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CONVEX POLYTOPES AND
FACTORIZATION PROPERTIES IN
GENERALIZED POWER SERIES DOMAINS

GARY BROOKFIELD AND DAVID E. RUSH

ABSTRACT. It is shown how to associate to any polytope
that is not a simplex and any field K, a commutative integral
domain D which has no irreducible elements and which is not
pre-Schreier. The integral domain D is a generalized power
series ring over K.

Let R be an integral domain with quotient field K. Recall that
a € R\ {0} is said to be irreducible, or an atom, if a is not the product
of two nonunits of R, and that a is said to be prime if, for all b,c € R,
a | be implies a | b or a | ¢. It is easy to show that any prime element
is irreducible, and much research has been done into the question of
when the converse is true.

For example, in any pre-Schreier domain, all irreducible elements are
prime, and so we recall the definition: An element a of an integral
domain R is primal if, whenever a divides bc with b and c in R, then
a = b'c for some b',c’ € R where b’ divides b and ¢’ divides c. An
integral domain in which each element is primal is said to be pre-
Schreier. (A Schreier domain is a pre-Schreier domain which is also
integrally closed.) Such rings have been studied by many authors, for
example, [6, 7, 9, 13, 18, 22].

It is immediate that, in a pre-Schreier domain, each irreducible
element is prime. On the other hand, there exist examples of integral
domains which are not pre-Schreier, but in which each irreducible
element is prime, see [18, Example 3.7]. (See also [1] for a comparison
of these properties and several related ones.)

In [21], Waterhouse shows that, if each quadratic polynomial f €
R[X] factors into linear polynomials in R[X] whenever it factors into
linear polynomials in K[X], then every irreducible element in R is
prime. The relation between this result and the pre-Schreier condi-
tion was explored in [18] where it is shown that R is pre-Schreier if and
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only if each quadratic polynomial f € R[X] of certain type factors into
linear polynomials in R[X] whenever it factors into linear polynomials
in K[X], see [18, Theorem 1.2]. Since this last result holds even for do-
mains without irreducible elements, for which Waterhouse’s result says
nothing, this leads to the question of whether domains without irre-
ducible elements are necessarily pre-Schreier. Integral domains having
no irreducible elements are considered in [8], where they are called anti-
matter domains. Several constructions of antimatter domains are given
in [8], but it is not evident that these rings can fail to be pre-Schreier.
Indeed those produced by the Krull-Jaffard-Kaplansky-Ohm theorem
are Bezout, and thus pre-Schreier. In [4] the authors showed how to
produce examples of antimatter domains which are not pre-Schreier
by reducing the construction of such domains, via generalized power
series rings, to the construction of torsion-free monoids with the analo-
gous properties. This preprint [4] was posted on the first author’s web
site for a time and is referenced in [1], but it was never submitted for
publication.

The purpose of this note, which supersedes [4], is to expand on
our previous preprint by using ideas from [11] to associate a monoid
M = M(C) to a convex polytope C C R" such that R = K[[M, <]] is
an antimatter domain and is pre-Schreier only if C' is a simplex. (The
example given in [4] is the case that C is a square in R?, which is
mentioned here as Example 3.2.) Questions on factorization properties
in generalized power series have been studied for some time in different
contexts. For example, see [2, 12, 14, 17, 23] and the references listed
there. Also, although polytopes often occur in Noetherian commutative
ring theory, (see, for example, [19, 20]), their occurrence is much
less frequent in non-Noetherian commutative ring theory. Therefore,
although it is now known that antimatter domains which are not pre-
Schreier can also be obtained by a pull-back construction [1], we think
our construction still holds some interest.

We review in Section 1 the definition and basic properties of gener-
alized power series rings and show that, if M is a conical cancellative
torsion-free monoid, < is the natural preorder on M, K is a field, and
R = K[[M, <]] is the generalized power series ring, then

(1) R is an antimatter domain, if M* = M \ {0} is strictly downward
directed (that is, for each z,y € M* there exists z € M* with z < z
and z < y), and
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(2) R is not pre-Schreier, if M does not have decomposition. (M has
decomposition means that for all z, y1,y2 € M such that z < y; + y2,
there are 21,29 € M such that x = z; + 23 and z; < y; and 29 < y».)

