ON THE LUPAŞ q-ANALOGUE OF THE BERNSTEIN OPERATOR

SOFIYA OSTROVSKA

Abstract

Let $R_{n}(f, q ; x): C[0,1] \rightarrow C[0,1]$ be q analogues of the Bernstein operators defined by Lupaş in 1987. If $q=1$, then $R_{n}(f, 1 ; x)$ are classical Bernstein polynomials. For $q \neq 1$, the operators $R_{n}(f, q ; x)$ are rational functions rather than polynomials. The paper deals with convergence properties of the sequence $\left\{R_{n}(f, q ; x)\right\}$. It is proved that $\left\{R_{n}\left(f, q_{n} ; x\right)\right\}$ converges uniformly to $f(x)$ for any $f(x) \in C[0,1]$ if and only if $q_{n} \rightarrow 1$. In the case $q>0, q \neq 1$ being fixed the sequence $\left\{R_{n}(f, q ; x)\right\}$ converges uniformly to $f(x) \in C[0,1]$ if and only if $f(x)$ is linear.

1. Introduction. In 1912 Bernstein ([2]) found his famous proof of the Weierstrass approximation theorem. Using probability theory he defined polynomials called nowadays Bernstein polynomials as follows.

Definition [2]. Let $f:[0,1] \rightarrow \mathbf{R}$. The Bernstein polynomial of f is

$$
B_{n}(f ; x):=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}, \quad n=1,2, \ldots
$$

Bernstein proved that, if $f \in C[0,1]$, then the sequence $\left\{B_{n}(f ; x)\right\}$ converges uniformly to $f(x)$ on $[0,1]$.

Definition. The Bernstein operator $B_{n}: C[0,1] \rightarrow C[0,1]$ is given by

$$
\left(B_{n}\right) f(x):=B_{n}(f ; x), \quad n=1,2, \ldots
$$

Later it was found that Bernstein polynomials possess many remarkable properties, which made them an area of intensive research. A systematic treatment of the theory of Bernstein polynomials as it was

[^0]until the 90 's is presented, for example, in [7] and [12]. New papers are constantly coming out, cf., e.g., [4], and new applications and generalizations are being discovered, cf., e.g., [6] and [9]. The aim of these generalizations is to provide appropriate tools for studying various problems of analysis, geometry, statistical inference and computer science. The rapid development of q-calculus has led to the discovery of new generalizations of Bernstein polynomials involving q-integers. The first person to make progress in this direction was Lupaş. In 1987 he introduced, cf. [8], a q-analogue of the Bernstein operator and investigated its approximating and shape-preserving properties. In this paper we present new results concerning convergence of the Lupaş operator.
It is worth mentioning that in 1997 Phillips [10] introduced another generalization of Bernstein polynomials based on the q-integers called q-Bernstein polynomials. The q-Bernstein polynomials attracted a lot of interest and were studied widely by a number of authors. A survey of the obtained results and references on the subject can be found in [11]. The Lupaş operators are less known. However, they have an advantage of generating positive linear operators for all $q>0$, whereas q-Bernstein polynomials generate positive linear operators only if $q \in(0,1)$.

In this paper we would like to draw attention to the Lupaş q-analogue of the Bernstein operator and obtain new results related to the q analogue.

To present results by Lupaş we recall the following definitions, cf. [1, Chapter 10].

Let $q>0$. For any $n=0,1,2, \ldots$, the q-integer $[n]_{q}$ is defined by

$$
[n]_{q}:=1+q+\cdots+q^{n-1} \quad n=1,2, \ldots, \quad[0]_{q}:=0
$$

and the q-factorial $[n]_{q}$! by

$$
[n]_{q}!:=[1]_{q}[2]_{q} \cdots[n]_{q} \quad n=1,2, \ldots, \quad[0]_{q}!:=1
$$

For integers $0 \leq k \leq n$ the q-binomial, or the Gaussian coefficient is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

Clearly, for $q=1$,

$$
[n]_{1}=n, \quad[n]_{1}!=n!, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{1}=\binom{n}{k}
$$

The q-binomial coefficients are involved in Cauchy's q-binomial theorem, cf. [1, Chapter 10, Section 10.2]. We will use the following particular cases of the theorem ([1, Chapter 10, Corollary 10.2.2]). The first one is an extension of Newton's binomial formula:

$$
(1+x)(1+q x) \cdots\left(1+q^{n-1} x\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1}\\
k
\end{array}\right]_{q} q^{k(k-1) / 2} x^{k}
$$

Another needed formula, which can be derived from (1), is Euler's identity: for $|q|<1$,

