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Introduction. In the second of his two influential papers from the
mid-sixties, George Glauberman proved a fundamental theorem about
the existence of a special automorphism of order three on the multi-
plication group of Moufang loops with trivial nucleus [3]. Glauber-
man’s result motivated Stephen Doro a decade later to define a class
of groups that also admit a special automorphism of order three, the
so-called groups with triality [2]. Not surprisingly, this class of groups
is intimately related to the class of Moufang loops. Doro sites Glauber-
man’s result in showing that each Moufang loop with trivial nucleus
has multiplication group that is with triality. Unfortunately, not ev-
ery Moufang loop multiplication group is itself a group with triality,
although each is an image of some group with triality [2]. Continuing
the work of Glauberman and Doro, this paper enlarges the class of
Moufang loop multiplication groups with known triality status. In the
process, new light is shed on the fundamental importance of two signal
classes of Moufang loops: the commutative Moufang loops of exponent
three and the Moufang loops with trivial nucleus.

1. Basic definitions. A quasigroup is a set () with a single binary
operation, denoted by juxtaposition, such that in xy = z, knowledge of
any two of z, y and z specifies the third uniquely. A loop is a quasigroup
L with a unique two-sided identity element. A Moufang loop is aloop M
satisfying the identity ((zy)z)z = x(y(xz)). If there exists a smallest
positive integer n such that z™ = 1 for every = in M, we will write
exp(M) = n (M has exponent n).

The nucleus, Nuc (M), of a Moufang loop M is the normal subloop
of all elements that associate with all pairs of elements from M. That
is, Nuc (M) := {r € M : Vy,z € M(zy)z = z(yz)}. The Moufang
center, C'(M), of a Moufang loop M is the (not necessarily normal)
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subloop of all elements that commute with every element in M. That
is, C(M) :={z € M :Vy € M,zy = yz}. The center, Z(M), of a
Moufang loop M is the normal subloop of all central, nucleus elements.
That is, Z(M) := C(M)NNuc (M). An autotopism on a Moufang loop
M is a triple (U, V, W) of bijections on M such that, for every z,y in
M, (zU)(yV) = (zy)W.

Given a Moufang loop M, for every m € M, the following two set
maps are bijections:

R(m): M — M; z— am
L(m): M — M; x+— muz.

The R(m) and L(m) generate a subgroup of the group of all bijections
on M, called the (full) multiplication group MItM of M:

MIUtM = (R(m),L(m) : m € M) .

Given two Moufang loops M and N with M < N, the relative
multiplication group, Mty M of M in N is the subgroup of the group
of all bijections on N generated by the R(m) and L(m) as m ranges
through the subloop M:

Mty M := (R(m),L(m) : m € M)n.

There is an involutory automorphism J on Mty M, defined on gener-
ators by

(1.1) R(z)” = L(z™') and L(z)’ = R(z™1).

2. Glauberman’s p extended. Glauberman showed that if
Nuc (M) = 1, then MItM admits an automorphism p of order three,
defined on generators by

(2.1) L(z)? = R(z), R(z)’? =P(z) and P(x)” = L(x),

where P(z) = R(z !)L(z~!). Together with the involutory automor-
phism J given by (1.1), this p generates the symmetric group on three
symbols [3, Theorem 6].
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It is natural to attempt to extend Glauberman’s result by asking
whether other Moufang loop multiplication groups admit an order three
automorphism p satisfying (2.1). The general question becomes: given
two Moufang loops M and N, with M < N, does Mty M admit
Glauberman’s order three automorphism p satisfying (2.1)? Lemma 1
gives two necessary conditions.

Lemma 1. MltyM admits Glauberman’s p only if both
(a) exp[M N C(N)] =3 and
(b) [M NNuc (N)] < C(M).

Proof. (a) Let © € [M NC(N)]. This means that L(z) = R(z). Since
Glauberman’s p is defined on Mty M, we must have L(z)? = R(x)’.
That is, we must have R(z) = P(z). This in turn implies 23 = 1.

(b) Let # € [M N Nuc(N)]. Then, for every y € M, we have
L(z)L(y) = L(yx). Since Glauberman’s p is defined on Mty M, we
have L(z)?L(y)? = L(yz)?. That is, we must have R(z)R(y) = R(yz).
This implies that zy = yx. Thus, z € C(M).

