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THE GENERAL STABLE RANK IN
NONSTABLE K-THEORY

YIFENG XUE

ABSTRACT. In this paper we show that for every C∗-
algebra A the natural homomorphism iA : U(A) → K1(A)
is injective if and only if SA has 1-cancellation and iMn(A)

is injective for any n ≥ 1 if and only if gsr (SA) = 1. These
results improve [12]. As applications, we figure out the value
of gsr (SA) or gsr (Ω(A)) when the unital C∗-algebra A is of
real rank zero or purely infinite simple; we also investigate
the manner of iA⊗B for certain infinite C∗-algebra A and any
nuclear C∗-algebra B. We have proven that if B is a nonunital
purely infinite simple C∗-algebra or a certain stable corona
algebra, then iA⊗B is always an isomorphism.

0. Introduction. For the unital C∗-algebra A, we write U(A),
respectively U0(A), to denote the unitary group of A, respectively
the connected component of the unit in U(A). The quotient group
U(A) = U(A)/U0(A) whose multiplication is given by [u][v] = [uv] is
called the U -group of A, where [u] stands for the equivalence class of
u in U(A). If A has no unit, we put U(A) = U(A+), where A+ is A
obtained by unit adjointed. For any unital C∗-algebra A, we denote
by Mn(A) the matrix algebra of n × n over A. Set U1(A) = U(A),
respectively U0

1 (A) = U0(A) and

Un(A) = U(Mn(A)),U0
n(A) = U0(Mn(A)), Un(A) = Un(A)/U0

n(A).

For the C∗-algebra A, we set Ω(A) = C(S1,A), SA = C0(0, 1) ⊗ A,
the suspension of A. We notice that (SA)+ can be expressed as

(SA)+ ∼= {f ∈ C0([0, 1],A)f(0) = f(1) = λ1,
f(t) = λ1 + xt, λ ∈ C, xt ∈ A}.
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Let A be a C∗-algebra with unit 1. We view An as the set of all n×1
matrices over A. According to [11] and [12], the topological stable
rank, the connected stable rank and the general stable rank of A are
defined respectively as follows:

tsr (A) = min{n ∈ N | Am is dense in Lgm(A), ∀m ≥ n}
csr (A) = min{n ∈ N | U0

m(A) acts transitively on
Sm(A), ∀m ≥ n}

gsr (A) = min{n ∈ N | Um(A) acts transitively on
Sm(A), ∀m ≥ n},

where Sn(A) = {(a1, . . . , an)T ∈ An |∑n
i=1 a

∗
i ai = 1} and

Lgn(A) =
{

(a1, . . . , an)T ∈ An | ∃(b1, . . . , bn)T ∈ An 

n∑

i=1

biai = 1
}
.

If no such integer exists, we set tsr (A) = ∞, csr (A) = ∞, or
gsr (A) = ∞, respectively.

According to [1, Section 9], there is a natural homomorphism iA :
U(A) → K1(A) for any C∗-algebra A where K0(A), K1(A) are the
K-groups defined in [1]. Under what conditions is iA injective? When
is iA surjective? These two problems are very important in computing
K-groups in terms of U(A) or U(SA).

Rieffel has found that these problems are closely connected to the
csr (·) and gsr (·). He showed that, for any n ≥ max(gsr (Ω(A)), csr (A)),
iMn−1(A) : Un−1(A) → K1(A) is an isomorphism [12, Theorem 2.9].
Using different approaches, Cuntz showed that if A is a unital purely
infinite simple C∗-algebra, iA is an isomorphism [3, Theorem 1.9] and
Lin proved that if A is a unital C∗-algebra with real rank zero, then iA
is injective [5, Lemma 2.2]. Besides, Thomsen showed that there is a
natural isomorphism between quasi-unitary group of A and K1(A) for
certain C∗-algebra A, cf. [14, Theorems 4.3, 4.5]. Although many re-
sults have been obtained up to now, the problems seem far from being
solved.

