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ON THE NUMBER OF FACTORS OF CONVOLUTIONS
OF POLYNOMIALS WITH INTEGER COEFFICIENTS

A.I. BONCIOCAT, N.C. BONCIOCAT AND A. ZAHARESCU

ABSTRACT. We obtain some irreducibility criteria for a
class of polynomials of the form hd¢8f . f(g/h), where f,g,h
are polynomials with integer coefficients, g and h relatively
prime, in terms of the prime factorization of the leading
coefficient of hd°8f . f(g/h), the degrees of f,g,h, and the
size of their coefficients.

1. Introduction. Inspired by earlier work in connection with
Hilbert’s irreducibility theorem, Cavachi [3] investigated the prob-
lem of the irreducibility of polynomials of the form f(X) + pg(X),
with p prime, f(X),g(X) relatively prime and deg f < degg. Given
f(X),9(X) € Q[X] relatively prime, with deg f < degg, an explicit
bound B was provided in [4] such that for all prime numbers p > B,
the polynomial f(X)+pg(X) is irreducible over Q. In [2], explicit upper
bounds have been derived for the number of factors over Q of a linear
combination ny f(X) 4+ n2g(X), covering also the case deg f = degg.
In the present paper we consider multiplicative convolutions of poly-
nomials, which offer considerably more flexibility to such irreducibil-
ity results, as they include linear combinations and compositions of
polynomials. Given two polynomials g(X) = by + 1 X +--- + b, X",
h(X) =co+c1 X + -+ X' € Z[X], by # 0, by a multiplicative
convolution of g and h we understand any polynomial of the form

> aig(X)h(X)",

with ag,a1,...,a, € Z, m > 1, apa,, # 0. If we associate to
ag,ai,... ,am the polynomial f(X) = a9 + a1 X + -+ + a;n X™, and
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assume that h # 0, then

> (000" = wx)mr (453 )

The irreducibility results we obtain for this kind of convolution will be
expressed in terms of the prime factorization of the leading coefficient
of the polynomial h98 7/ f(g/h), the degrees of f, g, h, and the size of
their coefficients. We will treat separately the cases degh < degg and
deg h = deg g, and will derive irreducibility criteria from more general
results on the number of factors of the corresponding convolutions. We
use the following notation. Given a polynomial F(X) = ag + --- +
amX™ € Z[X] of degree m > 0, we let

H(F) =max{|ag|,...,|am|} and L(F)= Z la;],
i=0
and, if m > 0, we let
m—1
H,(F) = max{|ag|,...,|am—1|} and Li(F)= Z la;] .
i=0

For a nonzero integer n, we denote by Q(n) the total number of
prime factors of |n| counting multiplicities, 2(£1) = 0. In the case
deg h < deg g we prove the following results:

Theorem 1. Let f(X) = ap + a1 X + -+ + a, X™, g(X) =
bo+ b1 X + -+ b, X" and h(X) = cg + 1 X + - + g X! € Z[X]
be polynomials of degree m, n and | respectively, with m > 1, n > I,
ag # 0, and g, h relatively prime. Let § = 1+ [Hi(g) + H(h)]/|bnl.
Assume that dy is a positive divisor of a,, and ds is a positive divisor
of b, such that

m—1

jam| > Y la| - [y L(A(BX))]™ .

=0

Then the polynomial K™ - f(g/h) has at most Q(a,,/d1) + mQ(b,/d2)
irreducible factors over Q. The same conclusion holds in the wider
range
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| > Z Jas| - [d}/ " d5 L(R(BX )™
provided that f is irreducible over Q.

Under the assumption that a,, has a large enough prime factor, we
have the following irreducibility criteria.

Corollary 1. Let f(X) =ap+a1 X+ -+anX™, g(X) =bp+b X +

<+ b, X" and h(X) = co+c1 X + -+ X! € Z[X] be polynomials of
degree m,n and | respectively, with m > 1, n > 1, ag # 0, f irreducible
over Q, and g, h relatively prime. Let 8 =1+ [Hi(g9) + H(h)]/|bn|. If
am = pq with p a prime satisfymg

Z Jail - [la|"/™ [ba | L(A(BX))]™

Then the polynomial K™ - f(g/h) is irreducible over Q.