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{q^{k(k-1) / 2} x^{k}}{(1-q)^{k}[k]_{q}!}=\prod_{k=0}^{\infty}\left(1+q^{k} x\right) \tag{2}
\end{equation*}
$$

Following Lupaş we denote

$$
b_{n k}(q ; x):=\left[\begin{array}{l}
n \tag{3}\\
k
\end{array}\right]_{q} \frac{q^{k(k-1) / 2} x^{k}(1-x)^{n-k}}{(1-x+q x) \cdots\left(1-x+q^{n-1} x\right)}
$$

It follows from (1) that

$$
\begin{equation*}
\sum_{k=0}^{n} b_{n k}(q ; x)=1, \quad x \in[0,1] \tag{4}
\end{equation*}
$$

Indeed, for $x=1$, equality (4) is obvious. For $x \neq 1$, we get

$$
\begin{aligned}
\sum_{k=0}^{n} & {\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{k(k-1) / 2} x^{k}(1-x)^{n-k} } \\
& =(1-x)^{n}\left(1+\frac{x}{1-x}\right)\left(1+q \frac{x}{1-x}\right) \cdots\left(1+q^{n-1} \frac{x}{1-x}\right) \\
& =(1-x+q x) \cdots\left(1-x+q^{n-1} x\right)
\end{aligned}
$$

and (4) is proved.

Definition (Lupaş [8]). Let $f \in C[0,1]$. The linear operator $R_{n, q}: C[0,1] \rightarrow C[0,1]$ defined by

$$
\begin{equation*}
R_{n, q}(f)=R_{n}(f, q ; x):=\sum_{k=0}^{n} f\left(\frac{[k]_{q}}{[n]_{q}}\right) b_{n k}(q ; x) \tag{5}
\end{equation*}
$$

is called the q-analogue of the Bernstein operator.
We note that $R_{n}(f, 1 ; x)=B_{n}(f ; x)$, where $B_{n}(f ; x)$ is a Bernstein polynomial of f. In the case $q \neq 1$ the operators $R_{n}(f, q ; x)$ give rational functions rather than polynomials.

It follows directly from the definition that operators $R_{n}(f, q ; x)$ possess the end-point interpolation property, that is,

$$
\begin{align*}
& R_{n}(f, q ; 0)=f(0), \quad R_{n}(f, q ; 1)=f(1) \\
& \text { for all } \quad q>0 \quad \text { and all } \quad n=1,2, \ldots \tag{6}
\end{align*}
$$

Besides, $R_{n}(f, q ; x)$ are positive linear operators on $C[0,1]$ for all $q>0$ and all $n=1,2, \ldots$.

Lupaş [8] investigated approximating properties of the operators $R_{n}(f, q ; x)$ with respect to the uniform norm of $C[0,1]$. In particular, he obtained some sufficient conditions for a sequence $\left\{R_{n}\left(f, q_{n} ; x\right)\right\}$ to be approximating for any function $f \in C[0,1]$ and estimated the rate of convergence in terms of the modulus of continuity. He also investigated behavior of the operators $R_{n}(f, q ; x)$ for convex functions.
In this paper we present new results concerning convergence of the sequence $\left\{R_{n}\left(f, q_{n} ; x\right)\right\}$ in $C[0,1]$. Our first theorem shows that $\left\{R_{n}\left(f, q_{n} ; x\right)\right\}$ is an approximating sequence for any $f \in C[0,1]$, that is, $R_{n}\left(f, q_{n} ; x\right)$ converges uniformly to $f(x)$ on $[0,1]$, if and only if $q_{n} \rightarrow 1$. We establish (Theorem 3) a symmetry between the cases $q \in(0,1)$ and $q \in(1, \infty)$. Finally, we discuss convergence of $\left\{R_{n}(f, q ; x)\right\}$ for $q \neq 1$ being fixed. Our results imply that the classical case $q=1$ is the best for approximation by the Lupaş operators if q is fixed. Therefore, we can expect applications of the q-analogue in the case when the value of q varies, which gives additional flexibility of approximation. Our approach is similar to the one developed in [5].
2. Statement of results. The sign $g_{n}(x) \rightrightarrows g(x)$ means uniform convergence of $\left\{g_{n}(x)\right\}$ to $g(x)$ as $n \rightarrow \infty$.

Theorem 1. The sequence $\left\{R_{n}\left(f, q_{n} ; x\right)\right\}$ is approximating for all $f \in C[0,1]$ if and only if $q_{n} \rightarrow 1$.

