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POINTS AT RATIONAL DISTANCES
ON A PARABOLA

AJAI CHOUDHRY

ABSTRACT. This paper deals with the open problem of
finding the maximum number of points on the parabola y = x2

such that all of their mutual distances are rational. We
obtain, in parametric terms, a set of seven points on this
parabola such that four of the points have all of their six
mutual distances rational, five of the points have all but one
of their 10 mutual distances rational, six of the points have 12
mutual distances rational and the seven points have 15 of their
mutual distances rational. By giving suitable numerical values
to the parameters, we can obtain infinitely many examples of
seven points in which the first four points, with all of their
six mutual distances rational, have positive abscissae and are
non-concyclic. Further, for any arbitrary positive integer n,
we obtain in parametric terms the abscissae of n + 1 pairs of
points on the given parabola such that 5n + 1 of their mutual
distances are rational. With a suitable choice of parameters,
we get numerical examples with 5n+2 of the mutual distances
rational.

1. Introduction. There are several interesting diophantine prob-
lems concerning the existence, on a plane, of a set of points all of whose
mutual distances are rational. For example, Guy [5, pp. 181 188] men-
tions the following open problems:

(i) Is there a point all of whose distances from the corners of the
unit square are rational?

(ii) Are there more than six points in the plane, no three on a line,
no four on a circle, all of whose mutual distances are rational?

This paper is concerned with an analogous open problem posed by
Dean [3] who asks the following: “How many points can you find on
the (half) parabola y = x2, x > 0, so that the distance between any
pair of them is rational?”
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Campbell [1] has given a method of generating infinitely many nu-
merical examples of four non-concyclic rational points on the parabola
y = x2 such that their six mutual distances are rational. However,
Dean’s problem requires that the points have positive abscissae and
except for two numerical examples, the solutions given by Campbell
consist of points with either positive or negative abscissae. Georgieva
and Dobrikov [4] have listed 18 examples of four points on this parabola,
all of them having positive abscissae, such that all of their six mutual
distances are rational. It appears that the number of points on the
parabola y = x2 such that all of their mutual distances are rational is
finite. Thus, in addition to Dean’s question, one may ask the following
question: “For an arbitrary positive integer n, n ≥ 2, how many of the
n(n+1)/2 mutual distances of n points on the parabola y = x2 can be
rational?”

In this paper we shall determine, in parametric terms, seven points
with rational co-ordinates on the parabola y = x2 such that four of the
points have all of their six mutual distances rational, five of the points
have all but one of their 10 mutual distances rational, six of the points
have 12 mutual distances rational and the seven points have 15 of their
mutual distances rational. This solution generates infinitely many sets
of four non-concyclic points on the given parabola such that all the four
points have positive abscissae and all of their six mutual distances are
rational. We also give, for an arbitrary positive integer n, the abscissae
of n + 1 pairs of points in parametric terms such that 5n + 1 of their
mutual distances are rational. With a suitable choice of parameters, we
get numerical examples with 5n + 2 of the mutual distances rational.
These n + 1 pairs of points together with their reflections across the
y-axis give us 4n + 4 points with 12n + 6 of their mutual distances
rational.

In Section 2 we prove two preliminary lemmas regarding points on a
parabola and in Section 3 we obtain rational solutions of a diophantine
chain. In Section 4 we apply the results of Sections 2 and 3 to obtain
sets of rational points on the parabola y = x2 with the properties
mentioned above.
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2. Preliminaries. We first define the function φ(x), which we shall
use throughout this paper, as follows:

(2.1) φ(x) =
x2 − 1

2x
.

Lemma 2.1. The distance between any two rational points on the
parabola y = x2 is rational if and only if the sum of their abscissae is
φ(ξ) where ξ is any arbitrary rational number.

Proof. If the abscissae of any two rational points P1 and P2 on the
parabola y = x2 are x1 and x2, the distance between these two points
is given by (x1−x2){(x1+x2)2+1}1/2. If we take the sum x1+x2 to be
φ(ξ) where ξ is an arbitrary rational number, the distance between the
points P1 and P2 is easily seen to be rational. Conversely, if the distance
between P1 and P2 is rational, there must exist a rational number d
such that (x1+x2)2+1 = d2, and hence (x1+x2−d)(x1+x2+d) = −1.
Writing x1 +x2−d = ξ, we get x1 +x2 +d = −ξ−1, and on eliminating
d from these two equations we get x1 + x2 = φ(ξ) which proves the
lemma.

