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ON TRANSFORMATION LAWS
FOR THETA FUNCTIONS

OLAV K. RICHTER

ABSTRACT. We determine transformation laws for theta
functions of higher degree.

1. Introduction. Siegel [8 10], for example, proves transforma-
tion laws for theta functions (depending on a single complex variable)
attached to quadratic forms. If the quadratic form is indefinite, then
Siegel’s definition of the theta function also depends on a majorant of
the quadratic form, an idea that Siegel credits to Hermite. Siegel’s re-
sults have been generalized and transformation laws for theta functions
of higher degree have been established. Andrianov and Maloletkin [1]
and [2] use Eichler’s “embedding trick” to determine transformation
properties of theta series, depending on one complex n×n matrix vari-
able, corresponding to positive definite and also indefinite quadratic
forms: they use Eichler’s method, see [5], for example, of recogniz-
ing such theta series as specializations of symplectic theta functions.
Ziegler [14] develops a theory of holomorphic Jacobi forms of higher de-
gree and shows that theta functions (depending on two complex matrix
variables) attached to positive definite quadratic forms are examples of
such forms.

The purpose of this paper is to show that Eichler’s “embedding
trick” can also be applied to generalize Ziegler’s result. We will de-
fine ΘF,H,ζ(Z, W ), a theta function of higher degree, depending on a
complex n × n matrix variable Z and a complex j × n matrix variable
W , attached to an indefinite quadratic form, and we will determine the
behavior of ΘF,H,ζ(Z, W ) under modular transformations by proceed-
ing as in Andrianov and Maloletkin [1] and [2], see also [7]. Friedberg
[6] defines a modified version of the usual symplectic theta function,
ϑ(Z,

( u

v

)
, w, f), and he proves a transformation formula for his func-

tion. We state that transformation formula in a slightly more general
way and show that certain coefficients of ΘF,H,ζ(Z, W ) can be regarded
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as specializations of ϑ(Z,
( u

v

)
, w, f). As an immediate consequence, we

obtain the transformation law of ΘF,H,ζ(Z, W ) under modular trans-
formations. In particular, if the signature of the quadratic form is
(j, m− j), then ΘF,H,ζ(Z, W ) is an example of a skew-holomorphic Ja-
cobi form in the sense of Skoruppa [11] if n = j = 1 and in the sense
of Arakawa [3] if n > 1.

2. Notation and statement of the results. Let A be a
commutative ring with unity and Mm,n(A) be the set of m×n matrices
with entries in A. For any matrices U, V ∈ Mm,n(A), set U [V ] = tV UV
where tV is the transpose of V . If U ∈ Mn,n(A), let σ(U) be the trace
of U and det(U) the determinant of U .

The symplectic group,

Spn(R) =
{

M =
(

A B
C D

)
| M ∈ M2n,2n(R) such that

J [M ] = J =
(

0 −In

In 0

)}

where In is the n × n identity matrix, acts on the Siegel upper half
plane

H(n) =
{
Z ∈ Mn,n(C) | Z = tZ and Im (Z) > 0

}
.

The action of M on Z is given by

M ◦ Z = (AZ + B)(CZ + D)−1.

Furthermore, we set
Γ(n) = Spn(Z)

and

Γ(n)
0 (q) =

{(
A B
C D

)
∈ Γ(n) | C ≡ 0 mod q

}
.

Let F be a symmetric, integral, invertible m × m matrix with even
diagonal entries and let q be the level of F , i.e., qF−1 is integral and
qF−1 has even diagonal entries. Suppose that F is of type (k, l) and
let H be a majorant of F , i.e., HF−1H = F and tH = H > 0. For
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fixed ζ ∈ Mm,j(Z) and for variables Z ∈ H(n) and W ∈ Mj,n(C), we
define the theta series
(1 )
ΘF,H,ζ(Z, W )

=
∑

N∈Mm,n(Z)

exp
{

πi σ
(
F [N ] Re (Z)+iH[N ] Im (Z)+2tNFζW

)}
.

Our main result is the following:

Theorem 1. Let ζ ∈ Mm,j(Z) be such that Fζ = Hζ. For all

M =
(

A B

C D

)
∈ Γ(n)

0 (q) and λ, µ ∈ Mj,n(Z), we have

(2)

ΘF,H,ζ

(
M ◦ Z, W (CZ + D)−1

)
= φ(M, Z) exp

{
πi σ

(
F [ζ]

(
W (CZ + D)−1CtW

) )}
ΘF,H,ζ (Z, W ) ,

and

(3) ΘF,H,ζ (Z, W + λZ + µ)

= exp
{
−πi σ

(
F [ζ]

(
λZtλ + 2λtW

) )}
ΘF,H,ζ (Z, W ) ,

where

(4) φ(M, Z) = χF (M) det (CZ + D)k/2 det
(
CZ + D

)l/2
,

where χF (M) is an eighth root of unity. More precisely, choose T
integral and symmetric such that for D∗ = CT + D, detD∗ = ±p for
an odd prime p. Then

