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ON HAPPY NUMBERS

ESAM EL-SEDY AND SAMIR SIKSEK

ABSTRACT. The happy function T : N → N is the map-
ping which sends a natural number to the sum of the squares
of its decimal digits. A happy number x is a natural num-
ber for which the sequence {T n(x)}∞n=1 eventually reaches 1.
Guy asks in [1], problem E34, if there exist sequences of con-
secutive happy numbers of arbitrary length. In this paper we
answer this question affirmatively.

1. Introduction. In [1, problem E34, p. 234], a happy number is
defined as follows:

If you iterate the process of summing the squares of the decimal
digits of a number, then it is easy to see that you either reach
the cycle

4 → 16 → 37 → 58 → 89 → 145 → 42 → 20 → 4

or arrive at 1. In the latter case you started from a happy
number.

Several questions are asked about happy numbers, including: “How
many consecutive happy numbers can you have? Can there be arbi-
trarily many?” It is the purpose of this paper to show that there are
sequences of consecutive happy numbers of arbitrary length. It is hoped
that our proof will be a model for answering similar questions involv-
ing iterates of maps depending on the digital representations of natural
numbers.

2. Some preliminary results. We gather here some preliminary
results which will be needed in our proof of the existence of sequences
of consecutive happy numbers of arbitrary length. These are all
elementary except for the final lemma, which affirms the existence of
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an integer l with certain specified properties. The proof of this lemma
is left to the final section.

Definition 2.1. It will be convenient to define the happy function
T : N → N by taking T (x) to be the sum of the squares of the decimal
digits of x. A natural number x is then said to be happy if T r(x) = 1
for some r ≥ 0, otherwise it is said to be unhappy.

Here, as usual, T 0(x) = x.

Lemma 2.1. For each natural number x the sequence x, T (x), T 2(x),
. . . eventually reaches 1, 1, 1, . . . in which case x is happy or it eventu-
ally reaches the cycle 4, 16, 37, 58, 89, 145, 42, 20, 4, . . . in which case
x is unhappy.

Proof. This lemma is simply a rephrasing of the quotation, made
above, from Guy’s book [1].

Lemma 2.2. For each natural number x the set T−1(x) = {y ∈ N :
T (y) = x} is nonempty.

Proof. We simply observe that the number y =
∑x−1

i=0 10i has x digits
all of which are equal to 1. It is immediate from the definition of T
that T (y) = x.

The happy transformation T is by no means linear, but the following
lemma shows that it behaves in a ‘semi-linear’ fashion in certain cases.
This observation is crucial for the proof of our main result later.

Lemma 2.3. Suppose that x, y and s are natural numbers such that
10s > y. Then T (10sx + y) = T (x) + T (y).

Proof. This follows from the fact that the digits of 10sx + y are the
digits of x and the digits of y with possibly some zeros in between.
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Let C = {4, 16, 37, 58, 89, 145, 42, 20} (the cycle), and let D = {1}∪C.
One notes that the elements of D are permuted by the action of T on
them.

We now rephrase Lemma 2.1 as follows.

Lemma 2.4. For every natural number x there exists rx ≥ 0 such
that T r(x) ∈ D for all r ≥ rx.

Lemma 2.5. If T r(y) = x where r ≥ 0 and x is happy, then y is
also happy.

Proof. If x is happy, then T r′
(x) = 1 for some r′ ≥ 0. Thus

T r+r′
(y) = T r′

(x) = 1 and so y is happy.

Lemma 2.6. There exists a natural number l such that l+u is happy
for all u ∈ D.

Proof. A number l satisfying this property, plus a description of how
this number was found, is given in Section 4.

3. The main result. We are now ready to prove the main result of
this paper.

Theorem 3.1. There exist sequences of consecutive happy numbers
of arbitrary length. That is, for each m ≥ 1, there exists an integer l0
such that every element of the finite sequence l0 + 1, l0 + 2, . . . , l0 + m
is a happy number.

Proof. From now on l will denote a fixed positive integer, guaranteed
to exist by Lemma 2.6, such that l + u is happy for each u ∈ D.

For each m we show that there exists a sequence of consecutive happy
numbers of length m. Keep m fixed. From Lemma 2.4 we easily see
that there exists an r ≥ 1 such that T r(i) ∈ D for all i = 1, 2, . . . , m.

The set {T j(i) : i = 1, . . . , m; j = 0, . . . , r} is finite; thus we can
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choose an s such that

(3.1) 10s > T j(i) for all i = 1, . . . , m; j = 0, . . . , r.

We define integers l0, l1, . . . , lr by means of a ‘reverse inductive’ defi-
nition; this means we give the value of lr and, for each 0 ≤ j ≤ r − 1,
we give a value for lj in terms of the value of lj+1.

