring K[Fg] = K[Mg]. The ideal I(B) = (Fg) is called the basis
monomial ideal of G. An open problem in the area is whether the toric
ideal of K[F¢] is generated by quadrics, see [43, Conjecture 12]. This
has been shown for graphic matroids [2].

The next result implies the normality of the basis monomial ring of G.

Proposition 4.24 [42]. If 2 is a monomial of degree {d for some
£ € N such that (z*)P € Mg for some 0 £ p € N, then z* € Mg.

Proposition 4.25. If I = I(B) and B satisfies the packing property,
then gr;(R) is reduced.

Proof. First we show the equality A(P) = K[Fgt]. It suffices to prove
the inclusion A(P) C K[Fgt]. Take z°t® € A(P), i.e., z* € Z" N bP.
Hence z® has degree bd and (z%)? € Mg for some positive integer p.
By Proposition 4.24 we get % € Mg. It is seen that z¢’ is in K[Fgt].
Since Q(A) is integral [11], using Theorem 4.1 we get that R[[t] is
normal. Thus, both conditions yield that gr;(R) is reduced according
to Theorem 4.6. m|

This proof can be simplified using that the basis monomial ideal of a
matroid is normal [40].

Corollary 4.26. Let Xi,...,X4 be a family of disjoint sets of
variables, and let M be the transversal matroid whose collection of basis



BLOWUP ALGEBRAS 93

18
C={y, - ya} lyi € X; Vi}

If I =I(C), then gr;(R) is reduced.

The combinatorial equivalencies in the next result are well known [11,
12]. Our contribution here is to link the reducedness of the associated
graded ring with the integrality of Q(A).

Proposition 4.27. If C is a simple graph, then the following are
equivalent:

(a) gr;(R) is reduced.

(b) C is bipartite.

(c) Q(A) is integral.

(d) C has the packing property.

Proof. By [32, Theorem 5.9], (a) and (b) are equivalent. Applying
Theorem 4.6 and Proposition 3.21, we obtain that (a) is equivalent to
(c). By Corollary 4.14 condition (a) implies (d). Finally, using [11,
Theorem 1.8], we obtain that (d) implies (c). O

Corollary 4.28 [18]. If C is a bipartite graph and J = I.(C), then
gr;(R) is reduced.

Proof. The matrix A is totally unimodular [30, page 273], hence Q(A)
is integral. By Proposition 3.16 we get R[J¢] = Rs(J). On the other
hand, R[Jt] is normal by Proposition 3.21. Thus, by Theorem 4.6 the
ring gr;(R) is reduced. u]

Proposition 4.29. If C has the packing property and I = I(C), then
72 =12,

Proof. By induction on n. Assume I2 # I? and consider M = I2/I?.
If p #m = (21,...,2,) is a prime ideal of R, then by induction
M, = (0). Thus m is the only associated prime of M and there is an
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embedding R/m — M, T — % where 2@ € I2 \ I? and z;z° € I?
for all 7. Notice that by induction all the entries a; of a are positive.
We consider two cases. Assume a; > 2 for some i, say i = 1. Given
a monomial z%, the monomial obtained from z“ by making z; = 1 is
denoted by 2. Then making z; = 1 and using that z,2® € I? gives
2% = x”ix”éx‘;, hence z® = x‘flx“l = x¥1g¥227 € I?, a contradiction.
On the other hand, if a; = 1 for all 4, then 2 =z ---z, € I9 C I?,
where g = ht(I), a contradiction. Therefore, I = I2. O

Recall that I is said to be unmized if all the minimal vertex covers of
C have the same cardinality.

Lemma 4.30. If I is an unmized ideal and C satisfies the Konig
property, then x1 = x1x2-- -z, belongs to the subring K[z%,...  z4].

Proof. We may assume z! = %1 --.2%2% where g is the height of

I. If § # 0, pick x,, € supp(z®). Since the variable ,, occurs in some
monomial of I, there is a minimal prime p containing x,,. Thus using
that z¥*,... ,z% have disjoint supports we conclude that p contains at
least g + 1 variables, a contradiction. a

Proposition 4.31. Let I; = I N K[X \ {z;}]. If I is an unmized
ideal such that the following conditions hold

(a1) Q(A) is integral,

(az) I; is normal fori=1,... ,n, and

(as) C has the Konig property,
then R[It] is normal.