Thus, our ring question is reduced to finding a strictly downward di-
rected conical monoid which does not have decomposition. In Section 2,
using ideas from [11], we associate a strictly downward directed conical
monoid M;(C), to a convex polytope C' C R™ and show that M,(C)
has decomposition if and only if C'is a simplex. In Section 3, we put the
above results together to get generalized power series rings K[[M, <]]
which are antimatter domains but are not pre-Schreier.

1. Generalized power series rings. In this section we define gen-
eralized power series rings and discuss when such rings are antimatter
domains or pre-Schreier domains.

Let (M, <) be a strictly ordered monoid; that is, M is a commutative
monoid and < is a partial order on M such that x < y implies
x4+ 2z < y+z for all z,y,z € M. A subset N of M is said to be
narrow if each subset of N consisting of pairwise order-incomparable
elements in the < order is finite.

Let R be a commutative ring. For a function f : M — R the
support of f is defined as supp (f) = {z € M | f(z) # 0}. Then the
generalized power series ring R[[M, <]] is the set of all such functions
whose support is Artinian and narrow in the < partial ordering.
Addition is defined by (f + ¢)(z) = f(z) + g(x) and multiplication by
(f9)(x) = >, o,—e f(@1)g(x2) for £ € M. Since M is strictly ordered,
the sum is in fact finite. See [16] for the details of this construction.

For f € R[M,<]], we will write minsupp (f) for the (finite) set
of minimal elements in the support of f. For z € M, we write X*
for the function such that supp (X*) = {z} and X®(z) = 1. Thus
X®XY = X*% for all z,y € M.

Any monoid M has a preorder, defined by x < y if £+ z = y for some
z € M, which we call the natural preorder. In general, x <y < x does
not imply z = y, so the natural preorder is not always a partial order
on M.

A monoid M is conical if x +y = 0 in M implies z =y = 0. It is
easy to show that if < is the natural preorder on a conical cancellative
monoid, then (M, <) is a strictly ordered monoid.
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Proposition 1.1. Let K be a field. Let M be a conical cancellative
torsion-free monoid and < the natural preorder on M. Then the
following hold:

(1) K[[M,<]] is a domain.
(2) f € K[[M,<]] is a unit if and only if f(0) # 0.

(3) There is a total order < on M such that a < b implies a=b for all
a,bin M. For 0 # f € K[[M,<]], define deg (f) to be the least element
in supp (f) in the < order. Then for all nonzero f,g € K[[M,<]]
we have deg (fg) = deg(f) + deg(g). In particular, if f | g, then
deg (f) < deg (g)-

Proof. (1) Since M is cancellative and torsion-free, this follows from
[16, 1.20].

(2) Since 0 < z for all z € M, this follows from [16, 2.3].

(3) Since M is cancellative and torsion-free, the existence of < comes
from [16, 1.10]. If A C M is Artinian and narrow in the order <,
then A is Artinian and narrow in the order < [16, 1.7]. Thus, deg (f)
is defined for f € K[[M,<]]. The properties of deg(f) are in [15,
4.2]. O

Proposition 1.2. Let K and (M,<) be as in Proposition 1.1.
Suppose that M* = M \ {0} is strictly downward directed; that is,
for each x, y € M*, there exists z € M* with z < x and z < y. Then
K[[M,<]] is an antimatter domain.

Proof. 'We must show that all nonzero nonunits of K[[M, <]] are
reducible. If 0 # f € K[[M,<]] is not a unit, then f(0) = 0 by
Proposition 1.1; that is, minsupp (f) € M*. Since M* is strictly
downward directed, there exists y € M™* such that y < z for each
x € minsupp (f). In fact, the same is true of all elements of supp (f)
since each is greater than an element of minsupp (f); that is, for each
x € supp (f), there is o’ # 0 such that z =y + ’.