Remark. This is a generalization of Theorem 2 of $[\mathbf{8}]$.
Theorem 1 implies that, if $q \neq 1$ is fixed, $\left\{R_{n}(f, q ; x)\right\}$ may not be approximating for some continuous functions. We will discuss convergence of the sequence $\left\{R_{n}(f, q ; x)\right\}$ in the case $q>0, q \neq 1$ being fixed and state necessary and sufficient conditions for the sequence to be approximating for f.

First, let $q \in(0,1)$. We set

$$
\begin{equation*}
b_{\infty k}(q ; x):=\frac{q^{k(k-1) / 2}(x / 1-x)^{k}}{(1-q)^{k}[k]_{q}!\prod_{j=0}^{\infty}\left(1+q^{j}(x /(1-x))\right)}, \quad x \in[0,1) \tag{7}
\end{equation*}
$$

It follows from (2) that, for $q \in(0,1)$ and $x \in[0,1)$,

$$
\begin{equation*}
\sum_{k=0}^{\infty} b_{\infty k}(q ; x)=1 \tag{8}
\end{equation*}
$$

Consider the function

$$
\widetilde{R}_{\infty}(f, q ; x)= \begin{cases}\sum_{k=0}^{\infty} f\left(1-q^{k}\right) b_{\infty k}(q ; x) & \text { if } x \in[0,1) \tag{9}\\ f(1) & \text { if } x=1\end{cases}
$$

Note that the function $\widetilde{R}_{\infty}(f, q ; x)$ is well-defined on $[0,1]$ whenever $f(x)$ is bounded on $[0,1]$.
The following theorem shows that in the case $q \in(0,1)$ the sequence $\left\{R_{n}(f, q ; x)\right\}$ is uniformly convergent for any $f \in C[0,1]$.

Theorem 2. Let $q \in(0,1)$. Then, for any $f \in C[0,1]$,

$$
R_{n}(f, q ; x) \rightrightarrows \widetilde{R}_{\infty}(f, q ; x) \quad \text { for } \quad x \in[0,1]
$$

Remark. It is worth mentioning that the results above admit a probabilistic interpretation. Indeed, since $b_{n k}(q ; x) \geq 0$ for $x \in[0,1]$ and by (4) $\sum_{k=0}^{n} b_{n k}(q ; x)=1$, we may consider a sequence of discrete random variables $\left\{X_{n}\right\}$ with the distributions \mathcal{P}_{n} defined by

$$
\mathbf{P}\left\{X_{n}=\frac{[k]_{q}}{[n]_{q}}\right\}=b_{n k}(q ; x), \quad k=0,1, \ldots, n
$$

Then $R_{n}(f, q ; x)=\mathbf{E}\left[f\left(X_{n}\right)\right]$. For $q \in(0,1)$ consider a discrete random variable X_{∞} with the distribution \mathcal{P} defined by

$$
\begin{cases}\mathbf{P}\left\{X_{\infty}=1-q^{k}\right\}=b_{\infty k}(q ; x) & \text { if } x \in[0,1) \\ \mathbf{P}\left\{X_{\infty}=1\right\}=1 & \text { if } x=1\end{cases}
$$

The distribution is well-defined due to (8) and the fact that all $b_{\infty k}(q ; x) \geq 0$ on $[0,1)$.

Then $R_{\infty}(f, q ; x)=\mathbf{E}\left[f\left(X_{\infty}\right)\right]$ and Theorem 2 means that \mathcal{P} is a limit distribution for the sequence $\left\{\mathcal{P}_{n}\right\}$.

The following theorem allows us to reduce the case $q \in(1, \infty)$ to the case $q \in(0,1)$.

Theorem 3. Let $f \in C[0,1], g(x):=f(1-x)$. Then for any $q>0$,

$$
\begin{equation*}
R_{n}(f, q ; x)=R_{n}(g, 1 / q ; 1-x) \quad \text { for } \quad x \in[0,1] \tag{10}
\end{equation*}
$$

Remark. For $q=1$ this equality coincides with formula (2.16) in [4].

Corollary 1. Let $q \neq 1$ be fixed, $f \in C[0,1]$ and $g(x):=f(1-x)$. Then, for $x \in[0,1]$,

$$
R_{n}(f, q ; x) \rightrightarrows R_{\infty}(f, q ; x)= \begin{cases}\widetilde{R}_{\infty}(f, q ; x) & \text { if } q \in(0,1) \\ \widetilde{R}_{\infty}(g, 1 / q ; x) & \text { if } q \in(1, \infty)\end{cases}
$$

That is, the sequence $\left\{R_{n}(f, q ; x)\right\}$ converges uniformly on $[0,1]$ for any $f \in C[0,1]$ and any $q>0$ being fixed. An explicit form of the limit function for $q \in(0,1)$ is given by (9). In the case $q \in(1, \infty)$,

$$
R_{\infty}(f, q ; x)= \begin{cases}\sum_{k=0}^{\infty} f\left(1 / q^{k}\right) b_{\infty k}(1 / q ; 1-x) & \text { if } x \in(0,1] \tag{11}\\ f(0) & \text { if } x=0\end{cases}
$$

where
$b_{\infty k}(1 / q ; x)=\frac{q^{k}((1-x) / x)^{k}}{(q-1) \cdots\left(q^{k}-1\right) \prod_{j=0}^{\infty}\left(1+\left((1-x) /\left(q^{j} x\right)\right)\right)}, \quad x \in(0,1]$.