Corollary 2. Let f(X) = ap + a1 X + -+ + anX™, g(X) =
bo+ b1 X + -+ b, X" and h(X) = cg + a1 X + -+ + X! € Z[X]
be polynomials of degree m,n and | respectively, with m > 1, n ,
ag 7& 0, and g, h relatively prime. Let § =1+ [H1(g) + H(h)]/|bn

= pq with p a prime satisfying

max{Zmz gm, Z|az o/ b, "Ein(a))

then the polynomial h™ - f(g/h) is irreducible over Q.

For the proof of Corollary 2, we first note that if f(X) =ao+ a1 X +

-+ +a, X™ € Z[X] is a polynomial of degree m > 1, with ag # 0, and
am, = pg with p a prime satisfying p > |q|™ 1L1(f(X/|q|)), then f is
irreducible over Q. This follows from Theorem 1 by taking g(X) = X
and h(X) = 1. On the other hand, if the polynomial f is irreducible
over Q and a,, = pq with

Z Jail - [lal"/™ [ba | L(A(BX))]™
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then by Corollary 1, the polynomial A™ - f(g/h) is irreducible over Q.
So, if p satisfies the hypothesis of Corollary 2, then both polynomials
f and ™ - f(g/h) will be irreducible over Q.

In the case deg h = deg g, we obtain the following results:

Theorem 2. Let f(X) = ap+ a1 X + -+ + anX™ € Z[X] be a
polynomial of degree m > 1, ag # 0, and let g(X) = by + by X +--- +
b, X" and h(X) = cp + a1 X + -+ + ¢, X" € Z[X] be two relatively
prime polynomials of degree n > 1. Let a = Z?;o a;bic™t and
B =1+ (Hi(g) + H(h)/|bu|) + (Hi(g)lca|/b2). Assume o # 0 and
d is a positive divisor of o such that

m—1

Jam| > D lail - [d" L(R(BX )™

=0

Then the polynomial h™ - f(g/h) has at most Q(a/d) irreducible factors
over Q. The same conclusion holds in the wider range

m—1

| > D fail - @™ L(R(BX))] ™

=0

provided that f is irreducible over Q.

Corollary 3. Let f(X) = ap+ a1 X + - + anX™ € Z[X] be a
polynomial of degree m > 1, ag 75 0, and let g(X) =bp + 1 X +--- +
b, X" and h(X) = co + a1 X + -+ 4+ ¢, X" € Z[X] be two relatively
prime polynomials of degree n > 1. Let 8 =1+ (Hi(g) + H(h)/|bal) +
(H1(g)|enl/b2), and assume that Y .- ablcm ™" =p-q # 0 with p a
prime number such that

|am| > Z |as| - [[g|" L(R(BX))]" ™"

Then the polynomial h™ - f(g/h) is irreducible over Q. The same
conclusion holds in the wider range
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m—1

|am| > Y lal - [la|™ ™ L(R(BX))] ™,

=0

provided that f is irreducible over Q.

2. Proof of Theorem 1. For the proof of Theorems 1 and 2 we
need the following lemma [1], which is a variation of Capelli’s theorem.

Lemma 1. Let K be a field, f,g,h € K[X], f irreducible over K, g
and h relatively prime, and f(a) = 0. If

—ah =" const - i (X)¢,
g Ko i:Hl¢( )

then

deg f | C%" . . e;
h f(g/h) = const ili[lNK(a)/K(j),(X) .
In particular, the degree of every irreducible factor of hi¢8f . f(g/h)
must be a multiple of deg f.

Here F C;:{" const-[[_, ¢;(X)® means that the ¢;s are irreducible over

K and prime to each other. For the sake of completeness we will give
in Section 4 below a proof of the above lemma in the case char (K) = 0,
which is relevant here.

