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A FAMILY OF
THE FUNCTIONAL EPSILON ALGORITHMS
FOR ACCELERATING CONVERGENCE

R. THUKRAL

ABSTRACT. This paper introduces two new functional ep-
silon type algorithms, namely, the modified functional epsilon
algorithm and the enhanced functional epsilon algorithm. The
modified functional epsilon algorithm is based on the modi-
fied Padé approximant, and the enhanced functional epsilon
algorithm is actually a modification of the improved func-
tional epsilon algorithm. The use of the functional epsilon
type algorithms for accelerating the convergence of sequence
of functions is demonstrated. The estimates of the approx-
imate solution derived using the modified functional epsilon
algorithms are found to be more accurate than other similar
algorithms.

1. Introduction. In this paper we introduce two new algorithms,
namely, the modified functional epsilon algorithm and the enhanced
functional epsilon algorithm for accelerating the convergence of se-
quence of functions. We examine the effectiveness of these new al-
gorithms with the classical functional epsilon algorithm and the im-
proved functional epsilon algorithm by showing the accuracy of the
approximate solution. The modified functional epsilon algorithm is
based on the modified Padé approximant. The formula for the mod-
ified functional epsilon algorithm is actually derived from the second
row sequence of the modified Padé approximant.

The prime motive for the development of these new functional epsilon
type algorithms was to establish that there exists a better accelerator
than the classical functional epsilon algorithms and the improved func-
tional epsilon algorithm. We begin by describing the fundamentals of
each of the algorithms. In order to evaluate these functional epsilon
type algorithms we use the following proposition.
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Proposition. The functional sequence used in the algorithms is
based on the generating function f(x, ), which is a series of functions
expressed as
(1) f@,A) =Y Ci(z)N,

i=0
in which C;(x) € La[a,b] are given and [a, b] is the domain of definition
of Ci(z) in some natural sense. We also suppose that f(xz,)) is
holomorphic as a function of A at the origin A = 0. Then (1) converges
for values of |\ which are sufficiently small. In this paper, we see
how the modified functional epsilon algorithm and enhanced functional

epsilon algorithm can be used to accelerate the convergence of a series
having the form (1) for A = 1.

1.1 The modified functional epsilon algorithm (MFEA). To
show how we have designed the modified functional epsilon algorithm,
we briefly review the essentials definitions of the modified Padé approx-
imant.

A modified Padé approximant of type (n, k) for the given power series
(1) is the rational function

(2) r(z,\) = A(z,\) + B()\),
where A(z,\), B(\) are polynomials in A, A(z,\) € Lsla,b] as a
function of  and
(3) (i) o{At<n, 0{B}<k,
(i) B(O)#0,
(iii)  A(z,\) — BO\) f(z,\) = 0(A"H1).

The definition of the numerator polynomial of the modified Padé
approximant of type (n, k) as

(4) Az,
f; Chn—k(z) dz f; Cn—pt1(z)ds - f; Cn(z)dz
_ fab Ch—k+1(z) dz f: Ch—kio(z)dz  --- f: Chi1(z)dz

SEX G ST Ci@)AR e S Ci(a) N
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and appropriately the denominator polynomial of the modified Padé
approximant of type (n, k) is given as

(5)
f; Cr—k(z) dx f: Crn—kyi(z)dz - f; Cp(z) de
B(\) = f: Crn—rt1(z) dz f: Crnky2(z)dz - f; Cht1(z) dz
)\:’“ Aszl . 1

provided B(0) # 0 and C;(z) are the coefficients of (1).
For the purpose of this paper, we use the modified Padé approximant

of type (n,2), which is given by

(6) \ \

de [/ Cp1(z)de [ Cn(x)dx

fb Cr-1(z) dz f: Cp(z)dz f; Cpt1(z) de

1) = Afz,1) | S 2 Ci(x) bzggol Ci(z) z;;;o Ci(x)

z [/ Cpi(x)de [ Cp(z)dex

x f: Ch(z)dz f; Chi1(z)dz
1 1

and form a new epsilon type algorithm.