In this paper we will be concerned with the problem when iA is a
monomorphism. We give an equivalent description of the problem,
that is, iA is injective if and only if SA has 1-cancellation. Using this
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result, we prove that iMn
(A) is injective for all n ≥ 1 if and only if

gsr (SA) = 1. As a result, we get that gsr (Ω(A)) = gsr (A) if A is
a unital C∗-algebra with RR(A) = 0 and, moreover, if A is a purely
infinite simple C∗-algebra with unit 1A such that [1A] is torsion-free,
respectively has torsion, in K0(A), then gsr (Ω(A)) = 2, respectively
gsr (Ω(A)) = ∞. We also prove that if A is a nonunital purely infinite
simple C∗-algebra or a certain stable corona algebra and B is a nuclear
C∗-algebra, then iA⊗B is an isomorphism.

1. The 1-cancellation of C∗-algebras. Let p, q be two projections
in the C∗-algebra A. We say that p is equivalent to q, denoted p ∼ q,
if there is a u ∈ A such that p = u∗u, q = uu∗. We write [p] to denote
the equivalence class of p with respect to “∼.”

Borrowing ideas from [4, Theorem 1.5] and [11, Corollary 10.7], we
establish the following notation.

Definition 1.1. Let A be a C∗-algebra with unit 1. A is said to
have 1-cancellation if for any projection p in M2(A) with diag (p, 1k) ∼
diag (p1, 1k) in Mk+2(A) for some k ≥ 1, we have p ∼ p1 where
p1 = diag (1, 0) ∈ M2(A) and 1k is the unit of Mk(A). If A has no
unit, we work with A+.

Obviously if the unital C∗-algebra A+ has cancellation or if gsr (A) ≤
2, then A has 1-cancellation, cf. [1] and [11, Proposition 10.5].

Now let φ : A → B be a ∗ homomorphism between two C∗-algebras
A and B. We denote by φn the induced ∗ homomorphism of φ on
Mn(A) and let φ∗ denote the induced homomorphism of φ on U(A)
or K0(A) and K1(A). We also let ρ : A+ → C denote the canonical
homomorphism.

Definition 1.2. Let A be a C∗-algebra. A projection e in
M2((SA)+) is called to a 1-projective loop if e(0) = e(1) = p1 and
ρ2(e(t)) = p1 for all t ∈ [0, 1].

Let PL (A) denote the set of all 1-projective loops in M2((SA)+).
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Lemma 1.1. Let A be a C∗-algebra.

(1) If A has 1-cancellation, then U2(A+) acts transitively on S2(A+);

(2) Assume that for any projection e in PL (A) with diag (p, 1k) ∼
diag (p1, 1k) in Mk+2((SA)+) for some k ≥ 1, we have p ∼ p1 in
M2((SA)+). Then SA has 1-cancellation.

Proof. (1) Let (a1, a2)T ∈ S2(A+). Then the projection p =[
a1 0

a2 0

] [
a∗
1 a∗

2
0 0

]
is equivalent to the projection p1 =

[
a∗
1 a∗

2
0 0

] [
a1 0

a2 0

]
in M2(A+). Thus there is a z ∈ U4(A+) such that diag (p, 0) =
z∗diag (p1, 0)z in M4(A+), and consequently,

diag (12 − p, 12) = z∗diag (12 − p1, 12)z ∼ diag (p1, 12).

Since A has 1-cancellation, we have 12 − p ∼ p1 ∼ 12 − p1 in M2(A+).
Therefore there is a v ∈ U2(A+) such that p = vp1v

∗ by [1]. Set

(1.1) c =
[
c11 c12
c21 c22

]
=

[
a∗1 a∗2
0 0

]
v

[
1 0
0 0

]
.

Then by simple computation we obtain that

(1.2) c12 = c21 = c22 = 0 and c∗11c11 = c11c
∗
11 = 1.