Proof. Take z%t® = z{' ... zantb € m a minimal generator. By the
second condition we may assume a; > 1 for all i. Set g = ht(I). Notice
that 1 -+ - z,t9 is in R[It] because Q(A) is integral; this follows from
Corollary 3.3 and equation (8). We claim that b < g. If b > g, consider
the decomposition

248 = (zy - wnt9) (28 7h - 2An 109,
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To derive a contradiction consider the irreducible representation of the
Rees cone R A’ given in equation (5). Observe that

Z a; >b, k=1,...,s,

z;€Ch

because (a,b) € Ry A’. Now since I is unmixed, we get

Z (a;—1)>b—yg, k=1,...,s,

z,€C

and consequently z{'~'...z%1t*=9 ¢ R[It], a contradiction to the
choice of z%t®. Thus, b < g. Using the third condition we get
ry---x, € I9 C I°, which readily implies z%t® € R[It]. o

According to Corollary 5.9 condition (as) is redundant when I is
generated by monomials of the same degree.

Proposition 4.32. LetY C X, and let Iy = INK[Y]. If Iy has
the Konig property for all' Y and R[It] is generated as a K-algebra by
monomials of the form x°, with x® square-free, then R[It] is normal.

Proof. Take zt* a generator of R[It], with % square-free. By induc-
tion we may assume that z%t® = - - - z,t’. Hence, since (1,...,1,b)
is in R4 A’, we get that

|Ck] >b for k=1,...,s.

In particular ¢ = ht(I) > b. As I has the Konig property, we get
Ty -2, € 19 and consequently z%t® € R[It]. o

Proposition 4.33. Let I; = INK[X \ {z;}]. If I; is normal for
t=1,...,n and

(13) C =Hy, NHy,N---NH, NRYT £ (0),

then R[It] is normal.
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Proof. Let z9t® = z{*...297t® € R[It] be a minimal generator, that
is, (a,b) cannot be written as a sum of two nonzero integral vectors in
R A’. It suffices to prove that 0 < b < 1 because this readily implies
that z® is either a variable or a monomial in F. Assume b > 2. Since
I; is normal we may assume that a; > 1 for all i. As each variable
occurs in at least one monomial of F, using that C' is contained in
R A’ together with equation (13), it follows that there is (vg, 1) such
that ((vg,1),4;) =0 fori=1,...,r. Therefore

((a —vg,b—1),£4;) >0, i=1,...,r

Thus, (a,b) — (vk,1) € RyA’, a contradiction to the choice of
zotb, o

5. Some applications to Rees algebras and clutters. Through-
out this section we assume deg (z¥i) = d > 2 for all i. By assigning
deg (z;) = 1 and deg (t) = —(d — 1), the Rees algebra R[It] becomes a
standard graded K-algebra, i.e., it is generated by elements of degree 1.
The a-invariant of R[It], with respect to this grading, is denoted by
a(R[It]). If R[It] is a normal domain, then according to a formula of
Danilov-Stanley [6, Theorem 6.3.5] its canonical module is the ideal of
R][It] given by

gy = (a2t |0 = (a) € (RyA) N ZHY),

where (R4+.A")° is the topological interior of the Rees cone.

Theorem 5.1. If gr;(R) is reduced, then
a(R[It]) > —[n — (d - 1)(ao(C) = 1)],

with equality if I is unmized.

Proof. Tt is well known, see [6], that the a-invariant can be expressed
as

a(R(I1]) = — min{i | (@rqrq); # 0}.

Set a9 = ap(C). Using equation (5) it is seen that the vector
(1,...,1,0 — 1) is in the interior of the Rees cone. Thus, the in-
equality follows by computing the degree of zj - - -z, t*° L.
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Assume that I is unmixed. Take an arbitrary monomial z%t® =
zft - z%t’ in the ideal wp(ry, that is, (a,b) € (R4+.A’)°. By Proposi-
tion 3.13 the vector (a,b) has positive entries and satisfies

(14) b+ Y ai>1, k=1,...,s
z;€C

If ag > b+ 1, we obtain the inequality
(15)  deg(z*t®) =ay 4+ +an —b(d—1)>n—(d—1)(ag — 1).

Now assume «ay < b. Using the normality of R[] and equations (5)
and (14) it follows that the monomial

alfl .

m = x| T

n— b—

;zl lt ap+1

belongs to R[It]. Since z%t* = mz; - -+ z,t* !, the inequality (15) also
holds in this case. Altogether we conclude the desired equality. ]

Corollary 5.2 [18]. If I is unmized with oo(C) = 2 and gr;(R) is
reduced, then R[It] is a Gorenstein ring and

a(R[It]) = —(n —d+1).

Proof. From the proof of Theorem 5.1 it follows that = ---xz,t
generates the canonical module. O

Notice that if ao(C) > 3, then R[It] is not Gorenstein because the
monomials x; - - - £,t*° ! and z; - - - x,,t are distinct minimal generators
of wgiry- This holds in a more general setting, see Proposition 5.5
below.