Expanding the determinants of (6), the numerator polynomial of the
modified Padé approximant is given as

S o] [ oo [ ciner- ([ eins)]

- f_l Ci(z) [ / b Cr () dzx / b Cr+1(z)dz
b b

=0
- / Cp1(z) dz / Cn(x)dac}

; gc,»(m I G ola) o / b ;n(@ dr (/b Crale) d“”ﬂ
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and the denominator polynomial as

(8)

B()
_ [/aan_l(a:)dm/aan+1(m) do — (/:C’n(w) dxﬂ
- [/b Cos(2) dm/ab Coir(2) d:v—/ab Co 1 (2) da /ab () dm}
4 [/abc“(x) dw/aan(m) do — (/aanl(x) dxﬂ.

We first initialize the essentials for all the functional epsilon type
algorithms

(9) eZy(2) =0,  eg() = ZCi(I), Aci(z) = g (2) — ek (@)

for n,k € N, where A operates, now and in sequel, on the variable n.

We shall convert the numerator polynomial expression (7) into an
appropriate functional epsilon algorithm; thus, (7) becomes

(10) A(z,1)

_ e [/ Aen dm/ Al (z dw—(/ Aen- dac)]
—sg_l(m)[ / Ae3(2) da / Ae? () da
- / " Aen2(2) do / Ael dac]
. [/ Aen- )da:/a AenY(z da:—(/ Aen- dm)]
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and similarly (8) becomes

B()
:[/abAag dm/ At (e dw—(/ Acn dac)]
- { / " Aen3(2) do / Al (z) da
- / A 2(2) de / " A () dw]
+ [/abAsg_?’(x)dw/abAsg_ ) da — </ A~ da:) ]

The subsequent expressions are simplified by using the following
notation

(12) E, = /b Aeg(z) dz

We begin with the denominator polynomial; the expression (11) is
simplified further by pairing various terms. The first pair is given in
the lefthand side and we replace it with the expression on the righthand
side,

(11)

(13) —|[E2_,+FE? ,]= [Ba_y — En_s]® —2E,_1Fn_».

We actually consider the expression on the righthand side of (13) in
two parts, thus

(14) —[En 1 — En »)? = —[AE, )
and
(15) —2E, 1En_».

Furthermore, the expression (15) is added to the last term of the middle
row of (11) and we are left with

(16) — B, 1En .
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The next pair we consider of (11) is on the lefthand side and simplified
on righthand side

(17) E, oE, — E, 3E, = E,AE,_s.

The last pair is considered to be formed by the remaining term of (13)
and is the resultant term (16)

(18) ~En oFE, 1+ En 3E, 1 =—-FE, |AE, 3.

Collecting (14), (17) and (18) and using the original notation the most
simplified expression for the denominator polynomial of the modified
Padé approximant is given as

B(1) = [/ab(Azsg—B(x))dx] [/b A2er=(z) da:]

(19) o

- [ / " (a%en2()) dw] .

We progress to convert the numerator polynomial of the modified Padé
approximant (10). In order to obtain an appropriate expression for the
numerator polynomial we must insert two components of

(20) 0 N(x)[Epn—2FE, — E2_,] and &} ' (2)[En_3En_1— E2_,)].

Therefore the expression (12) becomes
(21)
Az, 1) = Egiz(w)[Enf2En - Eg—l] - Egil(x)[Enfi%En — Ep 2B, 1]
+e5(2)[Bn-3Bn-1 — E;_o] + Egil(x)[Enf2En — B 4]
l(w)[En—QEn —Ei_q]+ sg_l(x)[En—fiEn—l — E;_)]
(

_ 86”_
-t z)[En_3En_1 — E‘?L—Q]'

— el
Collecting and simplifying appropriate terms of (19) and (21), we obtain

the expression for the modified functional epsilon algorithm of type
(n,1) as



A FAMILY OF FUNCTIONAL EPSILON ALGORITHMS 297

(I,].) —53 I(I)

Al z)|:f Al 3 (a) d:cf Ael Y (z) do— (f Ael” 2(a;)(m) }

[ @25 @) da] [ [, A2~ (&) da] - [f (A2657%(2) de]
Asg_2(z)[I:Asg_2(z)dwf:Asg z)dwf(f Dep=(x) dr) ]
[ @25 @ da] [ [ a2~ @) o] = [ [ (82572 (@)) o]

for n,k € N.
The iterative formula for the modified functional epsilon algorithm
of type (n, k) is expressed as
(23)
ex(2) = i1 (2)
Aazrll(w) f Aeyp” l(x ) dz fab Aep ™ z) dz— (f Aep” z) dz)
[fab(A2 €n_ :13(;1: dz] [f AZE":I(E) dz]—[f (AZep ™ 2 dz]
ASZ:f(z) f Aey” l(z dzf Aep_(z)dz— (f Aep” ac)dav)2

[f:(Az Z_f(z dz] [fa Azek_l(z) dz]f[f (A2ep ™ 2 (z)) dz]2

2]

2

for n,k € N.