So, combining (1.1) with (1.2), we get that

p1 =v∗pvp1 =v∗
[
a1 0
a2 0

] [
a∗1 a∗2
0 0

]
v

[
1 0
0 0

]
=v∗

[
a1 0
a2 0

] [
c11 0
0 0

]
,

and hence (a1, a2)T = (vdiag (c∗11, c11))(1, 0)T .

(2) Let p be a projection in M2((SA)+) such that

(1.3) diag (p, 1k) ∼ diag (p1, 1k) in Mk+2((SA)+)

for some k. Put q(t) = ρ2(p(t)), t ∈ [0, 1]. Then by (1.3) we have
q ∼ p1 in M2((C0(0, 1))+) ∼= M2(C(S1)) for tsr (M2(C(S1))) = 1.
Thus there exists u ∈ U2((C0(0, 1))+) by [1] such that q = u∗p1u. Put
e(t) = u(t)pu∗(t), t ∈ [0, 1]. Then ρ2(e(t)) = p1, t ∈ [0, 1], and

e(0) = e(1) = u(0)p(0)u∗(0) = u(0)q(0)u∗(0) = p1,
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for we always identify q(0) = q(1) = p(0) = p(1), and diag (e, 1k) ∼
diag (p1, 1k) in Mn+k((SA)+) by (1.3). Therefore, by assumption,
e ∼ p1 in M2((SA)+), i.e., p ∼ p1 in M2((SA)+).

Inspired by Lemma 1.1 (1) and [12], we define the integer Gsr (A) for
each unital C∗-algebra A by

Gsr (A) = min{n ∈ N | U2(Mm(A))
acts transitively on S2((Mm(A)))∀m ≥ n}.

If no such integer exists we set Gsr (A) = ∞. If A has no unit, we
set Gsr (A) = Gsr (A+). The following proposition characterizes the
Gsr (·).

Proposition 1.1. Let A be a unital C∗-algebra. Then we have

(1) gsr (A)− 1 ≤ Gsr (A) ≤ max{gsr (A)− 1, 1};
(2) Gsr (Mn(A)) ≤ {Gsr (A)/n}, where {x} stands for the least

integer which is greater than or equal to x.

Proof. (1) For each k ≥ max{1, gsr (A)− 1}, and hence 2k ≥ gsr (A),
let A = (aij)k×k, B = (bij)k×k ∈Mk(A) with A∗A+B∗B = 1k. So

(a1j , . . . , akj , b1j , . . . , bkj)T ∈ S2k(A),

1 ≤ j ≤ k and
∑k

t=1(a∗tiatj + b∗tibtj) = 0, i �= j. Therefore there is a
u(1) ∈ U2k(A) such that

u(1)(a11, . . . , ak1, b11, . . . , bk1)T

= (1, 0, . . . , 0)Tu(1)(a1j , . . . , akj , b1j , . . . , bkj)T

= (0, a(1)
2j , . . . , a

(1)
kj , b

(1)
2j , . . . , b

(1)
kj )T , 2 ≤ j ≤ k.

By the same argument as above, we can find u(2), . . . , u(k) in U2k(A)
such that

u(k) · · ·u(1)(A,B)T = (1k, 0)T in S2(Mk(A)).

On the other hand, suppose that k ≥ Gsr (A) and (a1, . . . , ak+1)T ∈
Sk+1(A). Set A = [ a Ok×(k−1) ] and B = diag (ak+1, 1k−1) ∈ Mk(A),
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where a = (a1, . . . , ak)T . Then (A,B)T ∈ S2(Mk(A)). Since k ≥
Gsr (A), it follows that there is a u ∈ U2k(A) such that (A,B)T =
u(1k, 0)T . We write u as the form u =

[
A C

B D

]
, where C,D ∈ Mk(A).

Thus we deduce from u ∈ U2k(A) that D has the form D =
[

d

O(k−1)×k

]

and W =
[

a C

ak+1 d

]
∈ Uk+1(A), where d = (d1, . . . , dk). Therefore

(a1, . . . , ak+1)T = W (1, 0, . . . , 0)T .