Corollary 5.3. Let J = I.(C) be the ideal of vertex covers of C. IfC
is a bipartite graph and I = I(C) is unmized, then R[Jt] is a Gorenstein
ring and

a(R[Jt]) = —=(n — ap(C) + 1).
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Proof. Notice that R[Jt] has the grading induced by assigning
deg (z;) = 1 and deg(t) = 1 — a(C). Thus, the formula follows from
Corollary 5.2 once we recall that gr;(R) is a reduced ring according to
Corollary 4.28. O

Lemma 5.4. ([5], [35, page 142]). If S is a regular local ring and J
is an ideal of S generated by a regular sequence hq,... ,hq, then S[Jt]
s determinantal:

Z .« Z
and its canonical module is ws(1,t)972.

Proposition 5.5. If I has height g > 2 and S = R|[It] is Gorenstein,
then g = 2.

Proof. Since I, is a complete intersection for all associated prime
ideals p of I and S is Gorenstein, one has ws ~ wg(1,t)9~2 [23]. Then

(16) S~ws~wp(lL,t)! >=RORt®---dRI Ity ' @---

Take a minimal prime p of I of height g. Then S, = R,[I,t] is the Rees
algebra of the ideal I, which is generated by a regular sequence. Thus,
localizing the extremes of equation (16) at p and using Lemma 5.4, we
obtain

Sp = Rp [Ipt] ~WR, (1, t)g_2 ~Wg,-

Note that it is important to know a priori that the canonical module
of Sy is wg, (1,t)972. Hence S, is Gorenstein. To finish the proof note
that the only Gorenstein determinantal rings that occur in Lemma 5.4
are those with g = 2. Here the hypothesis on the degrees of "¢ is not
needed. u]

Lemma 5.6. If R[It] = Rs(I), then there is a minimal vertex cover
Ck of C such that |supp(z¥ )N Ck| =1 fori=1,...,q.

Proof. We claim that J; = ppR[[t] for some 1 < k < s. If not,
using equation (10), we can pick z"*t € Ji for k = 1,...,s. Then



BLOWUP ALGEBRAS 99

by Proposition 3.6 the product of these monomials is in the radical of
IR[It]. Therefore,

[(z°4) - - (z°+¢)]P € IR[It]

for some 0 # p € N. Thus, (z¥1-.-2%)P € I[PT!. By degree
considerations, using that deg (zVi) = d for all 7, one readily derives
a contradiction. This proves the claim. Hence, ((v;,1),£;) = 0 for all 4
and vy, ... ,v4 lie on the hyperplane

E Tr; = 1.
z;€C

Therefore |supp(z?) N Cy| =1 for all ¢, as desired. o

Proposition 5.7. If R[It] = Rs;(I) and I is unmized, then
Hy, N Hy, NN Hy NRET £ (0).

Proof. Let J = I.(C) be the Alexander dual of I. Using Proposi-
tion 3.16 one has R[Jt] = Ry(J). Thus, by Lemma 5.6 there is a vy
such that |supp (z"*)NC;| = L for i =1,... ,r. This means that (vg, 1)
is in the intersection of Hy,,... , Hy, . u]

i

Proposition 5.8. If R[It] = Rs(I), then there are Cy,...,Cy
mutually disjoint minimal vertex covers of C such that U!_,supp (z"¢) =
Ul ,C; and

|supp (%) N Ck| =1, V i,k

Proof. By induction on d. By Lemma 5.6 there is a minimal vertex
cover C; of C such that |supp (z"*) N Ci| = 1 for all i. Consider the
ideal I’ obtained from I by making z; = 1 for all z; € C;. Then I’ is
an ideal generated by monomials of degree d — 1 and R[I't] = Rs(I')
by Corollary 3.20. Thus, we can apply induction to get the required
assertion. o

Corollary 5.9. If I is unmized and R[It] = Rs(I), then both C and
the clutter D of minimal vertex covers of C have the Kdnig property.
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Proof. That D has the Konig property follows from Proposition 5.8,
because ap(D) = d and Ci,...,Cq are independent edges of D.
Now I.(C) is unmixed, is generated by monomials of degree o (C),
and according to Proposition 3.16 one has R[I.(C)] = Rs(I.(C)).
Thus, using again Proposition 5.8, we conclude that C has the Konig
property. O

Combining Corollary 5.9 with Proposition 4.31 we obtain:

Theorem 5.10. Let I; = I N K[X \ {;}]. If I is unmized and
Q(A) is integral, then gr;(R) is reduced if and only if I; is normal for
1=1,...,n.
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