We shall demonstrate the performance of the modified functional
epsilon algorithm given by (23) in Section 4.

1.2 The enhanced functional epsilon algorithm (EFEA). The
enhanced functional epsilon algorithm is actually a modified version
of the improved functional epsilon algorithm. In order to calculate the
new estimates we use the initial conditions given in (9), and the formula
of the enhanced functional epsilon algorithm is

(24)

n . Aep_y(2) [F Aep_, (2) A% () da
€k (fﬂ) = 5k—1(33) -

JoAr T2 (@) A2 () — Aep_, (2) A2 (2)] da

for n,k € N.
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The entries of ¢} (z) are displayed in the following functional epsilon
table, Figure 1.

e 1(x) =0
ey H(x) =0
€2 () =0 sfl(m) =0
ed(x) sgl(w) =0
ely(z)=0 £} (x) g5 H(z) =0
gp(x) £5(z)
e?,(x)=0 el(z) ed(x)
&5 (x) £3(w)
e2y(2) =0 G
i(z) :

FIGURE 1. The modified functional epsilon table.

The structure of this paper is as follows. In Sections 2 and 3
we review two particular functional epsilon type algorithms, namely,
the classical functional epsilon algorithm and the improved functional
epsilon algorithm, respectively. In Section 4 we demonstrate the
performance of the modified functional epsilon algorithm and enhanced
functional epsilon algorithm with the corresponding classical functional
epsilon algorithm and improved functional epsilon algorithm for two
types of row sequence. The effectiveness of these new algorithms
for accelerating the convergence of a sequence of functions has been
investigated in the context of the Neumann series of a linear Fredholm
integral equation. In our findings the modified functional epsilon
algorithm is proved to be effective as an algorithm.

2. The classical functional epsilon algorithm (CFEA). The
classical functional epsilon algorithm is well established [1, 2, 8]; thus,
we shall state the essential formula used in calculating the approximate
solution.
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We use the initialized estimates given by (9), then we usually calculate
the new estimates by

il (2) — ef_y(@)]

6’;—_’_; () — ef_y(x)]? dx

(25) er(e) = ek_o(2) — q

Ja

for n,k € N and the initial estimates are given by (9).

In difference operator form
e C))
b A m :
Jo1Aek_y ()] da

(26) ek () = e o(x) —

3. The improved functional epsilon algorithm (IFEA). The
improved functional epsilon algorithm is actually based on the integral
Padé approximant [5-10]. The improved functional epsilon algorithm
is very efficient as a method and has many advantages compared to the
classical functional epsilon algorithm [8]. We shall state the essential
formula used in calculating the approximate solution
(27)

k(@) = 4t (a)

_{ (et @—eii @) [Tl @ =i (@) (o (@)= 71 (@) de ]
J e @ —ep @R @y @)= (7 (@) =< 2] (@) de

for n,k € N and in difference operator form

Aep ((z) [P Aep | (2)AeP~}(x) ds] |

nie) =" tlg) —
(28 ek(e) =5 (e) l J2 Aep_y (x)A2ep L () dr

4. Applications of the epsilon type algorithms. To demon-
strate the performance of each of the algorithms, we take two familiar
linear Fredholm integral equations of the second kind. We determine
the consistency and stability of the results by examining the conver-
gence of each of the algorithms for two particular type of row sequence.
The findings are generalized by illustrating the effectiveness of these
algorithms for determining the approximate solution of two linear in-
tegral equations. Consequently, we shall demonstrate the efficiency of
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the modified functional epsilon algorithm and the enhanced functional
epsilon algorithm by showing the error obtained by each of the algo-
rithms. We illustrate the convergence of the methods described by
making two distinct comparisons of the estimates based on two partic-
ular types of row sequence. In each case, the comparisons with other
algorithms were made using a similar amount of data, that is, using
the same number of terms of the Neumann series.