We note that a straight line cannot intersect the parabola y = x2

in more than two points, hence three or more points on the parabola
y = x2 cannot be collinear. The next lemma gives a condition for any
four points on the parabola y = x2 to be concyclic.

Lemma 2.2. Four points on the parabola y = x2 are concyclic if
and only if the sum of their abscissae is zero.

Proof. The abscissae of the points of intersection of the parabola
y = x2 and an arbitrary circle (x−h)2 +(y−k)2 = r2 are given by the
roots of the equation

(2.2) x4 + (1 − 2k)x2 − 2hx+ h2 + k2 − r2 = 0,

in which the coefficient of x3 is 0, and hence the sum of the abscissae
is seen to be zero. Conversely, given any four points on the parabola
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with abscissae x1, x2, x3, x4 such that x1 + x2 + x3 + x4 = 0, it is easy
to find h, k and r such that equation (2.2) has the roots x1, x2, x3, x4,
and hence the four given points lie on the circle (x−h)2 +(y−k)2 = r2

so determined.

This lemma has also been proved by Campbell [1].

3. A diophantine chain. We will now obtain a parametric rational
solution of the diophantine chain

(3.1) φ(α1) + φ(β1) = φ(α2) + φ(β2) = · · · = φ(αn) + φ(βn)

where n is any arbitrary positive integer. For this, we first solve the
diophantine equation

(3.2) φ(α1) + φ(β1) = φ(α2) + φ(β2).

We substitute α2 = pθ + α1, β2 = qθ + β1 in (3.2) which becomes a
quadratic equation in θ. We choose p, q such that the term independent
of θ becomes zero, and then we easily obtain a non-zero solution for θ
which gives us the following solution of (3.2):

(3.3) α2 = ψ1(α1, β1), β2 = ψ2(α1, β1),

where

(3.4)
ψ1(α1, β1) = −α1(α1β1 + 1)(β2

1 + 1)
(α2

1 + 1)(α1 − β1)β1
,

ψ2(α1, β1) =
(α2

1 + 1)(α1β1 + 1)β1

α1(α1 − β1)(β2
1 + 1)

.

In this solution α1 and β1 are arbitrary rational parameters (except that
they have to be so chosen such that the numerators and denominators of
both ψ1(α1, β1) and ψ2(α1, β1) are non-zero), and hence we can repeat
the process, replacing α1, β1 by α2, β2 respectively to get

(3.5) φ(α2) + φ(β2) = φ(α3) + φ(β3),

where

(3.6) α3 = ψ1(α2, β2), β3 = ψ2(α2, β2).
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In fact, we can repeat the above process any number of times and
since α1 and β1 are arbitrary, we obtain a solution of the diophantine
chain (3.1) in terms of the parameters α1 and β1 such that for any i,
2 ≤ i ≤ n, we have

(3.7) αi+1 = ψ1(αi, βi), βi+1 = ψ2(αi, βi).

We note that αi, βi, i = 1, 2, . . . , n are rational functions of
α1 and β1, and we will now show that these functions are all dis-
tinct. If we substitute α1 = t, β1 = −t in the functions αi, βi,
i = 1, 2, . . . , n and simplify them, for each i we get βi = −αi, and
it is easily proved by induction that the denominator of the function
obtained by simplifying αi is divisible by 2i−1 but not by 2i. Thus
the substitution α1 = t, β1 = −t leads to distinct simplified func-
tions α1(t), β1(t), α2(t), β2(t), . . . , αn(t), βn(t), and hence the origi-
nal functions α1, β1, α2, β2, . . . , αn, βn, must necessarily be all dis-
tinct.

We have thus obtained a non-trivial solution of (3.1) in terms of
the parameters α1 and β1. Since n is any arbitrary integer, we have
obtained inter alia an arbitrarily large number of parametric solutions
of the diophantine equation (3.2).

