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EMBEDDING DERIVATIVES OF
M-HARMONIC FUNCTIONS INTO L? SPACES

MILOS ARSENOVIC

ABSTRACT. A characterization is given of those Borel
measures p on B, the unit ball in C", such that differentiation
of order m maps the M-harmonic Hardy space H? boundedly
into LY(p), 0 < ¢ < p < +00.

1. Introduction. Let B denote the unit ball in C", n > 1,
and m the 2n-dimensional Lebesgue measure on B normalized so that
m(B) = 1, while ¢ is the normalized surface measure on its boundary
S. We set dr(z) = (1 — |z|*) 1 ™ dm(z). For the most part, we will
follow the notation and terminology of Rudin [10]. If & > 0 and £ € S,
the corresponding Koranyi approach region is defined by

Do(§) ={z=meB: |l - (n& <a(l-r)}

those regions are equivalent to the standard approach regions {z € B :
I1—(z2,€)| < 271B(1—|2]?), B > 1}. For any function u on B we define
a scale of maximal functions by

Mou(§) = sup{|u(z)] : z € Da(§)}-

Let A be the invariant Laplacian on B. That is,

1
n+1

(Au)(z) = A(uo ¢:)(0), ueC*B),

where A is the ordinary Laplacian and ¢, the standard involutive

automorphism of B taking 0 to z, see [10]. A function u defined on B
is M-harmonic, u € M, if Au = 0.

For 0 < p < o0, M-harmonic Hardy space HP is defined to be
the space of all functions v € M such that M,u € LP(o) for some
a >0, ||lull, = ||Maull,. This definition is independent of « and the
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62 M. ARSENOVIC

corresponding norms are all equivalent. The space H? N H(B) is the
usual Hardy space and it will be denoted by HP.

For 0 < ¢ < 1, we define nonisotropic balls, that is, the balls in the
Bergman metric on B, by E.(z) = {w € B : |¢,(w)| < e} = ¢,(B:(0)).
For £ € Sand 0 < 0 < 2, set Q5(§) = {n e S :]1—-(n&)| < d}.
Note that o(Qs(€)) ~ 0™ Also, for w € B and a > 0, define
So(w) = {€ €S :we Dy} For a measurable function g on S,
we define its maximal function with respect to nonisotropic balls Qs:

* _ 1 o
M50 =300 2 5 919

We say that a sequence (zx) in B is e-separated if the nonisotropic
balls E.(zy) are mutually disjoint.

All our definitions are independent of the aperture «; the omission of
a subscript « implies that o = 1. If p is a positive Borel measure on B
and if 0 < r < 0o, we define

1/r
A, u(e) = ( / . IUITdu> ;

we also set Ao yu(€) = p—supess{|u(z)|: z € D(§)}. If du = dr, we
write simply A,u(§). Now we define tent spaces T°(u), 0 < r < o0,
0 < s < o0, see [2] and [9], as the set of all (equivalence classes of)
measurable functions u on B satisfying ||ull,s = |4 ul|Le(0) < 00. If
(z1) is a sequence of points in B and if u = ), 6.,, where §, denotes
the unit mass measure at z, then 7%(2) stands for 7:¥(u). In that case
elements u in T%(z) are in fact sequences by, = u(zy).

For u € C*(B), we set Vu = (0u/8z1,...,0u/dz,,0u/dz,...,
Ou/0Zyp), zx = Tag—1 + T2k, k = 1,... ,n. More generally, for m > 1,
we define, using multiindex notation, V™u = (9%9° U)|a|+|8|=m and

Vruz)? = Y 10%9%u(z))
o +1Bl=m

We introduce the area integrals by

82, u(€) = /D [P A1) ),

EeS, a>0, m>1.
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Let us consider the following problem.

Find a necessary and sufficient condition on a positive Borel measure
p on B such that V™u € L9(p) whenever u € HP.

A standard application of the closed graph theorem tells us that the
above is equivalent to the existence of a constant C' < oo such that
V™ ullLaguy < Cllullp.

The case 0 < p < g < oo was settled in a series of papers [6, 5
and 4]. In this paper we solve the question in the remaining case
0 < g < p < oo. We note here that the same problem was treated in
the R™-setting, a complete solution was obtained in papers by Luecking
and Shirokov [9, 8, 11 and 12]. The main result of this paper is the
following theorem, which appeared as a conjecture in [6].

