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ON THE LUPAŞ q-ANALOGUE
OF THE BERNSTEIN OPERATOR

SOFIYA OSTROVSKA

ABSTRACT. Let Rn(f, q; x) : C[0, 1] → C[0, 1] be q-
analogues of the Bernstein operators defined by Lupaş in
1987. If q = 1, then Rn(f, 1; x) are classical Bernstein
polynomials. For q �= 1, the operators Rn(f, q; x) are rational
functions rather than polynomials. The paper deals with
convergence properties of the sequence {Rn(f, q; x)}. It is
proved that {Rn(f, qn; x)} converges uniformly to f(x) for any
f(x) ∈ C[0, 1] if and only if qn → 1. In the case q > 0, q �= 1
being fixed the sequence {Rn(f, q; x)} converges uniformly to
f(x) ∈ C[0, 1] if and only if f(x) is linear.

1. Introduction. In 1912 Bernstein ([2]) found his famous proof of
the Weierstrass approximation theorem. Using probability theory he
defined polynomials called nowadays Bernstein polynomials as follows.

Definition [2]. Let f : [0, 1] → R. The Bernstein polynomial of f is

Bn(f ; x) :=
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1 − x)n−k, n = 1, 2, . . . .

Bernstein proved that, if f ∈ C[0, 1], then the sequence {Bn(f ; x)}
converges uniformly to f(x) on [0, 1].

Definition. The Bernstein operator Bn : C[0, 1] → C[0, 1] is given
by

(Bn)f(x) := Bn(f ; x), n = 1, 2, . . . .

Later it was found that Bernstein polynomials possess many remark-
able properties, which made them an area of intensive research. A
systematic treatment of the theory of Bernstein polynomials as it was
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until the 90’s is presented, for example, in [7] and [12]. New papers
are constantly coming out, cf., e.g., [4], and new applications and gen-
eralizations are being discovered, cf., e.g., [6] and [9]. The aim of
these generalizations is to provide appropriate tools for studying vari-
ous problems of analysis, geometry, statistical inference and computer
science. The rapid development of q-calculus has led to the discovery of
new generalizations of Bernstein polynomials involving q-integers. The
first person to make progress in this direction was Lupaş. In 1987 he
introduced, cf. [8], a q-analogue of the Bernstein operator and investi-
gated its approximating and shape-preserving properties. In this paper
we present new results concerning convergence of the Lupaş operator.

It is worth mentioning that in 1997 Phillips [10] introduced another
generalization of Bernstein polynomials based on the q-integers called
q-Bernstein polynomials. The q-Bernstein polynomials attracted a lot
of interest and were studied widely by a number of authors. A survey of
the obtained results and references on the subject can be found in [11].
The Lupaş operators are less known. However, they have an advantage
of generating positive linear operators for all q > 0, whereas q-Bernstein
polynomials generate positive linear operators only if q ∈ (0, 1).

In this paper we would like to draw attention to the Lupaş q-analogue
of the Bernstein operator and obtain new results related to the q-
analogue.

To present results by Lupaş we recall the following definitions, cf. [1,
Chapter 10].

Let q > 0. For any n = 0, 1, 2, . . . , the q-integer [n]q is defined by

[n]q := 1 + q + · · · + qn−1 n = 1, 2, . . . , [0]q := 0 ;

and the q-factorial [n]q! by

[n]q! := [1]q[2]q · · · [n]q n = 1, 2, . . . , [0]q! := 1 .

For integers 0 ≤ k ≤ n the q-binomial, or the Gaussian coefficient is
defined by [n

k

]
q

:=
[n]q!

[k]q![n − k]q!
.

Clearly, for q = 1,

[n]1 = n, [n]1! = n!,
[n

k

]
1

=
(n

k

)
.
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The q-binomial coefficients are involved in Cauchy’s q-binomial theo-
rem, cf. [1, Chapter 10, Section 10.2]. We will use the following partic-
ular cases of the theorem ([1, Chapter 10, Corollary 10.2.2]). The first
one is an extension of Newton’s binomial formula:

(1) (1 + x)(1 + qx) · · · (1 + qn−1x) =
n∑

k=0

[n

k

]
q
qk(k−1)/2xk .

