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POSITIVE SOLUTIONS FOR SEMI-POSITONE
SYSTEMS IN AN ANNULUS

D.D. HAI AND R. SHIVAJI

ABSTRACT. We study existence and multiplicity results
for positive solutions for semi-linear elliptic systems of the

form
(p(t)u") = =Af(u,0)p(t); t€ (a,b)
(p(t)v")" = =Ag(u,v)p(t); t€ (a)d
u(a) = 0 = u(b), v(a) =0 =v(b)

~

where A > 0 is a parameter, p : [a,b] — R is continuous
with p > 0 on [a,b] and g,f : [0,00) X [0,00) — R are
continuous such that f(u,v) > —(M/2), g(u,v) > —(M/2)

for every (u,v) € [0,00) x [0,00) for some M > 0. Our proofs
are based on fixed point theory in a cone. Our results extend
existence results for single semi-positone equations to semi-
positone systems. We also establish a multiplicity result which
is new even in the case of single equations.

1. Introduction. We consider the existence of positive solutions
for the system

( .
(1.1) (p(t)0")" = —Ag(u, v)p(t);

where A > 0 is a parameter,
(A1) p:la,bl > R is continuous with p >0 on [a,b],
and

g, f :]0,00) x [0,00) = R are continuous and there exists
(A.2) M >0 suchthat f(u,v)>—(M/2), g(u,v) > —(M/2)
for every (u,v) € [0,00) X [0, c0).
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In particular, our results apply to the case when f(0,0) or ¢(0,0) (or
both) are negative (semi-positone systems). Semi-positone problems
naturally occur in the study of steady state reaction-diffusion processes
with “harvesting.” The fact that the reaction term may be negative at
the origin makes it a very challenging problem in showing the positivity
of the solution. In the case of systems it is even more challenging since
we have to show the positivity of every component. In this paper we
restrict our analysis to a system of two equations. Our system (1.1)
is a generalization of the study of radial solutions of the steady state
reaction-diffusion system in an annulus Q = {x € R" : a < ||z|| < b}
given by

Au=-Af(u,v); z€N
Av = =Xg(u,v); €N

u=0=uv; x € 01,
in which case p(t) = t"~!. For existence results for the single semi-

positone equation, see [1-5]. In this paper we first consider the case
when f, g further satisfy:

(A.3)
lim f(u,v) =00, lim g(u,v) = oo where each limit is uniform
v—00 uU—r 00

with respect to the other variable, and lim (h*(z)/z) = oo
Z—00

where h*(z) := ini (min(f (u,v), g(u,v)))
and prove an existence result for A small. Namely, we prove:

Theorem 1.1. Let (A.1)—(A.3) hold. Then there exists \* > 0 such
that for A\ < X*, the system (1.1) has a positive solution (uy,v,) with
[(ux(t),vA(t))] = 00 as A = 0 uniformly for t in compact intervals of
(a,b). Here |(u,v)| = |u| + |v].

Next we consider the case when f, g satisfy (A.2) and
(A4)

lim f(u,v) =00, lim g(u,v) = oo where each limit is uniform
v— 00 U—r 00

with respect to the other variable, and  lim (h(2)/z) = 0
Z—00
where h():= sup (max(f(uv), 9(u,v))),
0<u,v<z
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and prove an existence result for A\ large. Namely, we prove:

_Theorem 1.2. Let (A.1), (A.2) and (A.4) hold. Then there exists
A > 0 such that for A > A, the system (1.1) has a positive solution
(ux,vx) with A~ max(uy(t),vx(t)) — o0 as A — oo uniformly for t in
compact intervals of (a,b).