4.1 Numerical example 1. We investigate the convergence of
functional sequences of the Neumann series solution of the linear
integral equation. We shall consider the linear Fredholm integral
equation of the form

(29) F(2)) = glz) + A / Kz, ) f (4, \) d,

where

(y=3)1+z) 0<y<z<l,

g(x) == and k(m’y):{(az3)(l+y) 0<z<y<lL

This integral equation is a linear inhomogeneous Fredholm of the second
kind with a nondegenerate kernel. The analytic solution of (29) is given
by
(30)
f@,A)

_ 3[sinh(wz) + wcosh(wz)] + sinh(ww — w) — 2w cosh(wz — w)
B (1 + 2w?) sinh(w) — 3w cosh(w)

where w = 2v/\. For a particular value A = 1 the analytic solution (30)
in the power series is

F(z,1) = —0.229569 + 0.770431z — 0.45913822 + 0.513621z°

31
(31) —0.1530462* - - - |
and the Neumann series solution of (29) is

F@ ) = ici(x)x' —a+ <§w3 - gx _ g>)\

0
2 5 7T 45 176 176\ |5
S kg ikl
+<15x 93: + 45x+ 45> +
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In Table 1 we show the errors incurred by the modified functional ep-
silon algorithm of type (2,1), the enhanced functional epsilon algorithm
of type (1,1), the improved functional epsilon algorithm of type (2, 1),
the functional epsilon algorithm of type (1,2) for z = 0(0.25)1. We
see a remarkable precision of the modified functional epsilon algorithm
when compared to the other algorithms.

TABLE 1. Errors occurring in the solution of (29) using the modified functional
epsilon algorithm, the enhanced functional epsilon algorithm, the classical functional

epsilon algorithm and the improved functional epsilon algorithm.

x | MFEA1 | EFEA1 | IFEA1 | CFEAl
0.0 | 0.441(-4) | 0.547(-2) | 0.547(-2) | 0.117(-1)
0.25 | 0.317(-4) | 0.465(-2) | 0.465(-2) | 0.991(-2)
0.50 | 0.258(-4) | 0.397(-3) | 0.403(-3) | 0.901(-3)
0.75 | 0.290(-4) | 0.416(-2) | 0.416(-2) | 0.891(-2)
1.0 | 0.946(-4) | 0.565(-2) | 0.564(-2) | 0.123(-1)

The approximate solutions used in calculating the errors displayed in
Table 1 are
(33)
MFEA1l = —0.22953 + 0.77047z — 0.4597622 + 0.51341z% —0.14373z*
+0.080132° + 0.0023527
(34)
EFEA1 = —0.23504 + 0.76496z — 0.4246522 + 0.5251223 — 0.18978z*
+0.0953825 + 0.003102"
(35)
IFEA1 = —0.23504 + 0.76496z — 0.42464z> + 0.525122 — 0.18978z*
+0.095382z° + 0.00310z"
(36)
CFEAl = —0.21788 + 0.78212z — 0.53404z% + 0.48865z> — 0.4631z*
+0.0478682° + 0.000762".

In Table 2 we show the errors incurred by the modified functional ep-
silon algorithm of type (3, 2), the enhanced functional epsilon algorithm
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of type (1,2), the improved functional epsilon algorithm of type (3,2),
the functional epsilon algorithm of type (1,4) for z = 0(0.25)1. We
see a remarkable precision of the modified functional epsilon algorithm
when compared to the other algorithms.

The approximate solutions used in calculating the errors displayed in

Table 2 are

(37)

MFEA2 = —0.22957 + 0.77043z — 0.4591422 4 0.513622> —0.15303z*
+0.10265z° — 0.02021z% 4 0.00951z" — 0.0012128
+0.389(—3)z" + 0.418(—5)z""

(38)

EFEA2 = —0.22957 + 0.77043z — 0.45914z% + 0.51362z> — 0.15305z*
+0.1027225 — 0.0204225 + 0.00978z" — 0.00137z8
+0.425(—3)2? + 0.476(—5)z ™

(39)

IFEA2 = —0.22957 + 0.77043z — 0.4591422 + 0.51362z> — 0.15305z*
+0.102722° — 0.02042z° 4 0.00978z" — 0.00137°
+0.425(—3)z” +0.476(—5)z "

(40)

CFEA2 = —0.22957 + 0.77043z — 0.4592z% + 0.51362> — 0.15149z*
+0.098632° — 0.015952° + 0.007082" — 0.255(—3)z®
+0.161(—3)z" + 0.881(—6)z"*.