Another needed formula, which can be derived from (1), is Euler’s
identity: for |q| < 1,

(2)
∞∑

k=0

qk(k−1)/2xk

(1 − q)k[k]q!
=

∞∏
k=0

(1 + qkx) .

Following Lupaş we denote

(3) bnk(q; x) :=
[n

k

]
q

qk(k−1)/2xk (1 − x)n−k

(1 − x + qx) · · · (1 − x + qn−1x)
.

It follows from (1) that

(4)
n∑

k=0

bnk(q; x) = 1, x ∈ [0, 1] .

Indeed, for x = 1, equality (4) is obvious. For x �= 1, we get

n∑
k=0

[n

k

]
q
qk(k−1)/2xk (1 − x)n−k

= (1 − x)n

(
1 +

x

1 − x

)(
1 + q

x

1 − x

)
· · ·

(
1 + qn−1 x

1 − x

)
= (1 − x + qx) · · · (1 − x + qn−1x) ,

and (4) is proved.

Definition (Lupaş [8]). Let f ∈ C[0, 1]. The linear operator
Rn,q : C[0, 1] → C[0, 1] defined by
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(5) Rn,q(f) = Rn(f, q; x) :=
n∑

k=0

f

(
[k]q
[n]q

)
bnk(q; x)

is called the q-analogue of the Bernstein operator.

We note that Rn(f, 1; x) = Bn(f ; x), where Bn(f ; x) is a Bernstein
polynomial of f . In the case q �= 1 the operators Rn(f, q; x) give rational
functions rather than polynomials.

It follows directly from the definition that operators Rn(f, q; x) pos-
sess the end-point interpolation property, that is,

(6)
Rn(f, q; 0) = f(0), Rn(f, q; 1) = f(1)
for all q > 0 and all n = 1, 2, . . . .

Besides, Rn(f, q; x) are positive linear operators on C[0, 1] for all q > 0
and all n = 1, 2, . . . .

Lupaş [8] investigated approximating properties of the operators
Rn(f, q; x) with respect to the uniform norm of C[0, 1]. In particular,
he obtained some sufficient conditions for a sequence {Rn(f, qn; x)} to
be approximating for any function f ∈ C[0, 1] and estimated the rate of
convergence in terms of the modulus of continuity. He also investigated
behavior of the operators Rn(f, q; x) for convex functions.

In this paper we present new results concerning convergence of
the sequence {Rn(f, qn; x)} in C[0, 1]. Our first theorem shows that
{Rn(f, qn; x)} is an approximating sequence for any f ∈ C[0, 1], that is,
Rn(f, qn; x) converges uniformly to f(x) on [0, 1], if and only if qn → 1.
We establish (Theorem 3) a symmetry between the cases q ∈ (0, 1) and
q ∈ (1,∞). Finally, we discuss convergence of {Rn(f, q; x)} for q �= 1
being fixed. Our results imply that the classical case q = 1 is the best
for approximation by the Lupaş operators if q is fixed. Therefore, we
can expect applications of the q-analogue in the case when the value
of q varies, which gives additional flexibility of approximation. Our
approach is similar to the one developed in [5].

2. Statement of results. The sign gn(x) ⇒ g(x) means uniform
convergence of {gn(x)} to g(x) as n → ∞.

Theorem 1. The sequence {Rn(f, qn; x)} is approximating for all
f ∈ C[0, 1] if and only if qn → 1.
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Remark. This is a generalization of Theorem 2 of [8].

Theorem 1 implies that, if q �= 1 is fixed, {Rn(f, q; x)} may not
be approximating for some continuous functions. We will discuss
convergence of the sequence {Rn(f, q; x)} in the case q > 0, q �= 1 being
fixed and state necessary and sufficient conditions for the sequence to
be approximating for f .

First, let q ∈ (0, 1). We set
(7)

b∞ k(q; x) :=
qk(k−1)/2 (x/1 − x)k

(1 − q)k[k]q!
∏∞

j=0 (1 + qj(x/(1 − x)))
, x ∈ [0, 1) .

It follows from (2) that, for q ∈ (0, 1) and x ∈ [0, 1),

(8)
∞∑

k=0

b∞ k(q; x) = 1 .

Consider the function

(9) R̃∞(f, q; x) =
{∑∞

k=0 f(1 − qk)b∞ k(q; x) if x ∈ [0, 1)
f(1) if x = 1 .