(2) Suppose that Gsr (A) < ∞ and k ≥ {Gsr (A)/n}. Then
Gsr (A) ≤ kn. Noting that Mk(Mn(A)) ∼= Mkn(A), we obtain that
U2(Mk(Mn(A))) acts transitively on S2(Mk(Mn(A))). The assertion
follows.

Corollary 1.1. Let A be a C∗-algebra with unit 1. Then Mn(A) has
1-cancellation for all n ≥ 1 if and only if gsr (A) ≤ 2.

Proof. That Mn(A) has 1-cancellation for each n ≥ 1 shows that
U2(Mn(A)) acts transitively on S2(Mn(A)) by Lemma 1.1 (1). Thus
we have Gsr (A) = 1 and hence gsr (A) ≤ 2 by Proposition 1.1.

Conversely, since every projection in Mn(A) corresponds uniquely
to a finitely generated projective A-module, it follows from [11] that
Mn(A) has 1-cancellation for each n ≥ 1.

2. The proof of the main result.

Lemma 2.1. Let A be a C∗-algebra and e ∈ PL (A). Then there is
a continuous map vt : [0, 1] → U2(A+) such that v0 = 12, ρ2(vt) = 12

and et = v∗t p1vt.

Proof. Put gs(t) = e(16s(1 − s)t(1 − t)), 0 ≤ s, t ≤ 1. Then
gs ∈ PL (A) is a path from p1 to p1. Using the same method as in
the proof of [1], we can find a continuous map vs : [0, 1] → U2((SA)+)
with v0(t) = 12, vs(0) = vs(1) = 12 and ρ2(vs(t)) = 12 such that
gs = v∗sp1v2 for all s, t ∈ [0, 1].

Now take s = (1 − √1− t)/2, ut = vs(1/2), 0 ≤ t ≤ 1. Then
u0 = ρ2(ut) = 12 and et = u∗t p1ut for all t ∈ [0, 1].
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For a C∗-algebra A and a closed two-side ideal J of A, we have the
following exact sequence:

(2.1) 0 −→ J j−→ A π−→ B −→ 0,

where j : J → A is the inclusive map and π : A → B = A/J is a
quotient map.

Let ∂ : K1(B) → K0(J ) denote the index map of (2.1) which is
defined in [1, Definition 8.3.1] and put η = ∂ ◦ iB : U(B) → K0(J ).
Then η has the form

(2.2) η([u]) = [wp1w∗]− [p1], ∀u ∈ U(B+),

where w ∈ U2(A+) with π2(w) = diag (u, u∗).

Borrowing some techniques from [1, Proposition 8.3.3], we can prove
the following useful lemma.

Lemma 2.2. Let J ,A,B be as above, and suppose that J has 1-
cancellation. Then we have the following exact sequence of groups.

(2.3) U(J )
j∗−→ U(A) π∗−→ U(B)

η−→ K0(J ).

Proof. Since π(U0(A+)) = U0(B+) and π ◦ i = 0, it follows that
Im i∗ = Kerπ∗. We will prove Imπ∗ = Ker η in the following.

It is easy to check that Imπ∗ ⊂ Ker η. Now let v be in U(B+) with
η([v]) = 0. Then there is a w ∈ U2(A+) with π2(w) = diag (v, v∗) such
that [ w p1 w∗ ] = [p1] in K0(J ) by (2.2). Since J has 1-cancellation, it
follows from the definition of K0(J ) that u ∈ U4(J+) exists such that

(2.4) u diag ( w p1 w∗,0 )u∗ = diag (p1.0).

Assume that a = π4(u) ∈ U4(B+) and set w0 = a∗u diag (w, 12).
Then π4(w0) = diag (v, v∗, 12) and w0 commutes with diag (p1, 0) by
(2.4). Therefore w0 has the form diag (w1, w2) where w1 ∈ U(A+),
w2 ∈ U3(A+). This indicates that [v] = π∗([w1]).