TABLE 2. Errors occurring in the solution of (29) using the modified functional
epsilon algorithm, the enhanced functional epsilon algorithm, the classical functional

epsilon algorithm and the improved functional epsilon algorithm.

¢ | MFEA2 | EFEA2 | IFEA2 | CFEA2
0.0 | 0.213(-8) | 0.163(-6) | 0.136(-6) | 0.451(-6)
0.25 | 0.184(-8) | 0.229(-7) | 0.101(-7) | 0.178(-5)
0.50 | 0.203(-8) | 0.222(-6) | 0.258(-6) | 0.272(-5)
0.75 | 0.953(-9) | 0.336(-7) | 0.695(-7) | 0.174(-5)
1.0 | 0.424(-8) | 0.219(-6) | 0.186(-6) | 0.550(-5)




A FAMILY OF FUNCTIONAL EPSILON ALGORITHMS 303

4.2 Numerical example 2. We investigate the convergence of
functional sequences of the Neumann series solution of the linear
integral equation. We shall consider the linear Fredholm integral
equation of the form

1
(41) F()) = glz) + A /0 k() f (4, \) d,

where

1+I7y OSQSISL

This integral equation is also a linear inhomogeneous Fredholm of the
second kind with a nondegenerate kernel, and the explicit solution of
(41) is given by

2 cosh(wz — 271w)

(42) flz,2) = 2 cosh(271w) — 3wsinh(271w)

where w = v/2\. For a particular value A\ = 1 the analytic solution (42)
in power series is

f(z,\) = —3.429523 + 2.9530152 — 3.429523z* + 0.9843382°

43
(43) —0.571587z* + - - .

It is familiar that the Neumann series of (41) converges [3, 4] and the
first few terms of this series are

flz,A) = ZCi(m)A’ =1+ (5 - x+m2>)\

(44) =0
4 3 1 1

In Table 3 we show the errors incurred by the modified functional ep-
silon algorithm of type (3,1), the enhanced functional epsilon algorithm
of type (2, 1), the improved functional epsilon algorithm of type (3, 1),
the functional epsilon algorithm of type (2,2) for z = 0(0.25)1. We

see a remarkable precision of the modified functional epsilon algorithm
when compared to the other algorithms.
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The approximate solutions used in calculating the errors displayed in
Table 3 are
(45)
MFEA1l = —3.4295 + 2.9530z — 3.4295z% + 0.9843z% — 0.5716z*
4 0.098442° — 0.038022° + 0.004463z" — 0.0011162°

(46)
EFEA1 = —3.4295 + 2.9530z — 3.429622 + 0.984423 — 0.5714z*
+0.098412° — 0.03829z% + 0.004705z7 — 0.0011762°

(47)
IFEA1 = —3.4295 + 2.9530z — 3.429622 + 0.98442> — 0.57142*
+0.098412° — 0.0382925 + 0.004705z7 — 0.0011762°

(48)
CFEA1 = —3.4297 + 2.9531z — 3.425922 + 0.9835z° — 0.5832z*

+0.12° — 0.017062° + 0.0139527 — 0.003487z°.

TABLE 3. Errors occurring in the solution of (41) using the modified functional
epsilon algorithm, the enhanced functional epsilon algorithm, the classical functional

epsilon algorithm and the improved functional epsilon algorithm.

z | MFEA1 | EFEA1 IFEA1L CFEA1
0.0 | 0.955(-9) | 0.254554(-5) | 0.254563(-5) | 0.194(-3)
0.25 | 0.492(-8) | 0.141971(-6) | 0.141892(-6) | 0.112(-4)
0.50 | 0.116(-7) | 0.255722(-5) | 0.255715(-5) | 0.194(-3)
0.75 | 0.492(-8) | 0.141971(-6) | 0.141892(-6) | 0.112(-4)
1.0 | 0.955(-9) | 0.254554(-5) | 0.254563(-5) | 0.194(-3)