Note that the function R̃∞(f, q; x) is well-defined on [0, 1] whenever
f(x) is bounded on [0, 1].

The following theorem shows that in the case q ∈ (0, 1) the sequence
{Rn(f, q; x)} is uniformly convergent for any f ∈ C[0, 1].

Theorem 2. Let q ∈ (0, 1). Then, for any f ∈ C[0, 1],

Rn(f, q; x) ⇒ R̃∞(f, q; x) for x ∈ [0, 1] .

Remark. It is worth mentioning that the results above admit a
probabilistic interpretation. Indeed, since bnk(q; x) ≥ 0 for x ∈ [0, 1]
and by (4)

∑n
k=0 bnk(q; x) = 1, we may consider a sequence of discrete

random variables {Xn} with the distributions Pn defined by

P
{

Xn =
[k]q
[n]q

}
= bnk(q; x), k = 0, 1, . . . , n .
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Then Rn(f, q; x) = E [f(Xn)]. For q ∈ (0, 1) consider a discrete random
variable X∞ with the distribution P defined by{

P
{
X∞ = 1 − qk

}
= b∞ k(q; x) if x ∈ [0, 1),

P {X∞ = 1} = 1 if x = 1 .

The distribution is well-defined due to (8) and the fact that all
b∞ k(q; x) ≥ 0 on [0, 1).

Then R∞(f, q; x) = E [f(X∞)] and Theorem 2 means that P is a
limit distribution for the sequence {Pn}.

The following theorem allows us to reduce the case q ∈ (1,∞) to the
case q ∈ (0, 1).

Theorem 3. Let f ∈ C[0, 1], g(x) := f(1− x). Then for any q > 0,

(10) Rn(f, q; x) = Rn(g, 1/q; 1 − x) for x ∈ [0, 1] .

Remark. For q = 1 this equality coincides with formula (2.16) in [4].

Corollary 1. Let q �= 1 be fixed, f ∈ C[0, 1] and g(x) := f(1 − x).
Then, for x ∈ [0, 1],

Rn(f, q; x) ⇒R∞(f, q; x) =

{
R̃∞(f, q; x) if q ∈ (0, 1),
R̃∞(g, 1/q; x) if q ∈ (1,∞) .

That is, the sequence {Rn(f, q; x)} converges uniformly on [0, 1] for
any f ∈ C[0, 1] and any q > 0 being fixed. An explicit form of the limit
function for q ∈ (0, 1) is given by (9). In the case q ∈ (1,∞),

(11) R∞(f, q; x) =
{∑∞

k=0 f
(
1/qk

)
b∞ k (1/q; 1 − x) if x ∈ (0, 1],

f(0) if x = 0,

where

b∞ k (1/q; x) =
qk ((1 − x)/x)k

(q − 1) · · · (qk − 1)
∏∞

j=0 (1 + ((1 − x)/(qjx)))
, x ∈ (0, 1] .
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Using explicit forms (9) and (11) we derive a necessary and sufficient
condition for {Rn(f, q; x)} to be an approximating sequence for q �= 1
being fixed.

Theorem 4. Let q > 0, q �= 1 be fixed and f ∈ C[0, 1]. Then

R∞(f, q; x) = f(x) for all x ∈ [0, 1]

if and only if f(x) = ax + b for some a, b ∈ R.

That is, in contrast to the case q = 1, when {Rn(f, 1; x)} =
{Bn(f ; x)} is an approximating sequence for any f ∈ C[0, 1], the se-
quence {Rn(f, q; x)}, q �= 1 is not approximating for f unless f is
linear.

3. Some auxiliary results. It will be convenient to use for
x ∈ [0, 1) the substitution

(12) u :=
x

1 − x
, u ∈ [0,∞) .

We may express bnk for x ∈ [0, 1) as follows:

(13)
bnk(q; x) =

[n

k

]
q

qk(k−1)/2(1 − x)n (x/(1 − x))k

(1 − x)n
∏n−1

j=0 (1 + qj(x/(1 − x)))

=
[n

k

]
q

qk(k−1)/2uk

wn(q; u)
=: ρnk(q; u),

where

wn(q; x) =
n−1∏
j=0

(1 + qju).