We also note that, by giving suitable rational values to the parameters
α1 and β1, we can obtain non-trivial solutions in rational numbers of
the arbitrarily long diophantine chain (3.1).

The solution of the diophantine chain (3.1) obtained above is not
complete. Therefore we will now indicate a method of obtaining
additional parametric solutions of (3.1). First we obtain additional
parametric solutions of equation (3.2). To solve (3.2), we write

(3.8)
α1 = x/{p(x+ y)}, β1 = y/{q(x+ y)},
α2 = u/{p(u+ v)}, β2 = v/{q(u+ v)},

when (3.2) reduces to the equation

(3.9)
(qx+ py){pqx2 + (2pq − 1)xy + pqy2}

xy(x+ y)

=
(qu+ pv){pqu2 + (2pq − 1)uv + pqv2}

uv(u+ v)
,
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and a solution of this equation can be obtained by solving the simulta-
neous cubic equations

(3.10)
xy(x+ y) = uv(u+ v),
C(x, y) = C(u, v),

where

C(x, y) = (qx+ py){pqx2 + (2pq − 1)xy + pqy2}.

Using a method described by Choudhry [2], we can obtain several
parametric solutions of (3.10), and thus several parametric solutions of
(3.2), the simplest solution of (3.2) obtained this way being as follows:

(3.11)
α1 =

p(p− q)
q(p2 + pq − 1)

, β1 =
q(−p+ q)

p(pq + q2 − 1)
,

α2 =
p(pq + q2 − 1)
p2 + pq − 1

, β2 =
q(p2 + pq − 1)
pq + q2 − 1

,

where p, q are arbitrary rational parameters.

We can use any new parametric solution of (3.2) together with the
solution (3.3) of (3.2) to generate a new parametric solution of the
diophantine chain (3.1).

4. Sets of points at rational distances on the parabola y = x2.
In this section, we determine the sets of points on the parabola y = x2

as mentioned in the Introduction.

4.1 A set of seven points on the given parabola. We will first
determine seven points P1, P2, . . . , P7 with abscissae x1, x2, . . . , x7

such that all the six mutual distances of the first four points P1, P2,
P3, P4 are rational and, in addition, the distances of each of the points
P5, P6, P7 from three of the four points P1, P2, P3, P4 are also
rational.

Let there exist rational numbers αi, βi, i = 1, 2, 3 such that

(4.1) φ(α1) + φ(β1) = φ(α2) + φ(β2) = φ(α3) + φ(β3).
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We write

(4.2)

x1 = {φ(α1) + φ(α2) − φ(α3)}/2,
x2 = {−φ(α1) + φ(α2) − φ(α3) + 2φ(β2)}/2,
x3 = {−φ(α1) + φ(α2) + φ(α3)}/2,
x4 = {φ(α1) − φ(α2) + φ(α3)}/2,
x5 = {−φ(α1) − φ(α2) + φ(α3) − 2φ(β1)}/2,
x6 = {−φ(α1) + φ(α2) − φ(α3) − 2φ(β1)}/2,
x7 = {−φ(α1) − φ(α2) + φ(α3) − 2φ(β2)}/2,

so that

(4.3)

x1 + x2 = φ(α2) − φ(α3) + φ(β2) = φ(β3),
x1 + x3 = φ(α2),
x1 + x4 = φ(α1),
x2 + x3 = −φ(α1) + φ(α2) + φ(β2) = φ(β1),
x2 + x4 = φ(β2),
x3 + x4 = φ(α3),

Thus, all the pairwise sums xi + xj , 1 ≤ i, j ≤ 4, are of the type φ(ξ)
and hence all the six mutual distances of the points P1, P2, P3, P4

will be rational. Further, we note that

(4.4)
x1 + x5 = φ(−β1), x2 + x5 = φ(−α2), x3 + x5 = φ(−β3),
x2 + x6 = φ(−α3), x3 + x6 = φ(−β2), x4 + x6 = φ(−β1),
x1 + x7 = φ(−β2), x2 + x7 = φ(−α1), x4 + x7 = φ(−β3).