Theorem 1. Let p be a positive measure on B, let m > 1 be an
integer, and let 0 < & < 1. Assume that 0 < g < p < co. Set

1(Ee(2))
(1 = [2f)rtma’

9:(2) =
A) If 2 < g, then the following conditions are equivalent:
1) V™u € Li(p) for every u € HP.

2) There is a constant C' < oo such that [|V™u|| ey < Cllullp for all
u € HP.

3) Awoge € LP/(P=9)(g).

4) If (zx) is an e-separated sequence in B, then

/S< s M>p/(pq)dg(§)<oo_

zeen(e) (1= |zx|)tma

B) If 0 < g < 2, then the following conditions are equivalent:
1) V™u € Li(p) for every u € HP.

2) There is a constant C' < oo such that [|V™u||ge(uy < Cllull, for all
u € HP.

3) Azj(2—q)9c € LP/P79 (o).
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4) if (zx) is an e-separated sequence in B, then

[ > <—( B ) >2/(2q)](2q)/zeLP/@q)(da(&))-

_ n+mgq
wenie N L))

Constants will be denoted by C which may indicate a different
constant from one occurrence to the next.

This paper is organized as follows. In Section 2 some preliminaries
and auxiliary results are collected. In Section 3 we prove the main
theorem.

2. Preliminaries. We collect here some results for future reference.

Lemma 1 [7]. Let m > 1 be a nonnegative integer, 0 < p < co and
0 < e < 1. Then there is a constant C = C(m,n,l,p,e) such that, for
every M-harmonic function u we have

V™ u(w)|P < C(1— |w|)(l_’")p/ |Viu(2)|P dr(z), w € B.

E.(w)

For the next lemma, see [6] and [3].

Lemma 2. For u € M, the following are equivalent:
(i) u € HP.

(ii) For some m >1, Sy, 4u € LP(do).

(iii) For all m > 1, Sy, qu € LP(do).

Note that the norms ||ul[, and ||Sy, o u||Lr(s) are equivalent on HP.

Lemma 3. Let A > 1 and 1 < p < +o0. Set, for g € L'(0),

= —1—\z| /\" —|z)™" o
mae) = [ (=) A= g oo
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There is a constant C'= C(\,n) such that, for every € € S,

(1) (Ao Hrg)(§) < C(M7g)(8).

In particular, [[Aocc Hag||)Lr(o) < Canp

|gHLi"(a)

Proof. Let us prove (1). Fix g € L'(0), £ € S and z € D(£), |z| = 7.
Set So={neS:|1-m&|<l-rand Sy ={neS:2k1(1-r)<
|1—(n,&)| < 28(1—r)} for k > 1. Since |1 —{(z,n)| > 1—|(z,n)| > 1—|z|
and since |1 — (z,n)| > C|1 — (&, n)|, see [10, Lemma 5.4.3], we have

[Hxg(z)] < (1 —r)"" Ig( )| do(n)

177,,)\71 n
O M e
< C(M7g)(§)

(1—r)*"="|g(n)]
X o BT 0

< [o +C2 Y 2"<H>k] M*g(€).
k

2"7(1—

Hence, A Hrg(§) < C(M*g)(§). The LP estimates follow from the
corresponding estimates for the maximal function M*g.

If v is a positive Borel measure on B and if F' > 0 is measurable on
B, then for some constants C1 = C1(n,a) and Cy = C3(n, a):

01//0(0 At as) < [ Fw i)
<02// P 1_|w‘ )do(g).

To prove this, one applies Fubini’s theorem to F(w)X4(w, §) dv(w) do (),
A={(w,§) € BxS:we Dy(&)} and uses an estimate o(Sqy(w)) ~
(1 =Jw)™ o

The first application of this simple observation is in the following
lemma.
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Lemma 4. Let 0 < s < oo, A > max(l,1/s). Then there are
constants C, = C1(s,n, A, a) and Cy = Cy(s,n, A\, ) such that

¢ [wpa©)ydoe) < [ ( / (ﬁ) du<z>)sdo<s>

<0 /3 ((Da(£)))* do (€)

for every positive measure dv on B.

Proof. The first estimate follows from the fact that 1 — |z| >
a1 — (z,€)| for z € Dy(€). The second estimate in case 0 < s < 1
was stated in [6]. However, the condition As > 1 is missing there and
the proof contains a gap which we are going to fill in below.

