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ON SUMS OF TWO SQUARES AND SUMS
OF TWO TRIANGULAR NUMBERS

JOHN A. EWELL

ABSTRACT. For each integer n ≥ 0, r2(n)[t2(n)] denotes
the number of representations of n by sums of two squares (two
triangular numbers). Similarities and differences of the two
functions r2 and t2 are described, with the major contribution
being an apparently new recursive determination of t2.

1. Introduction. We begin with a definition.

Definition 1.1. As usual, P := {1, 2, 3, . . . }, N := P ∪ {0} and
Z := {0,±1,±2, . . . }. Then for each n ∈ N,

r2(n) := |{(x, y) ∈ Z2 | n = x2 + y2}|,
t2(n) := |{(x, y) ∈ N2 | n = x(x+ 1)/2 + y(y + 1)/2}|.

Also for each n ∈ P and each i ∈ {1, 3},

di(n) :=
∑
d|n

d≡i (mod 4)

1.

That the functions r2 and t2 are closely related is revealed by the
next two theorems and their obvious corollary.

Theorem 1.2 (Jacobi). For each n ∈ P,

r2(n) = 4{d1(n)− d3(n)}.

(Of course, r2(0) = 1.)
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Theorem 1.3. For each n ∈ N,

t2(n) = d1(4n+ 1)− d3(4n+ 1).

Corollary 1.4. For each n ∈ N,

r2(4n+ 1) = 4t2(n).

These results belong to multiplicative number theory in the sense
that evaluation of d1(n) − d3(n), n ∈ P, entails factorization of n
and subsequent appeal to the fundamental theorem of arithmetic. In
[1, pp. 213 214], the author derived the following additive recursive
determination of the function r2.

Theorem 1.5. For each n ∈ N,

(1.1)
∑
k≥0

(−1)k(k+1)/2 r2(n − k(k + 1)/2)

=
{
(−1)m(m+3)/2(2m+ 1) if n = m(m+ 1)/2,

0 otherwise.
Put r2(x) := 0, whenever x < 0.

The major objective of this note is to show that the function t2 also
has an additive recursive determination. This is accomplished by the
following theorem.

Theorem 1.6. For each n ∈ N,

(1.2)

t2(n) + 2
∑
k≥1

(−1)kt2(n − k2) =
{
(−1)m(2m+ 1) if n = m(m+ 1),
0 otherwise.

Put t2(x) := 0 whenever x < 0.

Proof of this result is supplied in Section 2. For a proof of Jacobi’s
Theorem 1.2, see [3, pp. 241 243], and for proof of Theorem 1.3, see
[2, pp. 175 176].
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2. Proof of Theorem 1.6. Our proof is based on the following
three identities, each of which is valid for all complex numbers x such
that |x| < 1.

∞∏
1

(1− x2n)(1− x2n−1)2 = 1 + 2
∞∑
1

(−1)kxk2
,(2.1)

∞∏
1

(1− x2n)(1− x2n−1)−1 =
∞∑
0

xn(n+1)/2,(2.2)

∞∏
1

(1− xn)3 =
∞∑
0

(−1)k(2k + 1)xk(k+1)/2.(2.3)

Identities (2.1) and (2.2) are due to Gauss, while (2.3) is due to
Jacobi. For proofs of all of them, see [3, pp. 282 285]. In passing we
observe that the square of the right-hand side of (2.2) generates the
sequence t2(n), n ∈ N.

We square (2.2) and multiply the resulting identity by (2.1) to get

∞∑
m=0

(−1)m(2m+1)xm(m+1) =
∞∏

n=1

(1− x2n)3

=
∞∑

j=0

t2(j)xj
{
1 + 2

∞∑
k=1

(−1)kxk2
}

=
∞∑

n=0

t2(n)xn+2
∞∑

n=1

xn
∑
k≥1

(−1)kt2(n−k2)

(In the first step we effected the substitution x → x2 in (2.3).) Now,
equating coefficients of xn, n ∈ N, we prove our theorem.

Recall that a rectangular number is one of the formm(m+1), m ∈ N.
Our next result is then an immediate consequence of Theorem 1.6.

Corollary 2.1. For each n ∈ N, t2(n) is odd if and only if n is a
rectangular number.

Of course, this result can be established directly. If (i) n ∈ N is a
rectangular number, so that n = m(m + 1), for some m ∈ N, then
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n = m(m+1)/2+m(m+1)/2. And all other pairs (x, y) ∈ N2, if any,
satisfy the condition (x, y) 	= (y, x). Accordingly, these pairs are paired
as (x, y), (y, x) to yield two distinct representations of n:

n = x(x+ 1)/2 + y(y + 1)/2, n = y(y + 1)/2 + x(x+ 1)/2.

Clearly the count of (m, m), (x1, y1), (y1, x1), . . . , (xr, yr), (yr, xr) is
odd. If (ii) n ∈ N is not a rectangular number, then all pairs
(x, y) ∈ N2, possibly 0 in number, satisfy the condition (x, y) 	= (y, x).
In any case, the count of these (x1, y1), (y1, x1), . . . , (xr, yr), (yr, xr) is
even.

The following brief table is compiled solely on the strength of Theo-
rem 1.6.

TABLE 2.1.

n t2(n) n t2(n) n t2(n)
0 1 13 2 26 0
1 2 14 0 27 2
2 1 15 2 28 2
3 2 16 4 29 2
4 2 17 0 30 1
5 0 18 2 31 4
6 3 19 0 32 0
7 2 20 1 33 0
8 0 21 4 34 2
9 2 22 2 35 0
10 2 23 0 36 4
11 2 24 2 37 2
12 1 25 2 38 2

Concluding remarks. We began this discussion by observing the
close relation between the functions r2 : N → N and t2 : N → N. This
is vividly demonstrated by Corollary 1.4. However, we should point
out that the two functions differ markedly with respect to parity of
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their values. To be sure, the function r2 has exactly one odd value
(i.e., r2(0) = 1 and r2(n) ≡ 0 (mod 4), for each n ∈ P), while t2 has
infinitely many odd values and infinitely many even values. (Corollary
2.1 gives a precise statement.)
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that led to an improved exposition.
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