Define g : M — K by g(z) = f(z 4+ y) for x € M. Since M is
cancellative, the map =’ — y+2’ is an order isomorphism from supp (g)
to supp (f). Since supp (f) is narrow and Artinian, so is supp (g) and
hence g € K[[M,<]]. Moreover, g(0) = f(y) = 0 since y ¢ supp (f),
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and so ¢ is not a unit. Since y # 0, XY is not a unit either. It is easy
to check that f = X¥g, and so we have shown that f is reducible. i

To discuss the pre-Schreier property in generalized power series rings,
we need to define the corresponding monoid property: A partially or-
dered monoid (M, <) has decomposition (or is a decomposition monoid)
if, for all z,y1,y2 € M such that < y; + yo, there are zq, 2o € M such
that © = 21 + 22 and z; < y; and 23 < yo (see, for example, [3, 10],
[11, Proposition 2.1]). Notice that a domain R is pre-Schreier if and
only if the multiplicative monoid R* = R\ {0} has decomposition, see
[5].

Proposition 1.3. Let K and (M,<) be as in Proposition 1.1. If
K[[M, <]] is pre-Schreier, then M has decomposition.

Proof. Suppose x < y; + y2 in M. Then z 4+ 2z = y; + yz for
some z € M and so X*X* = X¥1X¥2. In particular, X*|X¥1 XV2,
Since K[[M,<]] is pre-Schreier, there are f1, fo € K[[M, <]] such that
X® = fi1fa with f1|X¥ and f2 | X¥2 in K[[M, <]]. The functions f;
and fo must be nonzero since X* # 0. So we can set z; = deg (f1) and
zg = deg (f2). Then, using Proposition 1.1 (3), we get = deg (X7) =
deg (f1) +deg (f2) = 21 + 22 and 2; = deg (f1) < deg (X¥*) = y; and
similarly zo < ys. O

2. Monoids and simplices. Let R be the set of real numbers and
Rt ={a€R|0<a}. Let V be an R-vector space. If z1,z3,... ,T, €
V and a1,as,...,a, € RT are such that > .a; = 1, then Y, a;z; is
called a convex combination of the elements x1,xs,... ,z,. A subset
C of V is conver if it is closed under convex combinations of finite
subsets of C. Since V is convex, and any intersection of convex subsets
is convex, any subset X of V is contained in a smallest convex subset,
its conver hull, written (X). A polytope is the convex hull of a finite
subset X of V.

We use the following notation and terminology from [11]. A subset
X C V is said to be affinely dependent if xy = Z?zl a;x; for some
T, T1,... ,&n € X, a1,... ,an, € R with " | a; = 1. Otherwise, X
is said to be affinely independent. A (classical) simplex in a real vector
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space V is a convex subset of V' that is the convex hull of a finite set
of affinely independent points of V. If C7 and C5 are convex subsets
of the real vector spaces V; and V; respectively, a map f: C; — Cs is
said to be affine if f preserves convex combinations.

Let (X, <) be a partially ordered set, let Y be an arbitrary set and
denote by XY the set of functions from Y to X. The pointwise ordering
< on the set XY is defined by f < g if f(y) < g(y) for each y € Y.
We also define f < g if and only if f(y) < g(y) for each y € Y. The
corresponding partial ordering < on XV is called the strict ordering.
That is, f<g if and only if either f < g or f =g.

If C' is a compact convex set in a real vector space V, we denote
by Aff(C) the group of all affine continuous real-valued functions
with pointwise addition. Then Aff(C) is an ordered group under the
pointwise ordering, and also under the strict ordering. In this section
we give an exposition of some needed results on the ordered groups
(AFF(C), <) and (AfF(C),<).

For a convex subset C' of the vector space V, let M(C) and M,(C) be
the positive cones of (Aff(C), <) and (Aff(C),<) respectively. That
is, M(C) ={f € AE(C) | f >0} and M,(C) = {f € AfF(C) | f >
0} U {0} where 0 denotes the zero function in Aff(C'). The natural
preorders on these monoids are < and <, respectively. Since M(C)
and M (C) are obviously conical, they are strictly ordered monoids
under these orderings.

Lemma 2.1. Let C = (X) for some X C V. Then the map
® : M(C) = (RT)X defined by ®(f) = (f(z))zex, s an injective
monoid homomorphism. Moreover, f < g if and only if ®(f) < ®(g)
and, if f, g € Ms(C), then f < g if and only if ®(f) < D(g).