In that paper the problem is reduced to proving an inequality

o [([ (%)M9<z>w<z>)wda<ascngnT;

where rs = 1 and g(z) > 0is a § — T,> atom, 8 > a, so that g is
supported in @3 and

[ lara - jz) tdm(e) < 0@y .

Qg
Note that, with the above normalization, we have to estimate the
lefthand side of (3) by a constant. One can assume @ = Q(ey,?)

and then split the outer integral into two parts: the integral I; over
|1 — &1| > 26 and the integral Iy over |1 — & | < 26.

The estimation of I, is carried out in [6], we now give a correct
estimation of I;. Since

1-[z] \M P o e )
<|1<z,s>|> S N E o
zeQ, |1—6&>26,

we have, using [10, formula 1.4.5],

r 1/r
05 1— |2 11—ty 28 |1 = ELA/T

< Cé(l—r)n/rg()\n—n)/rjts .
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where
Jar= [ (LR g M pd
Us
and Us = {w € C : |w < 1,]1 — w| > 26}. Using inequality

|1 — p| < |1 —pe?|, p < 1, and then working in polar coordinates
w =14 ue', we get

Jor <O [ 1 pet |2 pd
Us
2
< C/ uf)\n/rJrnfl du
20
< C6n(1—)\/r)'

The last inequality is based on the assumption As > 1. Combining
these estimates we get I; < C, as desired.

We now assume s > 1 and use a duality argument. Let s’ be the
conjugate exponent and choose a nonnegative ¢ € L*® (o). If we set

)= [ (%)M«p@)do(&),

then, using (2) and the previous lemma, we get

7= [vo( /) <1l_<z|s>|>md”(z)>d"(@
- / Ua(2) dv(2)
sof f . T () do(6)

<0 [ an (28 ) ae) ante)
< ClldsHxb | o) IADa €)

< Cll9lls [ (Dal)ls,

Le(do(£))

where we used that ¥ (2)(1 — |z]) ™" = Hxy(2). u]
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Lemma 5. Let 0 <p<oo,t>0and A =n+1+t. Assume Ap > 2,
let (zx) be an e-separated sequence, and define

1—
()
(z, z1)
for (by) € TY. Then Sy : TY(zr) — HP is a bounded operator.

This lemma was proved in [6] for 0 < p < 2. However, the same proof
extends to the full range since we have at our disposal the previous
lemma, valid for 0 < s < co. See [6] for details.

We conclude this section with a duality result for tent spaces.

Lemma 6. Let1 <7 < +oo, 1 < s < +oo, and let ' and s’ be
the corresponding conjugate exponents. Assume dv is a positive Borel
measure on B. Then the dual of T(v) is TS (v), with respect to a
pairing

() = /B u(2)u(2)(1 = [2)" du(z).

The dual of T}}(v) was described in [6].

Proof. If u € T*(v) and v € T,?,'(z/), then, using (2),

(u,v)| < © /3 / o wldvao©) <

which shows that 1'% (v) is contained in T2%(v)*.

Now assume that A € T?(v)*. We follow a method used in [9].
The space T(v) embeds isometrically into a Banach space L"L® =
L"L3(dv(z)do(€)) consisting of all measurable functions F'(z,¢) such

that o
1Pl = [ ([ FGoran) dne < +o0

by a mapping u(z) — u(2)Xp(e)(2). Since the dual of L"L* is L L*,
see [1], the Hahn-Banach theorem implies that there is a functlon

’ ’
T, r’,s'
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g € L"L* such that Au = [ fD(g yEu(z) dv(z)do(€). Using
Fubini’s theorem, we conclude that Au = fB (2)Pg(2)(1 —|z|)™ dv(2),
where

Pg(z) = (1 — [2)" / g )

Therefore, it remains to prove that P maps L"'L¥ boundedly into
TS (v).

Assume first that 7' = +o00; then h({) = v — suppess{|g(z,()| : z €
B} belongs to L® (do). If z € D((), then §{ € Q41—z))(¢) whenever
z € D(&). Therefore, for z € D(¢),

Pg(2)] < (1—[2)™" /Q l9 0 dol©) < OMA(Q),
4(1—|s|)

which implies that Pg € T (v).