Using explicit forms (9) and (11) we derive a necessary and sufficient condition for $\left\{R_{n}(f, q ; x)\right\}$ to be an approximating sequence for $q \neq 1$ being fixed.

Theorem 4. Let $q>0, q \neq 1$ be fixed and $f \in C[0,1]$. Then

$$
R_{\infty}(f, q ; x)=f(x) \quad \text { for all } \quad x \in[0,1]
$$

if and only if $f(x)=a x+b$ for some $a, b \in \mathbf{R}$.

That is, in contrast to the case $q=1$, when $\left\{R_{n}(f, 1 ; x)\right\}=$ $\left\{B_{n}(f ; x)\right\}$ is an approximating sequence for any $f \in C[0,1]$, the sequence $\left\{R_{n}(f, q ; x)\right\}, q \neq 1$ is not approximating for f unless f is linear.
3. Some auxiliary results. It will be convenient to use for $x \in[0,1)$ the substitution

$$
\begin{equation*}
u:=\frac{x}{1-x}, \quad u \in[0, \infty) \tag{12}
\end{equation*}
$$

We may express $b_{n k}$ for $x \in[0,1)$ as follows:

$$
\begin{align*}
b_{n k}(q ; x) & =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{q^{k(k-1) / 2}(1-x)^{n}(x /(1-x))^{k}}{(1-x)^{n} \prod_{j=0}^{n-1}\left(1+q^{j}(x /(1-x))\right)} \tag{13}\\
& =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{q^{k(k-1) / 2} u^{k}}{w_{n}(q ; u)}=: \rho_{n k}(q ; u),
\end{align*}
$$

where

$$
w_{n}(q ; x)=\prod_{j=0}^{n-1}\left(1+q^{j} u\right)
$$

Clearly,

$$
\rho_{n k}(q ; u)=b_{n k}\left(q ; \frac{u}{u+1}\right)
$$

and

$$
R_{n}(f, q ; x)=R_{n}\left(f, q ; \frac{u}{u+1}\right)=\sum_{k=0}^{n} f\left(\frac{[k]_{q}}{[n]_{q}}\right) \rho_{n k}(q ; u)
$$

It follows from (4) that

$$
\begin{equation*}
\sum_{k=0}^{n} \rho_{n k}(q ; u)=1 \quad \text { for } \quad u \in[0, \infty) \tag{14}
\end{equation*}
$$

Similarly we get from (7) that, for $q \in(0,1)$,

$$
\begin{equation*}
b_{\infty k}(q ; x)=b_{\infty k}\left(q ; \frac{u}{u+1}\right)=\frac{q^{k(k-1) / 2} u^{k}}{(1-q)^{k}[k]_{q}!w_{\infty}(q ; u)}:=\rho_{\infty k}(q ; u) \tag{15}
\end{equation*}
$$

where

$$
w_{\infty}(q ; x)=\prod_{j=0}^{\infty}\left(1+q^{j} u\right)
$$

Obviously, (8) implies that, if $q \in(0,1)$, then

$$
\begin{equation*}
\sum_{k=0}^{\infty} \rho_{\infty k}(q ; u)=1 \quad \text { for } \quad u \in[0, \infty) \tag{16}
\end{equation*}
$$

We need the following fact stated in [8]. For the reader's favor we present its proof below.

Lemma 1 (Lupaş). The following equalities are true:

$$
\begin{align*}
R_{n}(1, q ; x) & =1 \\
R_{n}(t, q ; x) & =x \tag{17}
\end{align*}
$$

$$
\begin{equation*}
R_{n}\left(t^{2}, q ; x\right)=x^{2}+\frac{x(1-x)}{[n]_{q}}-\frac{x^{2}(1-x)(1-q)}{1-x+x q}\left(1-\frac{1}{[n]_{q}}\right) \tag{18}
\end{equation*}
$$

Corollary 1. Operators $R_{n}(f, q ; x)$ reproduce linear functions, that is
(19) $R_{n}(a t+b, q ; x)=a x+b$ for all $q>0 \quad$ and all $n=1,2, \ldots$.