First let lr = l. For 0 ≤ j ≤ r − 1, we define lj in terms of lj+1 as
follows: by Lemma 2.2 we can find kj+1 such that T (kj+1) = lj+1. Let
lj = 10skj+1. We note the following:

1. For each 0 ≤ j ≤ r − 1, we have T (lj) = lj+1.

2. If 0 ≤ j ≤ r − 1 and y < 10s, then by Lemma 2.3

T (lj + y) = T (10skj+1 + y) = T (kj+1) + T (y) = lj+1 + T (y).

From these two observations and from the set of inequalities (3.1) we
see for all i = 1, . . . , m, that

T r(l0 + i) = T r−1(T (l0 + i)) = T r−1(l1 + T (i))
= T r−2(T (l1) + T 2(i)) = T r−2(l2 + T 2i)
= · · · = lr + T r(i).

Since lr = l we have that T r(l0 + i) = l + T r(i) for all i = 1, . . . , m.
Recall that r was chosen so that T r(i) ∈ D for all i = 1, . . . , m, and that
l was chosen l + u is happy for all u ∈ D. Hence T r(l0 + i) = l + T r(i)
is happy for all i = 1, . . . , m. It follows from Lemma 2.5 that l0 + i
is happy for i = 1, . . . , m. This is a sequence of consecutive happy
numbers of length m.

4. Some computations. All that remains is to give a proof of
Lemma 2.6, that is, to give an integer l such that l+ u is happy for all
u ∈ D, where we recall that

D = {1, 4, 16, 20, 37, 42, 58, 89, 145}.

We claim that the number

(4.1) l =
233192∑

r=1

9× 10r+4 + 20958
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has the desired property. It is easy to see that, upon adding any element
of D to l, only at most the last four digits of l will be affected. Thus
T (l+u) = 233192×92+22+T (958+u) = 18888556+T (958+u). A short
computer program can now be used to verify that 18888556+T (958+u)
is happy for all u ∈ D and thus so is l + u.

It is clear that we could not have found this l by a straightforward
computer search; indeed, the reader will shortly see that finding an
appropriate l required some experimentation and a fair amount of
luck. Before embarking on a computer search, it is reasonable to
somehow come up with an estimate for a ‘search region’ that ought
to contain such a number. According to Guy [1, p. 234] it appears
that roughly 1/7 of all numbers are happy and this is confirmed by our
own extensive numerical experiments. If we are to assume that happy
numbers are randomly distributed and have a density of 1/7, then given
any natural number l, the probability that l+ u is happy for all u ∈ D
is 7−9 ≈ 2.48× 10−8. Thus if we were to go through all numbers up to
109 then it is reasonable to expect that we will come up with a suitable
l.

Considering the size of this search region it is natural to write the
program in a low-level computer language: we chose C++. The C++
variable type unsigned long int allows integers of size up to 4.2×109.
Division of integer types simply gives the quotient, and it is easy to
use this feature to recursively get the digits of an integer and so sum
their squares. Thus our happy transformation T can be coded and
we can decide if an integer is happy or not. An overnight search on
a Pentium 233MHZ did not reveal any such l whose size is less than
4 × 109. It seems clear that happy numbers are not as random as we
have supposed.

In desperation we decided to relax the conditions on the number l
by requiring that l satisfies instead that l + u is happy for all u ∈ D′;
where now D′ is the subset D′ = {1, 4, 16, 20, 37, 42}. A search now
revealed many numbers satisfying this weaker condition. Remarkably,
most ended with the digits 958. These include the first 18 such numbers
to be found:

7894958, 7984958, . . . , 19925958, 21995958.

We do not know of an explanation for this phenomenon but it made us
decide to restrict our search only to numbers ending with the digits 958.
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We thus assume that our l = 103x + 958. A search with x ≤ 4 × 109

again did not reveal any l of this form which satisfies our condition:
l + u is happy for all u ∈ D.

Eventually it occurred to us to try the following; if the number we
seek l is of the form l = 104x + 958 then for all u ∈ D we have
u + 958 < 104 and so, by Lemma 2.3, T (l) = T (x) + T (u + 958).
Now let E = {T (u + 958) : u ∈ D} = {1, 11, 38, 66, 121, 146, 187, 194}.
Our idea is to look for y such that y + v is happy for all v ∈ E. If
we find such a y then we can also find an x such that T (x) = y; see
Lemma 2.2. We can let l = 104x + 958, and it is now clear that l + u
will be happy for all u ∈ D. We searched for y such that y+v is happy
for all v ∈ E and within a few minutes we found that the number
y = 18888556 satisfies this condition. But 18888556 = 233192×81+4.
Let

x =
233192∑

r=1

9× 10r + 2;

then T (x) = y and 104x + 958 is our required l given in (4.1).
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