We now proceed with the proof of Theorem 1. Let f(X), g(X),
h(X), d; and dy be as in the statement of the theorem. Assuming
that A™ - f(g/h) has s irreducible factors over Q, it will decompose
as h™ - f(g/h) = F,---F,, with Fy,... ,Fs € Z[X], and deg F;, >
1,...,degFs > 1. Let ty,...,ts € Z be the leading coefficients of
Fy, ..., Fg, respectively. By comparing the leading coefficients in the
equality

r™ - f(g/h) = agh™ +---+ am-19™ *h+ apg™ = Fy - -- F,

one finds that

a b m
2.1 mo— m., mo R
( ) ambn d1d2 dy <d2> t1 ts
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Assume now that s > Q(am/d1) + mQ(by/d2). Then, in view of (2.1),
it follows that at least one of the ¢;s, say ¢;, will divide d;d5*. In
particular, we have

(2.2) |t1] < didy".

Let f =h™. f(g/h) — amg™. Then h™ - f(g/h) = f+amg™, and since
ag # 0, the polynomials f and g™ are algebraically relatively prime.

Next, we estimate the resultant R(g™, Fy). Since g™ and F} are also
relatively prime, R(g™, F1) must be a nonzero integer number, so in
particular we have

(2.3) |R(¢g™, F1)| > 1.
Let r = deg F1 > 1, and consider the decomposition of F}, say
Fi(X) =t (X = 61)--- (X = 0,),

with 0y,...,0, € C. Then

(2.4) [R(g™ F1)l = 6™ T lg™)].
1<j<r

Since each root §; of F} is also a root of A" - f(g/h), we have

(2.5) g6 =1,

am

and moreover, since f and g™ are relatively prime, f(é?j) # 0 and
g™(0;) # 0 for any j € {1,...,r}. Combining (2.4) and (2.5), w
obtain

@

(2.6) (™, F) =20 T (7).

- "'
laml™ S,

We now proceed to find an upper bound for |f(;)|. In order to do
this, we have to find an upper bound for the moduli of the roots of
f- It is well known that, if the leading coefficient of a polynomial
f(X)=ap+a1X + -+ a, X™ satisfies |a,| > Li(f), then all the
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roots Ay, ... , Ay of f must satisfy |A\;| < 1. Let us fix now an arbitrarily
chosen real number § > 0 and assume that |a,,|/0™ > Li(f(X/0)).
Then all the roots dA1,... , 0\, of f(X/0) will verify |6);] < 1, so all
the ;s will verify

1
2. G <

Let now 61,...,60,, be the roots of h™ - f(g/h). Since g and h
are relatively prime, one has h(6;) # 0 and f(g(6,)/h(6;)) = O for
j=1,...,mn. Thus, for a given 0;, there exists i; € {1,... ,m} such
that g(0;)/h(6;) = A, a root of f. By (2.7), we then have

8 ‘gwn

Recall that f = agh™ 4+ a1gh™ ' 4 -+ + ap_19™ *h. Using (2.8), we
derive that

(2.9)  |£(65)| = < [R(0,)]™ - L1 (£(X/6)).

m—1
> aig(8;)°h(6;)™
=0

Combining now (2.6), (2.9) and (2.2), we deduce the following upper
bound for |R(¢™, F1)| :

RO LA (F(X/8)]"

|

(2.10) |R(g™, Fy)| < d7mdg™™ - {

The inequality (2.8) allows us to find also an upper bound for |h(6;)],
as follows. By (2.8) we see that

8lbo + b18; + - - + bub}| <|co + c16; + - - + a6,
which further gives

81bnl16;1™ < (col + 8lbol) + (lev| + 6[b11)10;] + - -+ + (lea| + 81ba])[6; )
+ 81brg |61 4 -+ S|bp—n 165"
< (H(h) + 6H1(g)) - (L+16;]+ - +16;/"7).
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Therefore, we either have |0;| < 1, or, if not, then we obtain