Proof. Obviously, $R_{n}(1, q ; x)=\sum_{k=0}^{n} b_{n k}(q ; x)=1$ according to (4). It suffices to prove (17) and (18) for $x \in[0,1$), because for $x=1$ they hold due to (6). Using the substitution (12) we get

$$
\begin{aligned}
R_{n}\left(t, q ; \frac{u}{u+1}\right) & =\sum_{k=0}^{n} \frac{[k]_{q}}{[n]_{q}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{q^{k(k-1) / 2} u^{k}}{w_{n}(q ; u)} \\
& =\frac{u}{u+1} \sum_{k=1}^{n}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} \frac{q^{(k-1)(k-2) / 2}(q u)^{k-1}}{w_{n-1}(q ; q u)} \\
& =\frac{u}{u+1} \sum_{k=0}^{n-1} \rho_{n-1, k}(q ; q u)=\frac{u}{u+1}
\end{aligned}
$$

and (17) is proven.
Likewise,

$$
\begin{aligned}
R_{n}\left(t^{2}, q ; \frac{u}{u+1}\right) & =\sum_{k=0}^{n} \frac{[k]_{q}^{2}}{[n]_{q}^{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{q^{k(k-1) / 2} u^{k}}{w_{n}(q ; u)} \\
& =\frac{u}{u+1} \sum_{k=0}^{n-1} \frac{[k+1]_{q}}{[n]_{q}} \rho_{n-1, k}(q ; q u) \\
& =\frac{u}{u+1} \frac{[n-1]_{q}}{[n]_{q}} \sum_{k=0}^{n-1}\left(\frac{1+q[k]_{q}}{[n-1]_{q}}\right) \rho_{n-1, k}(q ; q u)
\end{aligned}
$$

Using (14) and(17) we obtain

$$
\begin{aligned}
R_{n}\left(t^{2}, q ; \frac{u}{u+1}\right) & =\frac{u}{u+1} \cdot \frac{[n-1]_{q}}{[n]_{q}}\left(\frac{1}{[n]_{q}}+q \cdot \frac{q u}{q u+1}\right) \\
& =\frac{u}{u+1} \frac{1}{[n]_{q}}+\frac{u}{u+1} \frac{q u}{q u+1}\left(1-\frac{1}{[n]_{q}}\right)
\end{aligned}
$$

or, equivalently,

$$
\begin{aligned}
R_{n}\left(t^{2}, q ; x\right)= & \frac{x}{[n]_{q}}+\frac{q x^{2}}{1-x+q x}\left(1-\frac{1}{[n]_{q}}\right) \\
= & x^{2}\left(1-\frac{1}{[n]_{q}}\right)+\frac{x}{[n]_{q}}-\left(x^{2}-\frac{q x^{2}}{1-x+q x}\right) \\
& \times\left(1-\frac{1}{[n]_{q}}\right) \\
= & x^{2}+\frac{x(1-x)}{[n]_{q}}-\frac{x^{2}(1-x)(1-q)}{1-x+q x}\left(1-\frac{1}{[n]_{q}}\right) .
\end{aligned}
$$

Remark. The statement of Lemma 1 can also be derived from the following recurrence formula:

$$
\begin{gathered}
R_{n}\left(t^{m}, q ; x\right)=\frac{x}{[n]_{q}^{m-1}} \sum_{r=0}^{m-1}\binom{m-1}{r}\left([n]_{q}-1\right)^{r} R_{n-1}\left(t^{r}, q ; \frac{q x}{1-x+q x}\right) \\
m=1,2 \ldots
\end{gathered}
$$

Lemma 2. Let $q \in(0,1)$ and $b_{n k}(q ; x), b_{\infty k}(q ; x)$ be given by (3) and (7), respectively.

Then

$$
b_{n k}(q ; x) \rightrightarrows b_{\infty k}(q ; x) \quad \text { for } \quad x \in[0,1), \quad k=0,1,2, \ldots
$$

Proof. After we apply the substitution (12), we consider the functions $\rho_{n k}(q ; u)$ and $\rho_{\infty k}(q ; u)$ defined by (13) and (15), respectively.