Remark 2.1. Lemma 2.2 somewhat generalizes Theorem 2 of [8].
We should notice that, if (2.1) is split exact, we can deduce that j∗
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is injective and π∗ is surjective in (2.3) by means of [1], without the
hypothesis that J has 1-cancellation.

We now present our main result of the paper as follows.

Theorem 2.1. For the C∗-algebra A, iA is injective if and only if
SA has 1-cancellation.

Proof. ⇐. Since CA = C0([0, 1),A) is contractible and SA has 1-
cancellation, applying Lemma 2.2 to the exact sequence of C∗-algebras

(2.5) 0 −→ SA −→ CA π−→ A −→ 0,

we obtain that η : U(A) → K0(SA) is injective, where π(f) = f(1) for
all f ∈ CA. Noting that η = ∂ ◦ iA and ∂ : K1(A) → K0(SA) is the
natural isomorphism given in [1, Theorem 8.2.2], we obtain that iA is
injective.

⇒. By Lemma 1.1 (2), we only need to prove that if e ∈ PL(A) with
diag (e, 1k) ∼ diag (p1, 1k) in Mk+2((SA)+) for some k, then e ∼ p1 in
Mk((SA)+).

Applying Lemma 2.1 to the above 1-projective loop e, we obtain
that there is a continuous map ut : [0, 1] → U2(A+) such that
u0 = 12 = ρ2(ut) and et = u∗t p1ut. Therefore, u1 has the form
diag (a, b) where a, b ∈ U(A+) with ρ(a) = ρ(b) = 1. Since iA is
injective and

[diag (a∗, b∗, 1)] = [diag (a∗, b∗)diag (b∗, b)] = [u∗1] = [12]

in K1(A), we get that there is a path st from 1 to a∗b∗ in U(A+) with
ρ(st) = 1, 0 ≤ t ≤ 1. Put wt = diag (1, st)ut. Then w0 = 12 = ρ2(wt),
0 ≤ t ≤ 1 and wt is a path from 12 to diag (a, a∗) in U2(A+) such that

(2.6) et = u∗t p1ut = w∗
t p1wt ∀ t ∈ [0, 1].

Now applying (2.2) to (2.5) and (2.6), we get that

η([α]) = ∂ ◦ iA([a]) = [e]− [p1] = 0 in K0(SA)

for diag (e, 1k) ∼ diag (p1, 1k) in M2+k((SA)+) and π2(w) = w1 =
diag (a, a∗). Thus iA([a]) = 0 in K1(A) and a ∈ U0(A+) because



THE GENERAL STABLE RANK 769

iA is injective by assumption. Let at be a path in U0(A+) with
ρ(at) = 1 from 1 to a, and put ct = w∗

t diag (at, a
∗
t ), 0 ≤ t ≤ 1. Then

c ∈ U2((SA)+) with ρ(ct) = 12 such that c∗t e(t)ct = p1, 0 ≤ t ≤ 1, i.e.,
e ∼ p1 in M2((SA)+).

Theorem 2.4 yields the following important results.

Corollary 2.1. Let A be a C∗-algebra. Then iMn(A) is injective for
all n ≥ 1 if and only if gsr (SA) = 1.

Proof. ⇒. By Theorem 2.4, (S(Mn(A)))+ has 1-cancellation for all
n ≥ 1. Thus U2((S(Mn(A)))+) acts transitively on S2((S(Mn(A)))+)
by Lemma 1.1 (1). Now, from the split exact sequence of C∗-algebras,

(2.7) 0 −→ S(Mn(A)) −→Mn((SA)+)
ρn−→Mn(C) −→ 0

we get that U2(Mn((SA)+)) acts transitively on S2(Mn((SA)+)). Thus
gsr (SA) ≤ 2 by Proposition 1.1 (1). Since (SA)+ is a finite C∗-algebra,
we have gsr (SA) = 1.