Clearly,

ρnk(q; u) = bnk

(
q;

u

u + 1

)
and

Rn(f, q; x) = Rn

(
f, q;

u

u + 1

)
=

n∑
k=0

f

(
[k]q
[n]q

)
ρnk(q; u).
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It follows from (4) that

(14)
n∑

k=0

ρnk(q; u) = 1 for u ∈ [0,∞).

Similarly we get from (7) that, for q ∈ (0, 1),

(15)

b∞ k(q; x) = b∞ k

(
q;

u

u + 1

)
=

qk(k−1)/2uk

(1−q)k[k]q! w∞(q; u)
:= ρ∞ k(q; u),

where

w∞(q; x) =
∞∏

j=0

(1 + qju).

Obviously, (8) implies that, if q ∈ (0, 1), then

(16)
∞∑

k=0

ρ∞ k(q; u) = 1 for u ∈ [0,∞).

We need the following fact stated in [8]. For the reader’s favor we
present its proof below.

Lemma 1 (Lupaş). The following equalities are true:

(17)
Rn(1, q; x) = 1,

Rn(t, q; x) = x ;

(18) Rn(t2, q; x) = x2 +
x(1 − x)

[n]q
− x2(1 − x)(1 − q)

1 − x + xq

(
1 − 1

[n]q

)
.

Corollary 1. Operators Rn(f, q; x) reproduce linear functions, that
is

(19) Rn(at+ b, q; x) = ax + b for all q > 0 and all n = 1, 2, . . . .
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Proof. Obviously, Rn(1, q; x) =
∑n

k=0 bnk(q; x) = 1 according to (4).
It suffices to prove (17) and (18) for x ∈ [0, 1), because for x = 1 they
hold due to (6). Using the substitution (12) we get

Rn

(
t, q;

u

u + 1

)
=

n∑
k=0

[k]q
[n]q

[n

k

]
q

qk(k−1)/2uk

wn(q; u)

=
u

u + 1

n∑
k=1

[
n − 1
k − 1

]
q

q(k−1)(k−2)/2(qu)k−1

wn−1(q; qu)

=
u

u + 1

n−1∑
k=0

ρn−1,k(q; qu) =
u

u + 1
,

and (17) is proven.

Likewise,

Rn

(
t2, q;

u

u + 1

)
=

n∑
k=0

[k]2q
[n]2q

[n

k

]
q

qk(k−1)/2uk

wn(q; u)

=
u

u + 1

n−1∑
k=0

[k + 1]q
[n]q

ρn−1,k(q; qu)

=
u

u + 1
[n − 1]q

[n]q

n−1∑
k=0

(
1 + q[k]q
[n − 1]q

)
ρn−1,k(q; qu) .

Using (14) and(17) we obtain

Rn

(
t2, q;

u

u + 1

)
=

u

u + 1
· [n − 1]q

[n]q

(
1

[n]q
+ q · qu

qu + 1

)
=

u

u + 1
1

[n]q
+

u

u + 1
qu

qu + 1

(
1 − 1

[n]q

)
,

or, equivalently,

Rn(t2, q; x) =
x

[n]q
+

qx2

1 − x + qx

(
1 − 1

[n]q

)
= x2

(
1 − 1

[n]q

)
+

x

[n]q
−

(
x2 − qx2

1 − x + qx

)
×

(
1 − 1

[n]q

)
= x2 +

x(1 − x)
[n]q

− x2(1 − x)(1 − q)
1 − x + qx

(
1 − 1

[n]q

)
.
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Remark. The statement of Lemma 1 can also be derived from the
following recurrence formula:

Rn(tm, q; x) =
x

[n]m−1
q

m−1∑
r=0

(
m−1

r

)
([n]q − 1)rRn−1

(
tr, q;

qx

1− x+ qx

)
,

m = 1, 2 . . . .

Lemma 2. Let q ∈ (0, 1) and bnk(q; x), b∞ k(q; x) be given by (3)
and (7), respectively.

Then

bnk(q; x) ⇒ b∞ k(q; x) for x ∈ [0, 1), k = 0, 1, 2, . . . .

Proof. After we apply the substitution (12), we consider the functions
ρnk(q; u) and ρ∞ k(q; u) defined by (13) and (15), respectively.

The lemma will be proven if we show that

ρnk(q; u) ⇒ ρ∞ k(q; u) for u ∈ [0,∞) .