The lemma will be proven if we show that

$$
\rho_{n k}(q ; u) \rightrightarrows \rho_{\infty k}(q ; u) \quad \text { for } \quad u \in[0, \infty)
$$

Since

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \rightarrow \frac{1}{(1-q)^{k}[k]_{q}!}
$$

and $u^{k} / w_{\infty}(q ; u)$ is bounded on $[0, \infty)$, it suffices to prove that

$$
\begin{equation*}
\frac{u^{k}}{w_{n}(q ; u)} \rightrightarrows \frac{u^{k}}{w_{\infty}(q ; u)} \quad \text { for } \quad u \in[0, \infty) \tag{20}
\end{equation*}
$$

To prove this we use Dini's theorem on uniform convergence of a monotone sequence of continuous functions. We apply this theorem to the functions

$$
\begin{equation*}
\frac{u^{k}}{w_{n}(q ; u)} \quad n>k \quad \text { and } \quad \frac{u^{k}}{w_{\infty}(q ; u)} \tag{21}
\end{equation*}
$$

on the compact set $[0, \infty]$. (We define all of the functions to be 0 at ∞.)

4. Proofs of the theorems.

Proof of Theorem 1. Since $R_{n}(f, q ; x)$, define positive linear operators, the Korovkin theorem, cf. [3, Chapter 3, Section 3] implies that $R_{n}\left(f, q_{n} ; x\right) \rightrightarrows f(x)$ for any $f \in C[0,1]$ if and only if

$$
R_{n}\left(t^{m}, q_{n} ; x\right) \rightrightarrows x^{m} \quad \text { for } \quad x \in[0,1] \quad \text { and } \quad m=0,1,2
$$

For $m=0,1$ this is true for any sequence $\left\{q_{n}\right\}$ due to (19).
It follows from (18) that $R_{n}\left(t^{2}, q_{n} ; x\right) \rightrightarrows x^{2}$ for $x \in[0,1]$ if and only if
(22) $\frac{x(1-x)}{[n]_{q_{n}}}-\frac{x^{2}(1-x)\left(1-q_{n}\right)}{1-x+x q_{n}}\left(1-\frac{1}{[n]_{q_{n}}}\right) \rightrightarrows 0 \quad$ for $\quad x \in[0,1]$.
i) Suppose that $q_{n} \rightarrow 1$. Then, for any fixed positive integer k, we have $[n]_{q_{n}} \geq[k]_{q_{n}}$ when $n \geq k$. Therefore, $\liminf _{n \rightarrow \infty}[n]_{q_{n}} \geq$ $\lim _{n \rightarrow \infty}[k]_{q_{n}}=k$. Since k has been chosen arbitrarily, it follows that $[n]_{q_{n}} \rightarrow \infty$. Hence,

$$
\frac{x(1-x)}{[n]_{q_{n}}} \rightrightarrows 0 \quad \text { for } \quad x \in[0,1]
$$

At the same time, for $q \geq 1 / 2$, we have

$$
\frac{x^{2}(1-x)}{1-x+q x} \leq \frac{1 / 4}{1-x+q x} \leq \frac{1 / 4}{1-x / 2} \leq \frac{1}{2} \quad \text { for all } \quad x \in[0,1]
$$

Therefore, (22) is true.
ii) Suppose that, for any $f \in C[0,1], R_{n}\left(f, q_{n} ; x\right) \rightrightarrows f(x)$ for $x \in$ $[0,1]$. Then $R_{n}\left(t^{2}, q_{n} ; x\right) \rightrightarrows x^{2}$ for $x \in[0,1]$, and by (22),

$$
\frac{x(1-x)}{[n]_{q_{n}}}-\frac{x^{2}(1-x)\left(1-q_{n}\right)}{1-x+x q_{n}}\left(1-\frac{1}{[n]_{q_{n}}}\right) \rightrightarrows 0 \quad \text { for } \quad x \in[0,1]
$$

Taking $x=1 / 2$, we conclude that

$$
\frac{1 / 4}{[n]_{q_{n}}}-\frac{1 / 8\left(1-q_{n}\right)}{1 / 2\left(1+q_{n}\right)}\left(1-\frac{1}{[n]_{q_{n}}}\right) \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty,
$$

or

$$
\frac{1}{[n]_{q_{n}}}+\left(1-\frac{2}{1+q_{n}}\right)\left(1-\frac{1}{[n]_{q_{n}}}\right) \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Suppose that $\left\{q_{n}\right\}$ does not tend to 1 . Then it contains a subsequence $\left\{q_{m}\right\} \rightarrow t \neq 1$. If $t<1$, then $[m]_{q_{m}} \rightarrow 1 /(1-t)$, so

$$
\begin{aligned}
& \frac{1}{[m]_{q_{m}}}+\left(1-\frac{2}{1+q_{m}}\right)\left(1-\frac{1}{[m]_{q_{m}}}\right) \longrightarrow 1-t+\left(1-\frac{2}{1+t}\right) t \\
&=\frac{1-t}{1+t} \neq 0
\end{aligned}
$$

For $t>1$, we get $[m]_{q_{m}} \rightarrow \infty$ and

$$
\frac{1}{[m]_{q_{m}}}+\left(1-\frac{2}{1+q_{m}}\right)\left(1-\frac{1}{[m]_{q_{m}}}\right) \longrightarrow 1-\frac{2}{1+t}=\frac{t-1}{t+1} \neq 0
$$

(In particular, for $t=\infty$, the limit equals 1.)
The contradiction shows that $q_{n} \rightarrow 1$.