This shows that the points P5, P6, P7 are such that the distances of
each of them from three of the four points P1, P2, P3, P4 are rational.
Thus, the four points P1, P2, P3, P4 have all their six mutual distances
rational, the five points P1, P2, . . . , P5 have 9 mutual distances ratio-
nal, the six points P1, P2, . . . , P6 have 12 mutual distances rational,
and the seven points P1, P2, . . . , P7 have 15 mutual distances rational.

It follows from Section 3 that a rational solution of the diophantine
chain (4.1) in terms of the parameters α1 and β1 is given by

(4.5)

α2 = ψ1(α1, β1),
β2 = ψ2(α1, β1),
α3 = ψ1(α2, β2),
β3 = ψ2(α2, β2),
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where the functions ψ1(α1, β1) and ψ2(α1, β1) are defined by (3.4).
Using (4.2) and (4.5), we can obtain rational functions

(4.6) xi = xi(α1, β1), i = 1, 2, . . . , 7,

giving the abscissae of the seven points P1, P2, . . . , P7 in terms of
the parameters α1 and β1. However, the functions xi(αi, βi) are too
cumbersome to write and are not being given explicitly. We also note
that once we have obtained a diophantine chain of type (4.1) we may,
in view of the symmetry, choose φ(αi), φ(βi) in 8 different ways leading
to 8 different sets of points P1, P2, . . . , P7.

We can obtain numerical examples by substituting rational values
for α1 and β1 in the parametric solution (4.5) of (4.1), and then using
(4.2). As an example, taking α1 = 2 and β1 = 10, we get the following
diophantine chain of type (4.1):

(4.7)

3
4

+
99
20

=
4458641
848400

+
377239
848400

=
67359455990313527953891319
14591926309530299396503200

+
15814523974009178606176921
14591926309530299396503200

.

With a re-arrangement of this chain, we may take

φ(α1) = 3/4,

φ(β1) = 99/20,

φ(α2) = 377239/848400,

φ(β2) = 4458641/848400,

φ(α3) = 15814523974009178606176921/14591926309530299396503200,

φ(β3) = 67359455990313527953891319/14591926309530299396503200,
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which yields the following solution:

(4.8)

x1 =
539228453671869790410167
9727950873020199597668800

,

x2 =
133101226619611446536552137
29183852619060598793006400

,

x3 =
11358843844738517488829543
29183852619060598793006400

,

x4 =
6756734701093279907841433
9727950873020199597668800

,

x5 = −48692585275121857798870727
9727950873020199597668800

,

x6 = −54910091522543267916301993
9727950873020199597668800

,

x7 = −154989116083906895631306937
29183852619060598793006400

.

We note that the abscissae of the four points P1, P2, P3, P4 are
positive. Since the four points P1, P2, P3, P4 lie on the parabola
y = x2, they cannot be collinear, and since the sum of their abscissae
is positive, it follows from Lemma 2.2 that these four points are also
not concyclic.

We also note that when α2, β2, α3, β3 are functions of α1, β1 defined
by (4.5), φ(αi), φ(βi), i = 1, 2, 3 are functions of α1, β1 that are
continuous at (α1, β1) = (2, 10). Therefore, if in the parametric
solution (4.5) of the diophantine chain (4.1), we choose rational values
for α1 and β1 sufficiently close to 2 and 10 respectively and proceed as
above, we will obtain a new set of seven points whose abscissae will be
sufficiently close to the values of xi given by (4.8), and hence the first
four points of the new set will have positive abscissae. Since we can
choose rational values for the parameters α1 and β1 sufficiently close
to 2 and 10 in infinitely many ways, we can obtain infinitely many
examples of seven points P1, . . . , P7 such that the first four of them
have positive abscissae and are hence non-concyclic.
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Further, using the parametric solution (4.6), we may derive a condi-
tion such that the set of five points P1, P2, P3, P4, Pj where j = 5 or
6 or 7, has all of its 10 mutual distances rational. As the diophantine
chain (4.1) yields 8 different sets of the points P1, . . . , P7, we may ob-
tain 24 conditions such that if any one of the conditions is satisfied, we
get the desired set of five points. However, each condition results in
an equation of very high degree in the parameters α1 and β1. While
limited trials on one such equation, of degree 80, did not yield any ra-
tional solution, the possibility of five points being at rational distances
from each other cannot be ruled out. It is, however, unlikely that there
are six points on the half parabola y = x2, x > 0, all of whose mutual
distances are rational.