101" —1

o= 1 < (H(h) + 0H1(9)) -

S1bn|10;]" < (H(h) + 6Hi(g))

which yields

H(h)+6H
(2.11) 16;] <1+ Ah) + 0H(g)
6{bn |
Denoting by 7 the righthand side of (2.11), we find that
|h(6;)] < L(h(vX)),
which, combined with (2.10), yields

L(h(yX)™ Lo (£(X/0)]"

|

(2.12)  |R(¢g™ F)| < dpmdgn -

Since deg F; = r > 1, all we need to prove is that our assumption on
the size of |ay,| will imply on one hand |a,,| > §™L1(f(X/d)) for a
suitable § > 0, and on the other hand will force

anapn . LOGX)"L(F(X/8) _ |

|G|

?

or equivalently,
2
|am| > dy**dy* " L(h(yX))™ L1 (f(X/4)),

in order to contradict the fact that |R(¢g™, F1)| > 1. It will therefore be
sufficient to have |a,,| > 6™ L1 (f(X/0)) for a § > 0 as small as possible
satisfying 6™ > d7md3 mL(h(yX))™, that is, § > drdP"L(h(vX)).
Recalling the definition of +y, the last inequality reads

l i
" Hi(g H(h

§ > dyds Z|ci<1+ |;()+ 5|1() |)>
i=0 " "

A suitable candidate for § is

l i
H + H(h
8o = didy™ ) Ci|(1+4l(g)b ‘ ( )> >1,
i=0 n
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since
Hi(g)+ H() _ |, Hilg) , H(h)
‘bn‘ B ‘bn‘ |bn|60

By the definition of 8, dp just found coincides with dPdy*" L(h(6X)),
which proves that for

|am| > [dydy " L(h(BX))]™ - Ly (f(W))

=S ol g LX)

=0

1+

we actually have |R(¢™, F1)| < 1, a contradiction. Therefore, h™ -
f(g/h) has at most Q(a,/d1) + mQ(b,/d2) factors over Q, and this
proves the first part of the theorem.

Assuming now that f is irreducible over Q, the proof goes as in the
first part except that, by Lemma 1, the degree of every irreducible
factor of A™ - f(g/h) must be a multiple of m, so we must have
deg (Fy) = r > m. In this case we need to prove that our assumption
on the size of |a,,| implies again |an,| > 0™L1(f(X/§)) for a suitable
é > 0, and at the same time it forces the inequality

L(h(yX))™ L1 (f(X/6))

Q|

drdym - <1

)

or equivalently,
|am| > dydy™ L(R(vX))™ L1(f(X/6)),

which in view of (2.12) will contradict (2.3). It will be therefore
sufficient to find a 6 > 0 such that 6™ > dydy*"L(h(yX))™, that is

§ > d?/mdgL(h('yX)), which, recalling the definition of v, reads

l i
/g § Hi(g) , H(h)

A suitable candidate for § in this case is

_m/m )+H(h) _ m/m n
— d2|( e ) — @I LAEX)) > 1
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so the contradiction |R(¢g™, F1)| < 1 follows now if

anl > 3" B L(ABX))]™ - L (f<d’1’/md§2((h(ﬂX))>>

_ S - @ a3 DB

=0

This completes the proof of the theorem. a

Remark. Additional information on the coefficients of g and h allows
one to obtain sharper bounds than those exhibited in Theorem 1,
by searching for sharper estimates for the moduli of the roots of
hde8 . f(g/h). For instance, if f(X) =ag+a1 X +---+a, X™ € Z[X]
is a polynomial of degree m > 1 and d; is a positive divisor of a,, such
that

|am|>z‘az d4+d2 (m— z)/2

then the reciprocal polynomial X™ - f(X +1/X) has at most Q(a,/d;)
irreducible factors over Q. The same conclusion holds in the wider
range

|am|>2|az| /™ + dy/ om0,

provided that f is irreducible over Q. Here g(X) = X2+ 1, h(X) =X
and dy = 1. By (2.8) we easily find that |r(6;)] = [0;] < (1 +
V1+462)/(20), so, instead of (2.10), we have