Finally, we consider the case when f(u,v) = f(v), g(u,v) = g(u)
satisfy:
(A.5)

f,9:[0,00) = R are continuous, nondecreasing,
£(0) <0, g(0) <0, and lim (f(x)/z) = lim (g(c)/z) = o0

which is a special case of (A.3), and
(A.6)
there exists >0 and 0<a <1 suchthat A(z)> (z/r)*h(r)

for ze€[0,7] where h(z)=min(f(z)— f(0),g(z)— g(0)),

and discuss the existence of at least two positive solutions for a certain
range of A\. Namely, we prove:

Theorem 1.3. Let (A.1), (A.5) and (A.6) hold and m > 1 be such
that h(r) < mh(r) where h(z) = max(f(z) — £(0),g(x) — g(0)). Then
there exists C(m) > 0 and an interval I such that if h(r) > C(m), then
(1.1) has at least two positive solutions for A € I.

We note that multiplicity results for the case of superlinear semi-
positone single equations was known only in the case when p(t) = 1, see
[6]. Thus, Theorem 1.3 is new even in the case of single equations. Also
in the case when f(0) = 0 = g(0) the existence of at least two positive
solutions for 0 < A < A** for some A\** > 0, follows by modifying the
proof of Theorem 1.3.

We prove Theorem 1.1 in Section 2, Theorem 1.2 in Section 3 and
Theorem 1.3 in Section 4. In Section 5 we discuss various examples
satisfying the hypotheses of Theorems 1.1-1.3. Our proofs are based
on fixed point theorems in a cone.
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2. Proof of Theorem 1.1. Let w be the solution of

(p(H)w') = =Ap(t)M
w(a) =0 = w(b).

Then there exists a K > 0 such that
(2.1) w(t) < AK7r(t)

where r(¢t) = 1/(b — a) min(¢t — a,b — t).

Next we note that (u,v) is a positive solution of (1.1) if and only if
4 =u~+w, ?=v+ w is a solution of

(2.2) (p(&)7) = (i -

with @ > w, ¥ > w, where

f(ﬂ?, y) = f(max(m, 0):maX(Ov y)) + M,

and
g(z,y) = g(max(z,0), max(0,y)) + M.

Now for each (@,v) € Cla,b] x Cla,b], let (u,v) := A(4,v) be the
solution of

(p(t)u')

(2:3) (p(£)0")’

1

[
>

Qr -,
—

Let K be the cone defined by

K = {(u,v) € Cla,b] x Cla,b] :u(t) > |u|or(t),
v(t) > |v]or(t),t € [a,b]}

where | - |p denotes the supremum norm. Then A : K — K and is
completely continuous, see [3, 7].
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In order to prove Theorem 1.1, we recall:

Theorem A (see [8]). Let K be a cone in a Banach space E, and
let A: K — K be a completely continuous operator. Let 0 < r < R be

such that
u<Au=>|ulo # 7

u > Au = |ulo # R.

Hereu <wv ifv—u € K. Then A has a fized point u with r < |u|o < R.
Now, to apply Theorem A, we first prove

Lemma 2.1. For A > 0 small enough, there exists Ay > 0 such that
(u,v) < A(u,v) implies |(u,v)|o # Ax. Further Ay — 0o as A — 0.
Here |(u,v)|o := max{|ulo, |v|o}-

Proof. Let (u,v) € K satisfy (u,v) < A(u,v), i.e.,
b ~
u(t) < )\/ K(t,s)f(u—w,v—w)ds; tE€]la,b
b
v(t) < )\/ K(t,s)g(u — w,v —w)ds; tE€ la,b],

where K(t,s) is the Green’s function of (p(t)u’)’ = —hp(t) with
Dirichlet boundary conditions. Then

lulo < AC'sup{f(s,1) : |(s,1)]
[vlo < AC sup{g(s,t) : |(s,t)]

where C' = |K|o(b — a). This implies

|(u,v)]o < AC sup q(s,t) = ACH(|(u,v)|o)

0<s,t<|(u,v)o

where q(s,t) = max(f(s, 1), (s, )), or

(2.4) >

1
Yok
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Suppose that A < (1/(2CH(1)). Then (H(1)/1) < (1/(2AC)) and
since lim,_, o (H(z)/z) = 00, see (A.3), there exists Ay > 1 such that
)

H(A)) 1
(2.5) = ne

From (2.4) and (2.5), we deduce that |(u,v)|o # Ax. Since H(Ay) =
(Ax/(2XC)) > (1/(2AC)) — o0 as A — 0, Ay — o0 as A — 0, and
therefore (Ax/A) — oo as A — 0. We next prove:

Lemma 2.2. There exists Ry > Ax such that (u,v) > A(u,v) =
|(’U,,U)|0 75 R)\.