Proof. This is a special case of [11, Theorem 5.20]. O

Suppose again that C' = (X) for some X C V. For f € M(C),
define the support of f by suppx(f) = {z € X | f(z) > 0}, and let
I'(C) = {suppx(f) | f € M(C)}. Of course, @ = suppx (0) € I'(C),
and, if A = suppx(f) and B = suppx(g) for f,g € M(C), then

AUB =suppx(f +g) € I'(C).
Thus (I'(C), U, @) is a monoid.
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An element z € C is an extreme point of C if (C'\ {z}) # C, or
equivalently z is not a convex combination of other elements of C.
Obviously, if C'= (X), then all extreme points of C' must be in X, and
any finite subset of nonextreme points can be removed from X without
changing its convex hull.

Lemma 2.2. If C = (X) for some X C V, then z € X is an
extreme point if and only if X \ {z} € T(C).

Proof. If x € X is an extreme point, then, by [11, Theorem
5.14], there is some f € M(C) such that f~1(0) = {z}; that is,

suppx (f) = X \ {z}. Conversely, if supp x(f) = X \ {z} € I'(C),
f € M(C), and z is not an extreme point of X, thenz =} v\ 1,3 ay¥y

with }° v\ (43 ay = 1. But since supp x(f) = X \ {z}, 0 = f(2) =
> yex\{z} @y f(y)- But this is impossible since f(y) > 0 for all
ye X\{z}, ay >0forally e X and 3° x\ (3 ay = 1. O

Proposition 2.3. Let X be a finite subset of V, let C = (X), and
assume that all elements of X are extreme points of C'. The following
are equivalent:

(1) C is a simplez.

2) M(C) = ((RM)", <) for somen € N.
3) M(C) has decomposition.

3') Ms(C) has decomposition.

4) T'(C) has decomposition.

5) {z} € T'(C) for each z € X.

6) X is independent.

Proof. (1) = (2). Let Y be a finite independent subset of V'
such that C = (Y). It suffices to show that the homomorphism
® : M(C) — (R*)Y from Lemma 2.1 is surjective. Given an
element (r;)zcy € (RT)Y, we can define a function f : C — R* by
fy) = > .cy GaTe where y = 3 1 a,x is the unique representation
of y as a convex combination of elements of Y. It is easy to check that
f € M(C) and that ®(f) = (r3)zecy. Thus, ® is surjective.

~ N A~~~
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(2) = (3). Since (RT)™ has decomposition, this is clear.

(3) = (4). Let A C B; U By in I'(C), where A = suppx(f),
B; = suppx(g1) and By = suppx(g2) for f,g1,92 € M(C). To
show that there are A;, Ay € I'(C) such that 47 C By, Ay C Bs
and A = A; U Ay, observe that for all « € suppx(f) we have
g1(z) + ga(x) > 0. Let

r = max{f(z)/(g1(z) + g2(2)) | = € suppx (f)}-

Then, by Lemma 2.1, f < 7(g; + g2). Since M(C) has decomposition
by hypothesis, f = fi1+ fo with f; € M(C) and f; < rg; fori = 1,2. Let
A; =suppx(f1) and Ay = suppx (fz2). Then the claims are immediate.

(4) = (5). Let Y be minimal among elements of I'(C') which contain
x. We will show that Y = {z}. Suppose to the contrary that z £ y € Y.
By Lemma 2.2, A = X \ {z} and B = X \ {y} are in I'(C). Since
B C AUY = X, there are By, By € T'(C) such that By C A, Bo CY
and B = By U B,. Since z € B but z ¢ A, we must have z € Bs.
Since By C Y, the minimality of Y then implies Y = Bs. In particular,
y € Y = By C B. This contradicts the definition of B.

(5) = (6). By assumption, for each x € X there is f, € M(C) such
that suppx (fz) = {z}. If 2 = )} .y azx € C, then for each z € X,
fz(2) = ayfz(x). Thus, a, is uniquely determined by the equation
az = fo(2)/fa(z)-

(6) = (1). Definition.