In Table 4 we show the errors incurred by the modified functional ep-
silon algorithm of type (4, 2), the enhanced functional epsilon algorithm
of type (2,2), the improved functional epsilon algorithm of type (4, 2),
the functional epsilon algorithm of type (2,4) for z = 0(0.25)1. We
see a remarkable precision of the modified functional epsilon algorithm
when compared to the other algorithms.
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The approximate solutions used in calculating the errors displayed in

the Table 4 are
(49)

MFEA2 = —3.4295 + 2.9530x — 3.4295z2 + 0.98432°% — 0.57162*
+0.09843z° — 0.03811z% + 0.004687z" — 0.0013612°
4 0.1301(=3)z° — 0.3008(—4)z'° + 0.2214(—5)z"!
—0.369(—6)z'?

(50)

EFFEA2 = —3.4295 + 2.9530z — 3.4295z% + 0.9843z% — 0.57162*
+0.09843z5 — 0.038112° 4 0.004687z" — 0.001361z>
+0.1302(—3)z° — 0.3017(—4)z'° + 0.2254(—5)z"!
—0.3756(—6)z"'?

(51)

IFEA2 = —3.4295 + 2.9530z — 3.4295x2 4 0.98432° — 0.57162*
+0.09843z° — 0.03811z° 4 0.004687x" — 0.001361z®
+0.1302(—3)z° — 0.3017(—4)z'* 4 0.2254(—5) 2"
—0.3756(—6)2"?

(52)

CFEA2 = —3.4295 + 2.9530z — 3.4295z2 + 0.9843z% — 0.5716z*
+0.09843x5 — 0.03812° + 0.0046422" — 0.0012992°
+0.8106(—4)z° — 0.4595(—5)z'° + 0.6337(—5)z!?
—0.1056(—5)x"2.

TABLE 4. Errors occurring in the solution of (41) using the modified functional

epsilon algorithm, the enhanced functional epsilon algorithm, the classical functional

epsilon algorithm and the improved functional epsilon algorithm.

z | MFEA2 | EFEA2 | IFEA2 | CFEA2
0.0 | 0.936(-18) | 0.970(-12) | 0.960(-12) | 0.961(-9)
0.25 | 0.297(-15) | 0.947(-12) | 0.957(-12) | 0.901(-9)
0.50 | 0.235(-14) | 0.955(-12) | 0.946(-12) | 0.862(-9)
0.75 | 0.297(-15) | 0.947(-12) | 0.957(-12) | 0.901(-9)
1.0 | 0.936(-18) | 0.970(-12) | 0.960(-12) | 0.961(-9)
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5. Remarks and conclusion. In this paper, we have shown two
new functional epsilon type algorithms, namely the modified functional
epsilon algorithm and the enhanced functional epsilon algorithm. These
algorithms are essentially for accelerating the convergence of a sequence
of functions. Moreover, the performance of these new algorithms has
been demonstrated and compared with the classical functional epsilon
algorithm and the improved functional epsilon algorithm. The formula
of the modified functional epsilon algorithm is based on the second
row sequence of the modified Padé approximant and then designed
as an iterative process. The prime motive of the development of
the modified functional epsilon algorithm and the enhanced functional
epsilon algorithm was to increase the accuracy of the established
algorithms, particularly the improved functional epsilon algorithm and
the classical functional epsilon algorithm.

We have demonstrated the epsilon type algorithms for two types of
row sequence purely to illustrate the accuracy of the approximate solu-
tion, the stability of the convergence, the consistency of the results and
to determine the efficiency of each of the methods. In all the numerical
examples performed, we have found that the modified functional epsilon
algorithm produces better estimates than the other similar functional
epsilon type algorithms. Furthermore, the estimates of the enhanced
functional epsilon algorithm are not good as the modified functional
epsilon algorithm and are very similar to the improved functional ep-
silon algorithm. The positive feature of the enhanced functional epsilon
algorithm is that it produces better estimates than the classical func-
tional epsilon algorithm. Consequently, it should be noted that, like
all other acceleration methods, these new methods each have their own
domain of validity and in certain circumstances should not be used.

Acknowledgments. I am grateful to the anonymous referee for his
helpful comments on this paper.
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