Proof of Theorem 2. Due to (6) it suffices to prove that $R_{n}(f, q ; x) \rightrightarrows$ $R_{\infty}(f, q ; x)$ for $x \in[0,1)$. Consider

$$
\Delta:=\left|R_{n}(f, q ; x)-R_{\infty}(f, q ; x)\right|
$$

For $x \in[0,1)$,

$$
\Delta=\left|\sum_{k=0}^{n} f\left(\frac{[k]_{q}}{[n]_{q}}\right) b_{n k}(q ; x)-\sum_{k=0}^{\infty} f\left(1-q^{k}\right) b_{\infty k}(q ; x)\right| .
$$

Let $\varepsilon>0$ be given. We choose $a \in(0,1)$ in such a way that $\omega_{f}(1-a)<\varepsilon / 3$, where ω_{f} denotes the modulus of continuity of f. Let R be a positive integer satisfying the condition $1-q^{R+1} \geq a$. Then $[k]_{q} /[n]_{q} \geq a$ for all $k \geq R+1$. Using (4) and (8), we get

$$
\begin{aligned}
\Delta & =\left|\sum_{k=0}^{n}\left(f\left(\frac{[k]_{q}}{[n]_{q}}\right)-f(1)\right) b_{n k}(q ; x)-\sum_{k=0}^{\infty}\left(f\left(1-q^{k}\right)-f(1)\right) b_{\infty k}(q ; x)\right| \\
& \leq\left|\sum_{k=0}^{R}\left(f\left(\frac{[k]_{q}}{[n]_{q}}\right)-f(1)\right) b_{n k}(q ; x)-\sum_{k=0}^{R}\left(f\left(1-q^{k}\right)-f(1)\right) b_{\infty k}(q ; x)\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k=R+1}^{n}\left|f\left(\frac{[k]_{q}}{[n]_{q}}\right)-f(1)\right| b_{n k}(q ; x)+\sum_{k=R+1}^{\infty}\left|f\left(1-q^{k}\right)-f(1)\right| b_{\infty k}(q ; x) \\
= & \delta_{1}+\delta_{2}+\delta_{3} .
\end{aligned}
$$

Since $f\left([k]_{q} /[n]_{q}\right) \rightarrow f\left(1-q^{k}\right)$ as $n \rightarrow \infty$, we get by applying Lemma 2 that $\delta_{1}<\varepsilon / 3$ for n large enough.

Due to the fact that $b_{n k}(q ; x) \geq 0$ for $x \in[0,1]$, we get the following estimate for δ_{2} :

$$
\begin{aligned}
\delta_{2} & \leq \omega_{f}(1-a) \sum_{k=R+1}^{n} b_{n k}(q ; x) \leq \omega_{f}(1-a) \sum_{k=0}^{n} b_{n k}(q ; x) \\
& =\omega_{f}(1-a)<\varepsilon / 3
\end{aligned}
$$

because of (4). Similarly, using (8) we get $\delta_{3} \leq \omega_{f}(1-a)<\varepsilon / 3$. Thus, $\Delta<\varepsilon$ for n large enough.

Proof of Theorem 3. For $x=0$ and $x=1$, the statement is obvious due to (6). So, we assume that $x \neq 0$.

Clearly,

$$
R_{n}(f, q ; x)=\sum_{k=0}^{n} f\left(\frac{[n-k]_{q}}{[n]_{q}}\right) b_{n, n-k}(q ; x)
$$

Consider

$$
\begin{aligned}
b_{n, n-k}(q ; x) & =\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{q} \frac{q^{(n-k)(n-k-1)} x^{n-k}(1-x)^{k}}{q^{n(n-1) / 2} x^{n} \prod_{j=0}^{n}\left(1+\left((1-x) / q^{j} x\right)\right)} \\
& =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{1 / q} \frac{(1 / q)^{k(k-1) / 2}(1-x)^{k} x^{n-k}}{\prod_{j=0}^{n}\left(x+\left((1-x) / q^{j}\right)\right)} \\
& =b_{n k}\left(\frac{1}{q} ; 1-x\right)
\end{aligned}
$$

On the other hand,

$$
\frac{[n-k]_{q}}{[n]_{q}}=\frac{[n]_{1 / q}-[k]_{1 / q}}{[n]_{1 / q}}=1-\frac{[k]_{1 / q}}{[n]_{1 / q}} .
$$