We also note that, in general, no two of the seven points P1, . . . , P7,
are reflections of each other across the y-axis. Taking the reflections of
the seven points across the y-axis, we get 8 points with 16 distances ra-
tional, 10 points with 23 distances rational, 12 points with 30 distances
rational and 14 points with 37 distances rational.

4.2 A set of n+ 1 pairs of points on the given parabola. We
now give, for an arbitrary positive integer n, a method of obtaining n+1
pairs of points P0, Q0, Pi, Qi, i = 1, 2, . . . , n such that, for each i, the
six mutual distances of the points P0, Q0, Pi, Qi are rational. Thus
these 2n+2 points are such that 5n+1 of their (n+1)(2n+1) mutual
distances are rational. The abscissae of these points are expressed
in parametric terms and, with a choice of parameters, we get 5n + 2
distances rational. As before, taking the reflections of these points
across the y-axis, we get 4n + 4 points with 12n + 6 mutual distances
rational.

To obtain the n + 1 pairs of points mentioned above, we will use
the solution of the diophantine chain (3.1). Let k denote the common
sum φ(αi) + φ(βi), and let ξ be an arbitrary rational number. We now
choose xi1, xi2, i = 0, 1, 2, . . . , n as follows:

(4.9)

x01 = {φ(ξ) + k}/2,
x02 = {φ(ξ) − k}/2,
xi1 = {φ(αi) − φ(βi) − φ(ξ)}/2,
xi2 = {−φ(αi) + φ(βi) − φ(ξ)}/2,
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so that

(4.10)

x01 + x02 = φ(ξ),
xi1 + xi2 = −φ(ξ) = φ(−ξ),
x01 + xi1 = φ(αi), i = 1, 2, . . . , n,
x01 + xi2 = φ(βi), i = 1, 2, . . . , n,
x02 + xi1 = −φ(βi) = φ(−βi), i = 1, 2, . . . , n,
x02 + xi2 = −φ(αi) = φ(−αi), i = 1, 2, . . . , n.

Taking xi1, xi2, i = 0, 1, 2, . . . , n as the abscissae of the points Pi, Qi,
i = 0, 1, 2, . . . , n, respectively, we get n + 1 pairs of points such that
for each i, the six mutual distances of the set of points P0, Q0, Pi, Qi

are rational. In this solution, ξ, α1 and β1 are arbitrary parameters.
We may choose these parameters such that the distance between the
points P1 and P2 is also rational.

We note specifically that when n = 1, we have k = φ(α1) + φ(β1),
and the abscissae of the four points P0, Q0, P1, Q1 may accordingly be
written in terms of the arbitrary parameters ξ, α1 and β1 as follows:

(4.11)

x01 = {φ(α1) + φ(β1) + φ(ξ)}/2,
x02 = {−φ(α1) − φ(β1) + φ(ξ)}/2,
x11 = {φ(α1) − φ(β1) − φ(ξ)}/2,
x12 = {−φ(α1) + φ(β1) − φ(ξ)}/2.

All the six mutual distances of the four points P0, Q0, P1, Q1 are
rational. Since x01 + x02 + x11 + x12 = 0, it follows from Lemma 2.2
that these four points are concyclic.

Finally, we give a numerical example with n = 3. Taking α1 =
2, β1 = 3, we get the following diophantine chain of type (3.1):

(4.12)
3
4

+
4
3

=
775
168

+
(
− 425

168

)
=

(
− 50032585199

73060041600

)
+

202241005199
73060041600

,

and choosing ξ = 30/7, we get 8 points whose abscissae are as follows:

x01 = 863/420, x02 = −1/35,
x11 = −137/105, x12 = −101/140,
x21 = 307/120, x22 = −3851/840,
x31 = −200153575439/73060041600, x32 = 52120014959/73060041600.
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The points Pi, Qi with abscissae xi1 and xi2, i = 0, 1, 2, 3, have 17
of their 28 mutual distances rational, 16 distances being rational by
virtue of the relations (4.10) while the distance between P1 and P2 has
been made rational by choice of the parameters ξ, α1 and β1.
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