It remains to show that (3') is equivalent to the other properties.
This equivalence is a special case of a general result in [11] which we
discuss next. o

In [11, Theorem 11.4], a general relationship between Choquet sim-
plices and interpolation groups is proved. For the definitions of these
concepts, see [11, Chapters 2, 10]. All we need about interpolation
groups is that a partially ordered group (G, <) is an interpolation group
if and only the positive cone G of G has decomposition. (See [11,
pages 22-23], especially [11, Proposition 2.1].) The only fact that we
require about Choquet simplices is that, if C' is a subset of a finite di-
mensional vector space V', then C' is a Choquet simplex if and only if C'
is a classical simplex [11, Theorem 10.16]. The equivalence (3) < (3')
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of Proposition 2.3 now follows from the following theorem. (Actually
we only need the implication (3') = (3) in what follows, and this only
uses (¢) = (b) of Theorem 2.4, for which the proof given in [11] is
elementary and self contained.)

Theorem 2.4 [11, Theorem 11.4]. Let C be a compact convex subset
of a locally convex Hausdorff topological real vector space. The following
are equivalent:

(a) C is a Choquet simplez.
(b) (Aff(C), <) is an interpolation group.
(c) (Aff(C),X) is an interpolation group.

3. Examples. The following result gives a method of obtaining
generalized power series antimatter domains which are not pre-Schreier.

Theorem 3.1. Let C' be a convex polytope that is not a simplex, let
M = M,(C), and let K be a field. Then K[[M,<]] is an antimatter
domain that is not pre-Schreier.

Proof. To see that M* = M \ {0} = {f € Afi(C) | f > 0} is strictly
downward directed, we begin by letting X be the set of extreme points
of C. Let ® : (M(C)) — (R")¥ be the restriction map as defined in
Lemma 2.1. Now if f, g € M*, let w = min{f(z),g(z) | x € X}. The
constant function w/2 is in M,(C) and it follows by Lemma 2.1 that
w/2 < f and w/2 < g. Thus, M* = M \ {0} is strictly downward
directed. Therefore, by Proposition 1.2, K[[M,<]] is an antimatter
domain. Since C' is not a simplex, Proposition 2.3 implies that M(C)
does not have decomposition. Therefore by Proposition 1.3, K[[M,<]]
is not pre-Schreier. u]

Example 3.2. It is well known that ‘most’ convex polytopes are not
simplices. The easiest example is the unit square C' = (X) C R? where
X ={(0,0),(1,0),(0,1),(1,1)}. The set X is not independent since the
center of the square (1/2,1/2) does not have a unique representation
as a convex combination of the elements of X : (1/2,1/2) =1/2(0,0)+
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1/2(1,1) = 1/2(1,0) + 1/2(0,1). Thus, C is not a simplex, and so
K[[M;(C),<]] is an antimatter domain that is not pre-Schreier.

Remark 3.3. Although, as shown in the proof of Theorem 3.1, M (C)
is strictly downward directed for any polytope C, this is not true of
M(C). For example, let C' = [0,1] be a unit interval in the real line,
and let f,g € M(C) be such that f(0) = g(1) = 0 and f(1) = g(0) = 1.
Then f,g € M*, but there is no nonzero h such that h < f and h < g.
Thus, unlike M, (C), M(C) is not strictly downward directed.

At the expense of making the exposition less accessible, we can give
the following generalization of Theorem 3.1, where the finite subset X
of V is replaced by a compact subset of an R-vector space V. The set
of all extreme points of a compact convex set C' is called the extreme
boundary of C and is denoted 0.C.

Theorem 3.4. Let C be a compact convexr subset of a locally
convex Hausdorff topological real vector space V with 0,C compact,
let M = Ms(C) and let K be a field. If C is not a Choquet simplex,
then K[[M,<]] is an antimatter domain that is not pre-Schreier.

Proof. Again, by Proposition 1.2, K[[M,<]] is an antimatter domain.
Since C is not a Choquet simplex, then by Theorem 2.4 and [11,
Proposition 2.1], M does not have decomposition. Therefore, by
Proposition 1.3, K[[M,<]] is not pre-Schreier. mi
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