Therefore,

$$
\begin{aligned}
R_{n}(f, q ; x) & =\sum_{k=0}^{n} f\left(1-\frac{[k]_{1 / q}}{[n]_{1 / q}}\right) b_{n k}\left(\frac{1}{q} ; 1-x\right) \\
& =\sum_{k=0}^{n} g\left(\frac{[k]_{1 / q}}{[n]_{1 / q}}\right) b_{n k}\left(\frac{1}{q} ; 1-x\right) \\
& =R_{n}\left(g, \frac{1}{q} ; 1-x\right) .
\end{aligned}
$$

Proof of Theorem 4. If $f(x)=a x+b$, then by (19) $R_{n}(f, q ; x)=a x+b$ for all $n=1,2 \ldots$, and therefore

$$
R_{\infty}(f, q ; x)=\lim _{n \rightarrow \infty} R_{n}(f, q ; x)=a x+b=f(x)
$$

Now, suppose that $f \in C[0,1]$ and $R_{\infty}(f, q ; x)=f(x)$ for all $x \in[0,1]$. Due to Theorem 3 it suffices to prove the statement in the case $q \in(0,1)$.

Consider the function

$$
\varphi(x):=f(x)-(f(1)-f(0)) x
$$

Obviously, $\varphi(0)=\varphi(1)$ and $R_{\infty}(\varphi, q ; x)=\varphi(x)$. We will prove that $\varphi(x)=\varphi(0)=\varphi(1)$ for all $x \in[0,1]$. Let

$$
M:=\max _{x \in[0,1]} \varphi(x)
$$

Assume that $M>\varphi(1)$. Then $M=\varphi(z)$ for some $z \in(0,1)$ and $\varphi\left(1-q^{k}\right)<M$ for $k>N_{0}$. Using (2) and positivity of $b_{\infty k}(q ; x)$, $k=0,1, \ldots$, on $(0,1)$, we get

$$
M=\varphi(z)=\sum_{k=0}^{\infty} \varphi\left(1-q^{k}\right) b_{\infty k}(q ; z)<M
$$

The contradiction shows that $\varphi(x) \leq \varphi(1)$ for all $x \in[0,1]$. Likewise, we prove that $\varphi(x) \geq \varphi(1)$ for all $x \in[0,1]$. Thus, $\varphi(x) \equiv \varphi(1) \equiv b$ for some $b \in \mathbf{R}$ and finally $f(x)=a x+b$ with $a=f(1)-f(0)$. $\quad \square$

Acknowledgments. I would like to express my gratitude to Prof. Ulrich Abel who drew my attention to the paper [8] and provided me with a copy, and to Prof. Alexander Il'inskii for his thorough reading of the manuscript and valuable comments.

REFERENCES

1. G.E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia Math. Appl., vol. 71, Cambridge Univ. Press, Cambridge, 1999.
2. S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités, Commun. Soc. Math. Charkow, 13 (1912), 1-2.
3. E.W. Cheney, Introduction to approximation theory, Chelsea, New York, 1984.
4. S. Cooper and S. Waldron, The eigenstructure of the Bernstein operator, J. Approx. Theory 105 (2000), 133-165.
5. A. Il'inskii and S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116 (2002), 100-112.
6. X. Li, P. Mikusiński, H. Sherwood and M.D. Taylor, On approximation of copulas, in Distributions with given marginals and moment problem (V. Benes, J. Stepan, eds.), Kluwer Acad. Publ., Dordrecht, 1997.
7. G.G. Lorentz, Bernstein polynomials, Chelsea, New York, 1986.
8. A. Lupaş, A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, No. 9, 1987.
9. S. Petrone, Random Bernstein polynomials, Scand. J. Statist. 26 (1999), 373-393.
10. G.M. Phillips, Bernstein polynomials based on the q-integers, Annals Numer. Math. 4 (1997), 511-518.
11. -, A generalization of the Bernstein polynomials based on the q-integers, ANZIAM J. 42 (2000), 79-86.
12. V.S. Videnskii, Bernstein polynomials, Leningrad State Pedagogical University, Leningrad, 1990 (in Russian).

Atilim University, Department of Mathematics, 06836 Incek, Ankara, Turkey
E-mail address: ostrovskasofiya@yahoo.com

[^0]: 2000 AMS Mathematics Subject Classification. Primary 41A10, 41A36.
 Key words and phrases. Bernstein polynomials, q-integers, q-binomial coefficients, convergence.

 Received by the editors on July 23, 2003, and in revised form on March 23, 2004.