φ(M, Z) = ε−m
p

(
2mcm det F

p

)
exp

{
πi

(k − l)s
4

}

× | det(C)|m/2
{
det

[−i C−1 (CZ + D)
]}k/2

× {
det

[
i C−1

(
CZ + D

)]}l/2
,

where εp = 1 for p ≡ 1 mod 4, εp = i for p ≡ 3 mod 4, (·/p) is the Leg-
endre symbol, c is any diagonal element of

(
pD∗−1C

)
with (c, p) = 1,
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and s is the signature of D∗−1C. If C is singular, then C−1 is in-
terpreted as tD (CtD)−1, where (CtD)−1 is the Moore-Penrose gener-
alized inverse, see Ben-Israel and Greville [4], and the determinants
are interpreted as the product of the nonzero eigenvalues. Further-
more, | det(C)|1/2 is positive, and

{
det

[−i C−1 (CZ + D)
]}1/2 and{

det
[
i C−1

(
CZ + D

)]}1/2
are given by analytic continuation from the

principal value when Z = −C−1D + iY .

Remarks. a) Ziegler [14] proves the special case of Theorem 1 where
F is positive definite, i.e., F = H and unimodular. In this case, (4)
reduces to φ(M, Z) = det(CZ + D)m/2.

b) Andrianov and Maloletkin [2] investigate ΘF,H,ζ (Z, 0), a function
of one complex variable matrix. For that special case, they prove (2),
but they determine φ(M, Z) only when m is even. In [7], we show how
results by Stark [12] and Styer [13] can be used to compute φ(M, Z)
explicitly, even when m is odd.

c) Arakawa [3] establishes Theorem 1 in the special case where F
is unimodular and where k = j and l = m − j. Then (4) reduces to
φ(M, Z) = det(CZ + D)j/2 det(CZ̄ + D)(m−j)/2 and ΘF,H,ζ (Z, W ) is
a skew-holomorphic Jacobi form of weight m/2 and index F [ζ]/2. Our
proof of Theorem 1 gives a different demonstration of Arakawa’s result.

3. Symplectic theta functions. The theta subgroup,

Γ(n)
ϑ =

{(
A B
C D

)
∈ Γ(n) | AtB, CtD have even diagonal entries

}
,

acts on the symplectic theta function,

(5) ϑ

(
Z,

(
u
v

))
=

∑
m∈Zn

exp
{
πi

(
Z[m + v] − 2tmu − tvu

)}
,

where u and v are column vectors in Cn. It is well known, see Eichler
[5], for example, that for M =

(
A B

C D

)
in Γ(n)

ϑ ,

(6) ϑ

(
M ◦ Z, M

(
u
v

) )
= χ(M) [det(CZ + D)]1/2 ϑ

(
Z,

(
u
v

) )
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where χ(M) is an eighth root of unity which depends upon the chosen
square root of det(CZ + D), but which is otherwise independent of Z,
u and v. Stark [12] determines χ(M) in the important special case
that both C and D are nonsingular and that pD−1 is integral for some
odd prime p. Styer [13] extends Stark’s results and includes the case
where C is singular.

We follow Friedberg [6] and modify the symplectic theta function (5)
somewhat. For w ∈ Cn, f a nonnegative integer, and Z, u and v as
above, we define

(7)
ϑ

(
Z,

(
u
v

)
, w, f

)

=
∑

m∈Zn

(
tw(m + v)

)f exp
{
πi

(
Z[m + v] − 2tmu − tvu

)}
.

Note that, for f = 0, the theta functions in (5) and (7) coincide.

Theorem 2. Let M =
(

A B

C D

)
∈ Γ(n)

ϑ . Then

(8)

ϑ

(
M ◦ Z, M

(
u
v

)
, t(CZ + D)−1w, f

)

= χ(M) [det(CZ + D)]1/2
[f/2]∑
r=0

f !
r!(f−2r)!

(πi)−r2−2r

×
( (

(CZ + D)−1C
)
[w]

)r

ϑ

(
Z,

(
u
v

)
, w, f−2r

)
,

where χ(M) is as in (6).

Remark. Friedberg [6] considers ϑ
(
Z,

( u

v

)
, Zw, f

)
. He proves

Theorem 2, phrased slightly differently, in the special case where(
(CZ + D)−1C

)
[w] = 0, in which case the righthand side in (8) re-

duces to χ(M) [det(CZ + D)]1/2 ϑ
(
Z,

( u

v

)
, w, f

)
.

Proof. Let w ∈ Cn and replace v by v + ξZ−1w in (6) and multiply
both sides by exp{−ξ2Z−1[w]}. After some computation, see also
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Friedberg [6], this yields

(9)∑
m∈Zn

exp
{

πi
(
(M ◦ Z)[m + Cu + Dv] − 2 tm(Au + Bv)

−t(Cu+Dv)(Au+Bv)+2ξtw(CZ+D)−1(m+Cu+Dv)
)}

= χ(M) [det(CZ+D)]1/2
∑

m∈Zn

exp
{

πi
(
Z[m+v] − 2tmu − tvu

+ 2ξtw(m+v) + ξ2
(
(CZ+D)−1C

)
[w]

)}
.