(1+vT+482/26)" Ly (f(x/5))]”

Q|

|R(g"™, Fy)| < di™ -

We therefore obtain the contradiction |R(¢g™, F1)| < 1 if we have the
inequality |a,,| > 0™ L1 (f(X/6)), with § satisfying

1+ 1+ 462

> d? .
02dy 26 ’
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and it follows easily that the latter holds for § > /d} + d. Similarly,
if f is irreducible over Q, we obtain |R(¢™,F1)| < 1 for |am,| >

O™ Ly(f(X/6)), with 6 > d‘ll/m _i_d?/m.

3. Proof of Theorem 2. The proof is similar to that of Theo-
rem 1, with some significant differences caused by the fact that in this
case all the terms appearing in the convolution contribute to the lead-
ing coefficient of h4°8 /. f(g/h). Assuming as in the proof of Theorem 1
that A™ - f(g/h) has s irreducible factors over Q, it will decompose as
h™ - f(g/h) = Fi1(X)--- Fs(X), with Fi(X),...,Fs(X) € Z[X], and
degFy > 1,...,degFs > 1. Denoting by t;,...,ts € Z the leading
coefficients of Fy,... , Fy, respectively and comparing the leading co-
efficients in the equality ™ - f(g/h) = F}--- Fs, one finds now that
Yo aibcmt = (a/d) - d =ty - ts. If we assume that s > Q(a/d),
it follows that at least one of the t¢;s, say 1, will divide d, so in par-
ticular we have |t;| < d. Using the same notations as in the proof of
Theorem 1, one has |R(¢g™, F1)| > 1, and on the other hand

11 1765)].

1<j<r

dmn

(3.1) |R(g™, F1)| <

|am|r

As before, we fix an arbitrarily chosen real number § > 0 and assume
that |an,|/6™ > Li(f(X/6)). Then all the roots Aq,... , Ay, of f will
satisfy |A\;| < 1/0. As a consequence, we obtain

(3.2)

uniformly for 1 > j > r. Recalling now the definition of f and using
(3.2), we deduce that | f(0;)| < |h(6;)|™ - Li(f(X/d)). Combining this
inequality and (3.1), we obtain

[RO)I™ LA (F(X/5)]"

|

(3:3) R(g™, )| < d™- [

We then derive an upper bound for |h(6;)| as follows. By (3.2) we find

6lbo + b1 + -+ + bp07| < |co + 16 4 -+ - + cab]],
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which further gives
(Blbal — leal) 651" < (E(h) + SH () - (14 165] -+ 165" 1).
Let us assume that
(3.4) 81bn| > lenl-
Therefore, we either have |#;] < 1, or if not, we obtain

101"
0] — 1

(01bn| = len)10;]" < (Hi(R) + 6Hi(g)) -

which in view of (3.4) gives

Hy(h)+0H,(g)
(3.5) 0;] <1+ ———7—
! 8lbn| = leal

Denoting by v the righthand side of (3.5), we obviously have |h(6;)| <
L(h(yX)) which, combined with (3.3), yields

(36) \R(gm,F1)| < dmn. L(h(’yX))aLl(f(X/é)) .

Since deg F; = r > 1, all it remains to be proved in this case is
that our assumption on the size of |a,,| implies on one hand |a,,| >
0™Ly(f(X/6)) for a suitable § > |c,|/|bn|, and on the other hand,
it implies |ap| > d™L(h(yX))™L1(f(X/d)), in order to contradict
the fact that |R(¢™,F1)] > 1. It will be enough to have |an,| >
0mL1(f(X/6)) for a § > |cu|/|bn| satisfying 6™ > d™L(h(yX))™,
that is 6 > d"L(h(yX)). This last inequality is equivalent to