⇐. By Corollary 1.5, Mn((SA)+) has 1-cancellation for all n ≥ 1. So,
by (2.7), (S(Mn(A)))+ has 1-cancellation for all n ≥ 1. Consequently,
we have iMn(A) is injective by Theorem 2.1.

Corollary 2.2 [12, Theorem 2.9]. Let A be a unital C∗-algebra, and

r = max{gsr (Ω(A)), csr (A)}.

Then for all n ≥ max(2, r), iMn−1(A) is an isomorphism.

Proof. By [11, Theorem 10.10], iMn−1(A) is surjective for any
n ≥ csr (A). Since it is a routine to check that gsr (Ω(A)) =
max{gsr (SA), gsr (A)} from the split exact sequence of C∗-algebras

0 −→ SA −→ Ω(A) −→ A −→ 0,

we have gsr (SA) ≤ n. Thus Gsr (Mn−1((SA)+)) = 1 by Proposi-
tion 1.1. It follows from (2.7) and Theorem 2.1 that iMn−1(A) is injec-
tive. The proof is completed.
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3. Some applications. A projection p in the C∗-algebra A is called
to be infinite if there is a v ∈ A such that vv∗ < v∗v = p. A simple
C∗-algebra A is said to be purely infinite if xAx, the closure of xAx in
A, contains an infinite projection for any positive element x ∈ A, cf.
[3]. Recall that a C∗-algebra A has the property RR(A) = 0 if every
self-adjoint element in A can be approximated by a self-adjoint element
with finite spectra in A, cf. [2].

Proposition 3.1. Let A be a C∗-algebra with unit 1.

(1) If RR(A) = 0, then gsr (Ω(A)) = gsr (A);

(2) Assume that A is purely infinite simple. If [1] is torsion-free in
K0(A), then gsr (Ω(A)) = 2; if [1] has torsion, then gsr (Ω(A)) = ∞.

Proof. (1) Since RR(A) = 0 indicates that RR(Mn(A)) = 0 for all
n by [2, Theorem 2.10], it follows from [5, Lemma 2.2] that iMn(A)

is injective. Therefore, by Corollary 2.1, gsr (SA) = 1 and hence
gsr (Ω(A)) = gsr (A).

(2) By [16, Theorem 1.3] and assertion (1), gsr (SA) = 1. If [1]
is torsion-free in K0(A) we have csr (A) = 2 by [15, Theorem 1].
Thus gsr (A) ≤ csr (A) = 2. Since A contains an isometry, we have
gsr (A) = 2. Therefore gsr (Ω(A)) = 2.

If k ≥ 1 is the order of [1] in K0(A), then for any integer n
with n ≡ 1 mod k, we can find n isometries S1, . . . , Sn in A such
that

∑n
i=1 SiS

∗
i = 1 by the proof of [3, Lemma 1.8]. Clearly,

(S∗
1 , . . . , S

∗
n)T ∈ Sn(A) and (S∗

1 , . . . , S
∗
n)T �= u(1, 0, . . . , 0)T for any

u ∈ Un(A). Thus we have gsr (A) = ∞ and hence gsr (Ω(A)) = ∞.

In the following we will consider the iA⊗B when A is purely infinite
simple C∗-algebra or is a stable corona algebra and B is a nuclear C∗-
algebra.

Proposition 3.2. Suppose that A is a nonunital purely infinite
simple C∗-algebra and B is a nuclear C∗-algebra. Then iA⊗B is an
isomorphism.



THE GENERAL STABLE RANK 771

Proof. We first prove that, for any (a1, . . . , an)T ∈ An and any
ε > 0 there are a nonunital hereditary C∗-subalgebra D of A and
(b1, . . . , bn)T ∈ Dn such that ‖ai − bi‖ ≤ (4ε/5), 1 ≤ i ≤ n.