Next assume ' = s'. Using (2) we see that the space T (v) is
characterized by the condition [, lu(2)|" (1—|2|)™ dv(2) < +oc0. Hence,
by Holder’s inequality and the estimate o(S(z)) ~ (1 — |2|)", we have

Lipara =yt = [Ja=te [ gee i "
<c/ /Zem £)|do(€) dv ()

< Cllgllgr -

Interpolation gives the result for s’ < 7’ < +o0o0. Using a duality
argument and self-adjointness of Xp )P : L"L® — L"L®, one extends
this to the case 1 < r’ < s’ < co and therefore finishes the proof. O

3. Proof of the theorem. We have already noted that 1) is
equivalent to 2). Let us prove that 3) implies 2). Using Lemma 1, we
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have, with £ = E1/2,

I:/ V™ u|?dp
B

C V™ul?dr(w) du(z
< /B /E V7wl drw) dua)
e /B (B (w)) 9™ u(w)| (1 — [w]?)="~ dw

< C/B (1= |w))™ V™ u(w)|?g(w) (1 — |w|) ™" dw.

We consider first case A). Using (2), we obtain

r<c /3 /D 0 )
g(w)(1 — [wl) ™ dwdo(€)

<c /3 (Ag)(€)S2,(6)

+sup |(1 = |w])™ V™ u(w)[*"? do (§).
D(&)
But it is easy to derive from Lemma 1 that supp (¢ |(1—|w|)" V™ u(w)| <
Csupp,,,, [u| = ¢(£) whenever 8 > 1. Hence, I < C [ AwcgS;,¢7 % do,
and that suffices because Ao g € LP/P=9) ¢ € LP and S,, € L? by
Lemma 2.

Now we turn to case B). By the assumption g(w) € T2p//((2p:;))(7') and

by Lemma 2, (1 — |w|)™|V™u(w)|? € TZP//;I(T). The result follows from
(4) and duality, Lemma 6.

Proposition 1. Let 0 < g < p < oo, and let u be a positive Borel
measure on B such that ||[V™ul|peu) < Cllullp, u € HP. Assume that
(2) is an e-separated sequence in B. Then

p(Ee(zr))

dp = 2
P Jz]yamn

belongs to the dual of Tg/{f (2r), with respect to duality

(k) (k) = drer(l — |ze)™
k
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We can assume that |z| is bounded away from zero: |zi| > ¢ > 0.

Proof. 'We choose (by) € T%(z;) and set u = Sy(by) where A\ >
max(n + 1,2/p). By Lemma 5 we have
1O 7r 2y = Clullz
> CvauH%q(u)
ZC Z ||a'85)\(bk)“%q(u)
|Bl=m

Now we fix 3, |3| = m and replace by, by byr(t) where ri(t),0 <t <1
are Rademacher’s functions. Note that this does not change the norm in
TP (z). Integration in ¢, Fubini’s theorem and the Khinchine inequality
give

187 Sx (0 )| 0,0
— o 2\ q/2
zo/B<zbk —>
>CZ/ S e

>cy |z£|q\bk|qM(1 .
k

(1 — |zg|)amn

The last inequality follows from an elementary fact that 1—|z| ~ 1—|z|
for z € E.(z;). Therefore,

00l 2 € 30 Iaflmnt A

|Bl=m &k

Since Elﬁlzm |zf|q > Ch,m,s,q uniformly over k, we can set ¢, = |by|?
to obtain

_ MEe(z))
2 qm+n T e = D" < Ol en)llggae,)
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for all positive (cx) € Tj //;( k), ¢k > 0, and then remove positivity
restriction.

This proposition, along with Lemma 6, gives implication 2) = 4) in
case B). The next proposition gives the same implication in case A).
O

Proposition 2. Let (z1) be an e-separated sequence, 0 <r <1 < s <
0o. Then the dual of T#(zy) can be identified with TS, (zx), where s’ is
the congugate exponent to s, in the following manner: for L € T2 (z)*
there is a unique (by) € TS () such that

Lu=Y u(z)b(l — |26])",  we TP(z),
k

and ||(bx)|| ~ ||L|. Conversely, every (bx) € T2 (zx) induces a
continuous linear functional on T2 (zx) by the above formula.