One consequence of Lemma 1 is that Glauberman’s p is defined on
the full multiplication group MItM only if both exp[C(M)] = 3 and
Nuc (M) = Z(M). In particular, if M is a group, MItM admits
Glauberman’s p only if M is abelian of exponent 3.

In view of Lemma 1, we will restrict our attention to those multiplica-
tion groups M1ty M with exp[MNC(N)] = 3 and with [M NNuc (N)] <
C(M). In this case define a map p* on the generators of Mty M by

(2.2) L(z)"" = R(z), R(z)” =P(z) and P(z)” = L(x).

(Note: to define p*, exp[MNC(N)] = 3 is the only necessary condition.)
We must decide if p* extends homomorphically to all of Mty M. Note
that p* extends homomorphically if and only if

(2.3) Q1(71)Qz2(22) - - Qn(zn) = 1

implies

*

Ql(xl)p*Q2(m2)p* e Qu(zn)” =1
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where each Q;(z;) is either R(z;) or L(z;). Applying Lemma 2.1 in
Section 7 of [1] to the following autotopism on N,

[Q1(21)Qa(z2) - - Qu(n), Q1(21)” Qa(z2)”" -~ Qu(z,)”,
Q1(21)”" Qa2(22)"" -+ Qn(xn) "]

yields
(2.4) Q1(71)Q2(z2) - Qn(zn) =1
implies
Qu(@1)”" Q2(22)” - Qn(wa)” = R(c)
for some ¢ € [Nuc (N) N (z1,x2,...,2,)]. Thus, p* extends homomor-

phically to all of Mty M if and only if ¢ =1 in (2.4). This proves

Theorem 2. If[M NNuc (N)] = 1, then p* extends to Glauberman’s
p on MltyM. (Of course, the special case M = N yields precisely
Theorem 6 in [3].)

Not surprisingly, Moufang central elements of exponent three are also
of special interest.

Theorem 3. If M < C(N) and if exp(M) = 3, then p* extends to
Glauberman’s p on Mlty M. (So, in particular, if M is a commutative
Moufang loop of exponent three, then MItM is with triality.)

Proof. In this case, p* acts trivially and so extends to p =1 in (2.1).
Theorems 2 and 3 suggest the following.

Theorem 4. If Glauberman’s p is defined on MltyL for some
subloop L of M (for instance, if LN Nuc (N)=1), and if M ~ H x L,
for some subloop H < [M N Z(N)] with exp(H) = 3, then p* extends
to Glauberman’s p on Mty M. (Note that if M = N, H = Z(M) and
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M =~ H X L, a situation we will be interested in later, we must have

Nuc (L) =1, by Lemma 1.)

Proof. Each element in MltyM can be written as R(z1)R(z2) -
R(zm)Q1(21)Q2(x2) - - - Qn(zy), where each z; € H and each z; € L. So
here the antecedent in (2.3) translates to R(z1)R(z2) - - - R(zm )Q1(z1) X
Q2(x2) -+ - Qn(z,) = 1. This can be rewritten as R(z122 - - - 2 ) Q1 (1) X
Q2(x2) - Qn(z,) = 1. Since H and L intersect trivially, we must have
2122 Zm = 1. And so we have Q1(z1)Q2(z2)---Qn(x,) = 1. Since
Glauberman’s p is defined on Mlty L we must have Ql(azl)p*Qg (:vg)p*
-+ Qn(z,)?" = 1. Finally, since exp(H) =3, we have R(21)" R(z)" - --
R(2m)?" Q1(21)"" Qa(22)" -+ - Qu(zn)” =R(21)R(22) - -+ R(2m) = R(2122
=1.

There is a general relationship between the existence of Glauberman’s
p on MItM and the existence of Glauberman’s p on the relative
multiplication groups involving M.

Theorem 5. The following are equivalent.
(a) Glauberman’s p is defined on MItM.

(b) Glauberman’s p is defined on Mltxy M for every Moufang loop N
with M < N.

(c) Glauberman’s p is defined on Mlty L for every subloop L of M.