Proof. Let (u,v) € K satisty (u,v) > A(u,v), i.e.,

b
u(@) 2\ [ Ko fu-wo-w)ds oclay
and .
v(x) > )\/ K(z,y)§(u —w,v—w)dy; =z € [a,b].
Suppose that |(u,v)|o = |ulo and let [¢,d] C (a,b). Then we have
(u—w)(z) > |u|or(z) — AKr(z) > (lulo — AK)S; € [c,d],

where § = minj. 4 r(x). Here, without loss of generality, we assume
that |u[o > AK. Hence,

inf{g(s,t) : s > (Julo — AK)d,t > 0}
inf{f(s,t) : t > (lulo — A\K)&,s > 0}

where ¢ = {ming. g)x[c,q) K (,¥)}(c — d). Further,

inf{f(s,t) : s > (lulo — A\K)d,t > B(|ulo)}
inf{g(s,t) : s > B(|ulo),t > (|Julo — AK)d}
= AeA(|ulo)

(2.6) lulo > )\Emin{
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where B(|ulo) = (B(|u|o) — AK)é and hence

A(lulo)

ulo

1
Y

<

Once again, without loss of generality, we assume |uly is large enough
so that B(|ulo) > AK. Since lim,_, o, (A(x)/x) = oo, see (A.3), there
exists Ry > A such that (A(Ry))/R)) > (2/(A\é)). Consequently,
|ulo # Rx. Similarly, |v]o # Ra if |(u,v)]o = |v]o.

Now, using Lemmas 1 and 2 and Theorem A, we establish Theo-
rem 1.1.

Proof of Theorem 1.1. From Lemmas 2.1, 2.2 and Theorem A, it
follows that there exists

(ﬂ)\,’ﬁ)\) € K with |(ﬁ)\,17)\)|0 > A, such that (ﬁ)\,f})\) = A(ﬂ)\,ﬁ)\).

Without loss of generality, we assume that |(@x, 0x)| = |@a]o. Then

ur(z) = ax(z) — w(z)

since Ay — oo as A — 0. Also, we obtain

[oalo > Aeinf{j(s,t) : s > (Ax — AK)d,t > 0} = Acdy,
where ¢ = {minjc gx[¢,a) K (7, y)}(c — d). Note that Ay — coas A — 0
and so Ay — oo as A — 0. Consequently, vx(z) > |Ox|or(z) —

AKr(x) > AcAy — K)r(z) > 0 for X small. This completes the proof
of Theorem 1.1. o

3. Proof of Theorem 1.2. First we prove:

Lemma 3.1. For A > 0 large enough, there exists By > 0 with
(Bxr/A) = 00 as A — oo such that (u,v) > A(u,v) = |(u,v)]o # Ba-
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Proof. Let (u,v) € K satisfy (u,v) > A(u,v). Suppose that
|(u,v)|o = |ulo. Then, as in Lemma 2.2, see (2.6), we obtain

(3.1) fulo > AZA(lulo).

Now suppose that A > (2/(¢M1)) where My = M/2(> 0). Then

AQ) 2
S M > —
Y.

and since lim,_,~(A(z)/z) = 0, there exists By > 0 such that

(3.2) Ag‘?) = %

From (3.1), we have (A(|ulo)/|uo|) < (1/(Aé)) < (2/(A\é)) and hence
by (3.2) we deduce that |ulp # Bx. In a similar way, we obtain
[vlo # B if |(u,v)|o = |v|o. From (3.2), it follows that By — oo
as A — 0o, and since lim, ,, A(z) = oo, we obtain By/\A — oo as
A — 00.

Next we prove:

Lemma 3.2. Let A be as in Lemma 3.1. Then there exists Ry > By
such that
(u,v) < A(u,v) = |(u,v)|o # Ra.