"= ¥'< * D)

where A =1+ (Hy(g)/|bn|) and B = (len|/b7)H1(g) + (H1(h)/[bn])-
Note that, since g and h are relatively prime, we have H;(g) + Hi(h)
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> 1. We may therefore choose for § the value §p = d" .., |ci| %
(A+ B)" > 1+ |cp|/|bn|, since

. " H Hi(h . ‘
(50—u d"Z|ci<1+—1(g)+ i )+C—H1(g)>
i=0

lbal b b2
_leal
b,
1" |Cn|
2ol (140 ) =l 2 ez
b, b,

which also shows that dp verifies (3.4). By the definition of 3, we
see that dy coincides with d"L(h(8X)), hence for |a,,| > Z;’:OI ;| -
[d"L(h(BX))|™* we have |R(¢™, F1)| < 1, a contradiction. Thus,
h™ . f(g/h) has at most Q(a.,/d1) + mS(b,/dz2) factors over Q, which
completes the proof of the first part of the theorem. For the second
part, if f is assumed to be irreducible over Q, then by Lemma 1, the
degree of every irreducible factor of ™ - f(g/h) is a multiple of m.
Consequently deg (Fy) = r > m. In this case we need to show that
our assumption on the size of |a,,| implies |a,,| > §™ L1 (f(X/6)) for a
suitable § > [c,|/|bp]|, and |ap| > d*L(h(yX))™L1(f(X/0)), which by
(3.6) will contradict the fact that |[R(¢™, Fy)| < 1. It is enough to find
a d > |cn|/|bn| satisfying § > d"/™L(h(yX)). By the definition of v, A
and B, this inequality states that

n B 7
§>dn/m c; <A+7> X
2 lel{ A+ 5

=0

We may choose for § the value §; = d™/™Y " |c;|(A + B)® >
1+ |cn|/|bn]- Then |R(g™, F1)] < 1 provided |am| > S70" |ail -
[d*/™L(h(BX))]™ !, which completes the proof of the theorem.

4. Proof of Lemma 1. We follow the proof of Capelli’s theorem
from [5]. Since char (K) = 0 and f is assumed to be irreducible over
K, the zeros «,, of f are all distinct. Then, since f(a) = 0, f will

decompose as
deg f

f(X) = const - H (X =),

v=1
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where a = ay, say. Therefore,

deg f
(41)  h(X)*T. £ (g(X)/h(X)) = const - ] [9(X) — a,h(X)).

v=1

Denoting by ¢§V), the polynomial obtained from ¢; on replacing o by
a,, we have g(X) — a, h(X) = const - [[;_, qz&g")(X)ei for each v, so by
(4.1) we obtain

hieet - f(g/h) = const - | [ Nicay/xcds®.

i=1

In order to see that this is a canonical decomposition, we first have to
prove that the polynomials N (4 x¢i(X) are irreducible over K. If
we assume that ¢;(X) | I;(X) with I; irreducible over K, we must also
have (;55”) (X) | I;(X) for each v. Then, since ¢;(X) | [9(X) — ah(X)],
it follows that

(4.2) 6" (X) | [9(X) — ayh(X)),

for each v. We now show that ¢; and ¢>§") are relatively prime.
Assuming the contrary, then in view of (4.2) we obtain on one hand
gcd(qﬁi,qﬁgy)) | (@ — a,)h, and on the other hand, gcd(qﬁi,qﬁgy)) |
(o, /o — 1)g. Since a # «,,, this contradicts the fact that g and h
are relatively prime. Therefore, ¢; and gi)l(-u) are relatively prime, which
shows that N o)/ ¢i(X) | 1;(X), 50 Nk (a)/x ¢i(X) is irreducible over
K. Now it remains to show that the norms are coprime. Since for i # j
one has (¢;,$;) = 1, we obtain by the same argument as above that
(¢i,¢§-u)) =1 for all v. Thus, for i # j one has (¢;, Ng(a)/x®j) = 1,
and then (N (q)/k ®is Nk (a)/k ¢j) = 1, which completes the proof. o
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