In fact, since A is nonunital, purely infinite and simple, it follows
from [6, Condition (ii)] and [2, Theorem 2.6] that there is a projection
r in A such that

(3.1)
∥∥∥∥

n∑
i=1

(a∗i ai + aia
∗
i )(1− r)

∥∥∥∥ < ε2

25
.

Since (1− r)A(1− r) is purely infinite simple by [16, Theorem 1.3], we
can find a sequence of pairwise orthogonal projections {Ri} in A with
Ri < 1− r. Set x =

∑∞
i=1 2−iRi. Then 0 ≤ x < 1− r and xAx has no

unit and, furthermore, D = (r + x)A(r + x) ⊂ A has no unit as well,
cf. the proof of [15, Theorem 2]. Set bi = (r + x)ai(r + x) ∈ D. Then,
from (3.1), we get that for i = 1, . . . , n,

‖ai − bi‖ = ‖ai(1− r − x) + (1− r − x)ai(r + x)‖
≤ ‖ai(1− r)‖+ ‖ai(1− r)‖‖x‖+ ‖(1− r)ai‖

+ ‖x‖‖(1− r)ai‖‖r + x‖
≤ 4ε

5
.

Now for any (a1 + λ1, . . . , an + λn)T ∈ Lgn((A ⊗ B)+)n, there are
a nonunital hereditary C∗-subalgebra D ⊂ A and (b1 + λ1, . . . , bn +
λn)T ∈ Lgn((A⊗ B)+)n such that ‖ai − bi‖ ≤ (4ε/5), i = 1, . . . , n, by
the above argument. Noting that D ∼= D ⊗ K by [16, Theorem 1.2],
where K is the algebra of all compact operators on the separable Hilbert
space H over the field C, we obtain that there is a (c1 + µ1, . . . , cn +
µn)T ∈ Lgn((D ⊗ B)+) such that ‖(bi + λi) − (ci + µi)‖ ≤ (ε/5), 1 ≤
i ≤ n, by [11, Theorem 6.4]. Consequently, ‖(ai + λi)− (ci + µi)‖ ≤ ε,
1 ≤ i ≤ n. This means that tsr (A ⊗ B) ≤ 2. So gsr (A ⊗ B) ≤
csr (A⊗B) ≤ tsr (C([0, 1])⊗A⊗B) ≤ 2 by [9, Lemma 2.4]. Finally we
have that iA⊗B is an isomorphism by Corollary 2.2.

Let A be a nonunital C∗-algebra. We denote by M(A) the multiplier
algebra of A, cf. [10] and SM(A) = M(A ⊗ K) the stable multiplier
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algebra of A. Set SQ(A) = M(A⊗K)/A⊗K (the stable corona algebra
of A).

The following proposition gives a simple proof of U(SQ(A) ⊗ B) ∼=
K1(SQ(A) ⊗ B) for certain A and B obtained by Thomsen for the
quasi-unitary group, cf. [14, Theorem 4.9].

Proposition 3.3. Let A be a C∗-algebra with unit 1 or a countable
approximate identity consisting of projections and B a nuclear C∗-
algebra. Then iSQ(A)⊗B is an isomorphism.

In order to prove this proposition, we need a lemma.

Lemma 3.1. Let A be a unital C∗-algebra which contains a pair of
orthogonal isometries. Then iA is surjective.

Proof. Let 1 be a unit of A and S1, S2 two isometries in A such that
S1S

∗
1 + S2S

∗
2 = p is a projection in A. For n ≥ 2, set T1 = Sn−1

1 ,
T2 = Sn−2

1 S2, . . . , Tn−1 = S1S2, Tn = S2. Then it is easy to verify
that T ∗

i Ti = 1 and T ∗
j Ti = 0, i �= j, i, j = 1, . . . , n. So qn =

∑n
i=1 TiT

∗
i

is a projection in A. Set

X =



T1 T2 · · · Tn

0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0


 ∈Mn(A),

Y =
[
X 1N −XX∗

0 X∗

]
∈ U2n(A).