Proof. (a) — (b). We must show ¢ = 1 in (2.4). Note that if
Q1(x1)Q2(x2) - Qn(xn)=1in Mty M, then Q1 (x1)Q2(x2) - - - Qn(Zn)
=1in MItM also. And, since Glauberman’s p is defined on MItM, we
must have Q1 (z1)? Qa(z2)? -+ Qn(zn)? = 1 in MItM. This means
that, for every m € M, we have

*

(2.5) mQ1(w1)p*Q2($2)p* < Qu(zy)” =m.

*

By (2.4), Q1(21)? Qa(x2)? ---Qu(x,)? = R(c) in MltyM, for some
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¢ =1R(c)
=1Q1(21)" Qa(22)” -+ Qu(xn)” (considered in MityM)
= 1Q1(x1)l)* Q2(m2)p* .- -Qn(mn)p* (considered in MItM)
1 (by (25)).

(b) = (c). Take N = M, so that Glauberman’s p is defined on Mt M.
Glauberman’s p on Mlty, L is simply the restriction of Glauberman’s
pon MItM to Mlty L.

(c) — (a). Take L = M.

3. Groups with triality. Motivated by Glauberman’s work, Doro
[2] calls a group G a group with triality if it admits two automorphisms
J and p such that

(3.1) J2=1,
P> =1,
(3.3) pJpJ =1, (thatis, p and J generate the
symmetric group on three symbols)

(3.4) VgeG, g lglgrg’rgrrgf’ =1,

(3.5) (9% g€ G0 (Jp)=aG.

Equations (3.1)—(3.3) are obvious generalizations of Glauberman’s
work. Though less obvious, (3.4) and (3.5) are also generalizations
of Glauberman’s work. In any event, Doro’s groups with triality
are related to the class of Moufang loops by virtue of their status
as progeny of Glauberman’s work. This relationship is even more
fundamental. Doro showed that each Moufang loop is realizable as
the loop transversal to the stabilizer subgroup of the automorphism J
of some group with triality. Conversely, from each group with triality,
Doro showed that a unique Moufang loop is so realizable.

If Glauberman’s p is defined on Mty M, then it is routine to check
that p together with J make Mlty M a group with triality. Although
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there could be other automorphisms defined on Mty M making it a
group with triality, we are concerned here only with J and p. Hence,
since Mty M automatically admits the involutory J, see Section 1,
we will abuse the language and say that Mty M is with or without
triality, according to whether it does or does not admit precisely the
automorphism p given by (2.1). Doro [2, Corollary 5] noted that M1¢M
is with triality in the event that Nuc (M) = 1. But, unfortunately, not
all Moufang loop multiplication groups are with triality. The results
from Section 2 give general conditions under which MltyM is (or is
not) a group with triality. For instance, Theorem 2 tells us that if
[MNNuc (N)] = 1, then Mty M is a group with triality, while Lemma 1
tells us that if there is an z € [M N C(N)] with ® # 1, then Mty M
is not with triality.

4. Conclusion. We have enlarged the class of Moufang loop mul-
tiplication groups Mty M with known triality status by considering
which of them admit Glauberman’s special automorphism p. In partic-
ular, we have generalized Corollary 5 in [2] by determining the triality
status of MItM for a rather general and large class of Moufang loops.
To wit, let K be the class of Moufang loops, M, such that

(4.1) 1< Z(M) < C(M) < M,
(42) explC(M)] = 3,

and

(4.3) M # Z(M) x L, some subloop L.

Let K be the (rather general and large) class of those Moufang loops
that are not members of K.

Theorem 6. For a Moufang loop M belonging to K, MItM is with
triality if and only if

(4.4) Z(M) = Nuc (M),

(45) explC(M)] = 3,

and

(4.6) M~ Z(M) x L, for some subloop L

with Nuc(L)=1; or C(M)=M.
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Proof. If C(M) = M, Theorem 3 establishes sufficiency. If Nuc (L) =
1, then Theorems 2 and 4 establish sufficiency. Lemma 1 establishes
the necessity of both (4.4) and (4.5). This, together with restriction
to K, establishes the necessity of Z(M) appearing as a direct factor
of M in some factorization (in the event that C(M) < M). This in
turn implies that Nuc (L) < Nuc (M). But Nuc (M) = Z(M), which
intersects L trivially. This establishes the necessity of Nuc (L) = 1.

Theorem 6 underscores the fundamental roles played by commutative
Moufang loops of exponent three and by Moufang loops with trivial
nucleus in the general theory of Moufang loops.
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