Since [n

k

]
q
→ 1

(1 − q)k[k]q!

and uk/w∞(q; u) is bounded on [0,∞), it suffices to prove that

(20)
uk

wn(q; u)
⇒ uk

w∞(q; u)
for u ∈ [0,∞) .

To prove this we use Dini’s theorem on uniform convergence of a
monotone sequence of continuous functions. We apply this theorem
to the functions

(21)
uk

wn(q; u)
n>k and

uk

w∞(q; u)

on the compact set [0,∞]. (We define all of the functions to be 0 at
∞.)
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4. Proofs of the theorems.

Proof of Theorem 1. Since Rn(f, q; x), define positive linear operators,
the Korovkin theorem, cf. [3, Chapter 3, Section 3] implies that
Rn(f, qn; x) ⇒ f(x) for any f ∈ C[0, 1] if and only if

Rn(tm, qn; x) ⇒xm for x ∈ [0, 1] and m = 0, 1, 2 .

For m = 0, 1 this is true for any sequence {qn} due to (19).

It follows from (18) that Rn(t2, qn; x) ⇒x2 for x ∈ [0, 1] if and only if

(22)
x(1 − x)

[n]qn

− x2(1 − x)(1 − qn)
1 − x + xqn

(
1 − 1

[n]qn

)
⇒ 0 for x ∈ [0, 1] .

i) Suppose that qn → 1. Then, for any fixed positive integer k,
we have [n]qn

≥ [k]qn
when n ≥ k. Therefore, lim infn→∞[n]qn

≥
limn→∞[k]qn

= k. Since k has been chosen arbitrarily, it follows that
[n]qn

→ ∞. Hence,

x(1 − x)
[n]qn

⇒ 0 for x ∈ [0, 1] .

At the same time, for q ≥ 1/2, we have

x2(1 − x)
1 − x + qx

≤ 1/4
1 − x + qx

≤ 1/4
1 − x/2

≤ 1
2

for all x ∈ [0, 1] .

Therefore, (22) is true.

ii) Suppose that, for any f ∈ C[0, 1], Rn(f, qn; x) ⇒ f(x) for x ∈
[0, 1]. Then Rn(t2, qn; x) ⇒x2 for x ∈ [0, 1], and by (22),

x(1 − x)
[n]qn

− x2(1 − x)(1 − qn)
1 − x + xqn

(
1 − 1

[n]qn

)
⇒ 0 for x ∈ [0, 1] .

Taking x = 1/2, we conclude that

1/4
[n]qn

− 1/8(1 − qn)
1/2(1 + qn)

(
1 − 1

[n]qn

)
−→ 0 as n → ∞ ,
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or
1

[n]qn

+
(

1 − 2
1 + qn

)(
1 − 1

[n]qn

)
−→ 0 as n → ∞ .

Suppose that {qn} does not tend to 1. Then it contains a subsequence
{qm} → t �= 1. If t < 1, then [m]qm

→ 1/(1 − t), so

1
[m]qm

+
(

1 − 2
1+qm

)(
1 − 1

[m]qm

)
−→ 1 − t +

(
1 − 2

1+ t

)
t

=
1 − t

1 + t
�= 0 .

For t > 1, we get [m]qm
→ ∞ and

1
[m]qm

+
(

1 − 2
1 + qm

)(
1 − 1

[m]qm

)
−→ 1 − 2

1 + t
=

t − 1
t + 1

�= 0 .

(In particular, for t = ∞, the limit equals 1.)

The contradiction shows that qn → 1.

Proof of Theorem 2. Due to (6) it suffices to prove that Rn(f, q; x) ⇒
R∞(f, q; x) for x ∈ [0, 1). Consider

Δ := |Rn(f, q; x) − R∞(f, q; x)| .

For x ∈ [0, 1),

Δ =
∣∣∣∣ n∑

k=0

f

(
[k]q
[n]q

)
bnk(q; x) −

∞∑
k=0

f(1 − qk)b∞ k(q; x)
∣∣∣∣ .