Note that for h(ξ) = exp{2a ξ + b ξ2}, the fth derivative of h at ξ = 0
is

h(f)(0) =
[f/2]∑
r=0

f !
r!(f − 2r)!

br(2a)f−2r.

Hence, differentiating (9) f times with respect to ξ and setting ξ = 0
proves the theorem.

4. Proof of Theorem 1. Now we turn to the proof of Theorem 1.
It is easy to see that (3) holds for all λ, µ ∈ Mj,n(Z) and therefore it
only remains to show (2).

Note that

(10) ΘF,H,ζ(Z, W ) =
∑
f≥0

(2πi)2f

(2f)!
θF,H,ζ,2f (Z, W )

where

θF,H,ζ,f (Z, W )

=
∑

N∈Mm,n(Z)

(
σ(tNFζW )

)f exp
{
πi σ (F [N ] Re (Z) + iH[N ] Im (Z))

}
.

We will use Eichler’s “embedding trick” to prove (2). More precisely, we
will regard θF,H,ζ,f (Z, W ) as a specialization of ϑ(Z,

( u

v

)
, w, f), defined

by (7), and then applying Theorem 2 will lead to (2).
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Let U ∈ Mm,m(C) and V ∈ Mn,n(C). Then the Kronecker product
of U and V is given by

U ⊗ V = (uijV ) ∈ Mmn,mn(C).

If T ∈ Mm,n(C), we write T = (t1, . . . , tn), where tl ∈ Mm,1(C), for
l = 1, . . . , n, are the columns of T , and we set

T̂ =

⎛
⎝ t1

...
tn

⎞
⎠ ∈ Mmn,1(C).

For Z = X + iY ∈ H(n), set Z̃ = X ⊗ F + iY ⊗ H ∈ H(nm). With F ,
ζ, and W as in Theorem 1, we set w̃ = T̂ , where T = FζW . It is easy
to check, see also [2], that

σ(tNFζW ) = tN̂w̃

and

σ
(
F [N ] Re (Z) + iH[N ] Im (Z)

)
= Z̃[N̂ ].

Hence

(11) θF,H,ζ,f (Z, W ) = ϑ

(
Z̃,

(
0
0

)
, w̃, f

)
.

Moreover, if

M =
(

A B
C D

)
∈ Γ(n)

0 (q),

then

M̃ =
(

Ã B̃
C̃ D̃

)
=

(
A ⊗ Im B ⊗ F

C ⊗ F−1 D ⊗ Im

)
∈ Γ(nm)

ϑ ,
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see [2] for details. Let M =
(

A B

C D

)
∈ Γ(n)

0 (q). We apply (11) and
Theorem 2 and after straightforward computation we find that

(12)

θF,Hζ,f (M ◦ Z, W (CZ + D)−1)

=
(11)

ϑ

(
M̃ ◦ Z̃,

(
0
0

)
, t

(
C̃Z̃ + D̃

)−1

w̃, f

)

=
(8)

χ(M̃)[det(C̃Z̃+D̃)]1/2

[f/2]∑
r=0

f !
r!(f−2r)!

(πi)−r2−2r

×
((

(C̃Z̃+D̃)−1C̃
)
[w̃]

)r

ϑ

(
Z̃,

(
0
0

)
, w̃, f−2r

)

=
(11)

χF (M) det(CZ+D)k/2 det(CZ+D)l/2

[f/2]∑
r=0

f !
r!(f−2r)!

(πi)−r2−2r

× σ
(
F [ζ]

(
W (CZ+D)−1CtW

))r

θF,Hζ,f−2r(Z, W ),

where χF (M) is an eighth root of unity, which can be determined as
in [7] using results by Stark [12] and Styer [13]. We omit the details
and refer the reader to [7]. Using (10) then yields (2) and the proof of
Theorem 1 is complete.

REFERENCES

1. A. Andrianov and G. Maloletkin, Behavior of theta series of degree N under
modular substitutions, Math. USSR-Izvestija 9 (2) (1975), 227 241.

2. , Behavior of theta series of genus n of indefinite quadratic forms under
modular substitutions, Proc. Steklov Inst. Math. 4 (1980), 1 12.

3. T. Arakawa, Siegel’s formula for Jacobi forms, Internat. J. Math. 4 (5) (1993),
689 719.

4. A. Ben-Israel and T. Greville, Generalized inverses: Theory and application,
Wiley Interscience, New York, 1974.

5. M. Eichler, Introduction to the theory of algebraic numbers and functions,
Academic Press, New York, 1966.

6. S. Friedberg, On theta functions associated to indefinite quadratic forms, J.
Number Theory 23 (1986), 255 267.

7. O. Richter, A remark on the behavior of theta series of degree n under modular
transformations, Internat. Math. Res. Notices 7 (2001), 371 379.



TRANSFORMATION LAWS FOR THETA FUNCTIONS 1481
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