Proof. Let (u,v) € K satisfy (u,v) < A(u,v). Then |(u,v)|o <
AC sup{hi(s,t): 0 < s,t < |(u,v)|o} = ACh(|(u,v)|o), where hy(s,t) =
max(f(s,t),g(s,t)) and h(z) = sup{hi(s,t) : 0 < s,t < z}. Thus,

=) _,

>
—~~
—
8

<
SN—
=
S—r

Vv
>

1

—_ > — hil li
(o)l = AC "0 2B

Hence it follows that there exists Ry > By such that |(u,v)|o # Ra.

We now establish Theorem 1.2 by using Lemmas 3.1, 3.2 and Theo-
rem A.
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Proof of Theorem 1.2. It follows from Lemmas 3.1, 3.2 and The-
orem A that there exists (@x,0)) € K with [(@x,05)]o0 > B if
A is large enough. Without loss of generality we can assume that
[(@x, Ox)|o = |@|o. Then

ux(t) = a(t) — w(t)
> Jialor(t) — AEr(t)

ZA[%—K]r(t) >0

for A large. Consequently, from ¥ (t) = A fab K(t,s)g(ay—w,vy—w)ds,
we obtain

|5xlo > Aginf{g(s,t) : s > A[(Ba/A) — K]6,t > 0} = AéDy,

and
uaA(t) = Oa(t) — w(?)
> [Balor(t) — AKT(2)

> A\eDy — Kr(t), te (a,b).

Since Dy — oo as A — oo, this completes the proof of Theorem 1.2.
]

4. Proof of Theorem 1.3. Here we assume f(u,v) = f(v),
g(u,v) = g(u), (A.1), (A.5) and (A.6).

Let w; and ws be the solutions of

(p(t)wy)" = Ap(t)£(0)
wy(a) = 0 = wq(b)

and

respectively. Then there exists K > 0 such that
wi(t) < AKr(t); i=1,2,

where r(t) is as before.
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Now (u,v) is a positive solution of (1.1) if and only if & = u+w; and
U = v + wy satisfy:

(4.1) (p

Here

; {f(S)f(U) if 5 > 0
0 ifs<0

and

{9(8)—9(0) if 5 >0
0 if 5 < 0.

For (uy,v1) € Cla,b] x Cla,b], let (u,v) = A(uy,v1) be the solution
of

(4.2) p(t)v') = —Xp(t)

Let K be the cone defined by
K = {(u,v) € Cla,b] x Cla,b] : u(t) > |ulor(t),v(t) > |v|or(t)}.

Then A : K — K is completely continuous. Let the Green’s function
K(s,t), constants C, ¢ and ¢ (< 1) be as before. Let
2K

(4.3) h(r) > C(m) = ‘= [

e 1 V(1)
A

C2%m

Choose 7 so that

2rK < ese \ M
Ch(r) 7 C2om "
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hLet I = ((v/(eh(v6/2))), (r/(Ch(r)))). Then I # @, since v < r and
e v v v em(2r)®
h(76/2) = s/ @) o) < a@oeh(n)

< co* G \m2r)* r
C2em’ ) @eh(r)  Ch(r)’

We claim that (1.1) has two positive solutions for A € I. To prove
our claim first we prove:

Lemma 4.1. If (u,v) < A(u,v), then |(u,v)|o # r.
Proof. Suppose that (u,v) < A(u,v). Then
) <) [ Kw) o un)w)dy
and .
o@) A [ Kla)gu =)o) do
Assume that |(u,v)|o = |u|o = r. Then
[ulo < ACF(Jv]o) < ACF(Julo) < ACh(Julo)

or (r/(Ch(r))) < A, a contradiction with A € I. Similarly, if |(u,v)|o =
|vlo = 7, we obtain a contradiction.

Next we prove:
Lemma 4.2. If (u,v) > A(u,v), then |(u,v)|o # 7, R where R > r.