Then X∗X = 1n and

(3.2) Y diag (u, 1n)Y ∗ = diag (b, 12n−1),

where u = (uij)n×n ∈ Un(A) and b =
∑n

i,j=1 TiuijT
∗
j +1−qn ∈ U(A).

Since

Y =
[

1n X
0 1n

] [
0 1n − 2XX∗

1n 0

] [
1n X∗

0 1n

] [
1n 0
−X 1n

]
∈ U0

2n(A),

it follows from (3.2) that [u] = iA([b]) in K1(A).
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Corollary 3.1. Let A be a unital purely infinite simple C∗-algebra
and B a nuclear C∗-algebra. Then iA⊗B is surjective.

Proof. Obviously, A ⊗ B contains a pair of orthogonal isometries if
B is unital since A has this property by the definition of the purely
infinite simple C∗-algebra. Thus the assertion follows.

If B is nonunital, then from the following split exact sequence of C∗-
algebras

(3.3) 0 −→ A⊗ B −→ A⊗ B+ −→ A −→ 0

and Remark 2.1, we get that the diagram of exact sequences

(3.4)
[1] w U(A⊗ B)

u

iA⊗B

w U(A⊗ B+)

u

iA⊗B+

w U(A)

u

iA

w [1]

0 w K1(A⊗ B) w K1(A⊗ B+) w K1(A) w 0

is commutative. Since iA⊗B+ is surjective and iA is injective by [3,
Lemma 1.8], we can deduce from (3.4) that iA⊗B is surjective.

Proof of Proposition 3.3. We first assume that B has unit 1B. Since
gsr (A⊗K⊗B) ≤ csr (A⊗K⊗B) ≤ 2 by [13, Theorem 3.10], we have
that A⊗ K ⊗ B has 1-cancellation. Applying Lemma 2.2 to the exact
sequence of C∗-algebras,

0 −→ A⊗K ⊗ B j⊗idB−→ M(A⊗K)⊗ B π⊗idB−→ SQ(A)⊗ B −→ 0,

we obtain the following commutative diagram of exact sequences of
groups

(3.5)
w U(SM(A)⊗ B)

u

w U(SQ(A)⊗ B)

u

iSQ(A)⊗B

w

η
K0(A⊗ B)

w K1SM(A)⊗ B w K1(SQ(A)⊗ B) w
∂ K0(A⊗ B).
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Now the hypotheses on A and B indicate that U(SM(A)⊗B)) = 0 by
[7, Theorem 2.5]. Thus iSQ(A)⊗B is injective by (3.5).

Since C1 ⊗ L(H) ⊂ SM(A) where L(H) is the algebra of all linear
bounded operators on H, we can pick two isometries S1, S2 in L(H)
such that S1S

∗
1 + S2S

∗
2 = IH . Thus SQ(A) ⊗ B contains isometric

Ti = (π ⊗ idB)(1⊗ Si ⊗ 1B), i = 1, 2, with T1T
∗
1 + T2T

∗
2 = 1⊗ 1B. So

iSQ(A)⊗B is surjective by Lemma 3.3.

If B has no unit, then replacing A by SM(A) in (3.3), we also get
that iSQ(A)⊗B is an isomorphism.

Remark 3.1. We have known from [15, Corollary 2.5] that if A is a σ-
unital purely infinite simple C∗-algebra, then SQ(A) is a unital purely
infinite simple C∗-algebra. In this case iSQ(A)⊗B is an isomorphism if
B is a nuclear C∗-algebra. We also notice that, using the same method
as that in the proof of [14, Theorem 4.3], we can prove that iOn⊗B
is an isomorphism where On, 2 ≤ n ≤ ∞, is the Cuntz algebra and
B is any C∗-algebra. Combining these facts with Corollary 3.1 and
Proposition 3.2, we could raise a question: Is iA⊗B always injective for
any unital purely infinite simple C∗-algebra and any nuclear C∗-algebra
B?
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