Let ε > 0 be given. We choose a ∈ (0, 1) in such a way that
ωf (1 − a) < ε/3, where ωf denotes the modulus of continuity of f .
Let R be a positive integer satisfying the condition 1−qR+1 ≥ a. Then
[k]q/[n]q ≥ a for all k ≥ R + 1. Using (4) and (8), we get

Δ =
∣∣∣∣ n∑

k=0

(
f

(
[k]q
[n]q

)
−f(1)

)
bnk(q; x)−

∞∑
k=0

(
f(1− qk)−f(1)

)
b∞ k(q; x)

∣∣∣∣
≤

∣∣∣∣ R∑
k=0

(
f

(
[k]q
[n]q

)
−f(1)

)
bnk(q; x)−

R∑
k=0

(
f(1− qk)−f(1)

)
b∞ k(q; x)

∣∣∣∣



LUPAŞ q-ANALOGUE OF THE BERNSTEIN OPERATOR 1627

+
n∑

k=R+1

∣∣∣∣f(
[k]q
[n]q

)
−f(1)

∣∣∣∣bnk(q; x)+
∞∑

k=R+1

∣∣f(1−qk)−f(1)
∣∣b∞ k(q; x)

=: δ1 + δ2 + δ3 .

Since f ([k]q/[n]q) → f(1−qk) as n → ∞, we get by applying Lemma 2
that δ1 < ε/3 for n large enough.

Due to the fact that bnk(q; x) ≥ 0 for x ∈ [0, 1], we get the following
estimate for δ2:

δ2 ≤ ωf (1 − a)
n∑

k=R+1

bnk(q; x) ≤ ωf (1 − a)
n∑

k=0

bnk(q; x)

= ωf (1 − a) < ε/3

because of (4). Similarly, using (8) we get δ3 ≤ ωf (1−a) < ε/3. Thus,
Δ < ε for n large enough.

Proof of Theorem 3. For x = 0 and x = 1, the statement is obvious
due to (6). So, we assume that x �= 0.

Clearly,

Rn(f, q; x) =
n∑

k=0

f

(
[n − k]q

[n]q

)
bn,n−k(q; x) .

Consider

bn,n−k(q; x) =
[

n

n − k

]
q

q(n−k)(n−k−1)xn−k(1 − x)k

qn(n−1)/2xn
∏n

j=0 (1 + ((1 − x)/qjx))

=
[n

k

]
1/q

(1/q)k(k−1)/2 (1 − x)k xn−k∏n
j=0(x + ((1 − x)/qj))

= bnk

(
1
q
; 1 − x

)
.

On the other hand,

[n − k]q
[n]q

=
[n]1/q − [k]1/q

[n]1/q
= 1 − [k]1/q

[n]1/q
.
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Therefore,

Rn(f, q; x) =
n∑

k=0

f

(
1 − [k]1/q

[n]1/q

)
bnk

(
1
q
; 1 − x

)

=
n∑

k=0

g

(
[k]1/q

[n]1/q

)
bnk

(
1
q
; 1 − x

)
= Rn

(
g,

1
q
; 1 − x

)
.

Proof of Theorem 4. If f(x) = ax+b, then by (19) Rn(f, q; x) = ax+b
for all n = 1, 2 . . . , and therefore

R∞(f, q; x) = lim
n→∞ Rn(f, q; x) = ax + b = f(x) .

Now, suppose that f ∈C[0, 1] and R∞(f, q; x)=f(x) for all x ∈ [0, 1].
Due to Theorem 3 it suffices to prove the statement in the case
q ∈ (0, 1).

Consider the function

ϕ(x) := f(x) − (f(1) − f(0))x .

Obviously, ϕ(0) = ϕ(1) and R∞(ϕ, q; x) = ϕ(x). We will prove that
ϕ(x) = ϕ(0) = ϕ(1) for all x ∈ [0, 1]. Let

M := max
x∈[0,1]

ϕ(x) .

Assume that M > ϕ(1). Then M = ϕ(z) for some z ∈ (0, 1) and
ϕ(1 − qk) < M for k > N0. Using (2) and positivity of b∞ k(q; x),
k = 0, 1, . . . , on (0, 1), we get

M = ϕ(z) =
∞∑

k=0

ϕ(1 − qk)b∞ k(q; z) < M .

The contradiction shows that ϕ(x) ≤ ϕ(1) for all x ∈ [0, 1]. Likewise,
we prove that ϕ(x) ≥ ϕ(1) for all x ∈ [0, 1]. Thus, ϕ(x) ≡ ϕ(1) ≡ b for
some b ∈ R and finally f(x) = ax + b with a = f(1) − f(0).
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