Proof. Suppose that (u,v) > A(u,v) and |(u,v)|o = |ulo = 7. Now

wwzx/'K@wmw—wa@m%
and

u(y) — wi(y) > |ulor(y) — AKr(y)
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since

Hence, we obtain
) 6
v =lulo > [v]o > )\Eg(%) > AEh(%),

h(v(6/2))
y AC

(4.4)

which is a contradiction since \ € I.

Thus, |u|g # 7. Also, if |ulp = R > r, then repeating the above
steps in establishing (4.4) we obtain (h(R(6/2))/R) < (1/(Aé)). But
since lim,_,o (h(z)/x) = oo, there exists R > r such that |u|p # R.
Similarly, Lemma 4.2 can be proven in the case when |(u,v)]o = |v]o.

Now we establish Theorem 1.3.

Proof of Theorem 1.3. From Lemmas 4.1, 4.2 and standard fixed
point theorems, it follows that (4.1) has solutions (@, 71) and (dg, 92)
with |(’EL1,171)|0 > r and Yy < |(ﬁ2,172)|0 <r.

Now suppose that |Gz]o > |02]g. Then
up(z) = tz(z) — wi(w)
> |dz|or(z) — AKT(z)
> (y — AK)r(z)




SOLUTIONS FOR SEMI-POSITONE SYSTEMS 1297

for z € (a,b). Using 02(z) = )\f:K(m, ¥)§(@2 —wy) and the fact that
G2(y) —wi(y) > (v6/2); y € [e,d], we deduce that

|T2]o > /\(‘:g(%é) > Aah(%‘s) > /\(‘:(;—6) h(r) > \K,

see (4.3). This implies
o (z) — wa(x) > |Talor(z) — AKT(z) > (AK — AK)r(z) = 0.

Similarly, one can prove that 4; > w;(z) and ¥; > wa(z). Hence, the
result. O

5. Examples. In this section we discuss examples satisfying the
hypotheses of Theorems 1.1-1.3.

Example 5.1. Let

flu,v) = v?v® +utv—1,

g(u,v) = u*v* +u+v—1.

Clearly (A.2) is satisfied. Further, f(u,v) > v —1 and g(u,v) >u —1
and h*(z) = 2% + 22 — 1 and thus (A.3) is satisfied, and hence all the
hypotheses of Theorem 1.1 are satisfied.

Example 5.2. Let

Fluyv) = w20Vt L2 g yl?
g(u,v) = uBpl/8 4y t/3 4 /8 1,
Clearly (A.2) is satisfied. Further f(u,v) > v'/? —1 and g(u,v) >

u'/® — 1 and h(z) = 23/* + 2z1/2 — 1 and thus (A.4) is satisfied and
hence all the hypotheses of Theorem 1.2 are satisfied.

Example 5.3. Let
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and

o) = { (ka)z'/® —1; = €]0,1],

- (ka)zPr —1; x>1,

where @ > 0, k > 1, 8> 1 and B; > 1. Then clearly (A.5) is satisfied
and taking r = 1 we have h(z) = az'/?, h(z) = kaz'/?, and hence
h(1) = a and h(1) = ka. Thus, for « = (1/2), (A.6) is satisfied, and
since m = k, if a > C(m) = (2K/C)[Cy*/(C2%k)]~/(1=) then all
the hypotheses of Theorem 1.3 are satisfied.

Example 5.4. Next we discuss an example for the single equation
case (or when f(z) = g(z)). In this case Theorem 1.3 holds if (A.1) is
satisfied, f : [0,00) — R is a continuous, nondecreasing function such
that f(0) <0, lim, 00 (f(z)/2) = 00, there exists r > 0and 0 < a < 1
such that f(z) > (z/r)*f(r) for € [0,r] where f(z) = f(z) — f(0)
and if

Y o el A

_Now consider f(z) = a(x¥? 424 =15 a4 > 0. Taking 7 = 1 we have
f(z) = a(a®/? + z1/%) > 2a(2/2. 1/ V2 = (2/1)7/8.f(1).

Hence, if a is large enough, f(1)(= 2a) will satisfy (5.1), and all the
necessary requirements will be satisfied for Theorem 1.3 to hold.
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