Proof. Let (by) € T% (z1). Since o(S(zx)) ~ (1 — |2|)™ and since
Spar < (X, ap)t/" for 0 < r < 1, we have

|Lu| < CZ |u(2k)br| do(§)
{€:20ED(6)}
—c/ S Ju(er)bw] do€)
zr€D(§)

<C/ <zks€1}jp |bk|>< > |U(Zk)r>1/rd0(§)

zr€D(§)
< BRI - ullrs-

We now turn to the harder part. Let us fix a continuous linear
functional L. Let ex(z;) = 0k, where §;; is the Kronecker’s delta
symbol, and let F' be the vector space of all finite linear combinations
of exs. Set b, = L(ex)(1— |z|)™™ and v = (bg). Then Lu = (u, (b)) =
(u,v) whenever u € F. Once we prove that ||(bx)||co,s < C < 400, the
proof is finished. It suffices to prove this estimate under an additional
assumption that by = 0 for k£ > ko, but with C independent of ky. Pick
a>0and 0 <8 <1 Set Z; = {z, : 6T < 1—|zg| <9}, > 1. If
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zp € Zj, we say that the rank of z; is j. Note that by = 0 if 2, € Z;
for j > jo.

We can choose a3 > 0 and § < 1, depending on € and n only,
such that for each { € S and every j there is at most one z;, € Z;
such that zz € Dg, (€). Set B(k,&,a,6) = {z € Dy(¢) : 681 <
1 — |z] < §*}. If two different points z; and z; belong to B(k, ¢, a,d),
then diam (B(k, &, ,6)) > diam (E.(z;)) = diam (E.(0)) = C(e,n),
diameters are taken with respect to the Bergman metric. Hence
it suffices to prove that we can make the diameter of B(k,¢&, a,0)
arbitrarily small, uniformly over k and £. Choose 0 < r < 0, set wg = r€
and Y(r,§,a) = {rnp:n € S,rn € Dy(§)}. Ut w =rn € Y (1§, ),
thena since |1 - <’LU,’LU0>| = |1 - 7"2<§,77>| <1- r? + T2|1 - <£777>| <
(1—7)(1+7r+ar?),

2 (1= |wol*)(X —w]?)
|1 — (wo, w)|?
(1+r)?

T (14r+ar?)

1 — [@u, (w)]

> (1—a)

Therefore, |¢.,(w)| < v2a and hence the diameter of Y (r, £, a) tends
to zero, uniformly over r and £ € S, as a — 0. Since the Bergman
distance from r;S to roS tends to zero as ro/r1 — 1, we see that
diam B(k,&,a,8) — 0 as a — 0.

From now on we fix such a; and §. Set ay = da;/4. Then
Sao(2) C Sa, (21) whenever Sq(21) N Sa, (21) # D, 2k € Zjy, 21 € Zjy,
Jj1 > j2 (absorbing property); also Sy, (2k) N Sa,(21) = @ if 2z and 2
are distinct points in Z;.

If u = (ax), we define a sequence u; of functions on S : u;o(§) = ax
if € € Sqa, (21) for some (and unique) zj, € Z;; otherwise set u; o(§) = 0.
Similarly we define a sequence u;; using aperture a;.

Set ¢ = |br|*'~! and w = (c}). We are going to define inductively
a sequence W = () as a function on the set of all zxs. If 2z, € Zy,
set ¢ = ci. Now assume that ¢, has been defined for all z; € Z;,
i < j, and choose z, € Z;41. Let us say that a point 2z, € Z;, 7 < j,
is selected if &, # 0. If Su, (2) N Sa,(21) = @ for every selected z, set
& = cg. If Sqy(21) N Say(21) # @ for some selected z;, then choose z
of highest rank and set ¢, = ci if ¢ > 2¢; (in that case we say that
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zj, dominates z;) and & = 0 otherwise. Since Z; = & for j > jo, this
process terminates. Using absorbing property one easily shows that

(4) sup wjo(§) < 2supw;1(§), €€ S.
J J

Now choose ¢ € S and assume that @;0(§) # O for some j. Let
Ji > jic1 > -+ > ji be those indices j for which w;((§) # 0.
Then & € Sa(zx,) for unique 2, € Z;, 1 < i < [, and 2,
dominates zy,. Hence w;, 1(€) > 2!=%0;, o(€) which gives > Wi0(8)" =
22:1 Wj,.06)" < wj,1(8) 22:1 27(=D)_ Hence, there is a constant C,
such that

(5) <Zw]~,0(g)"> v <C, sup wj1(8)-

For each k choose a unimodular Ay so that Agbr = |bgx| and set
u = (AgCg). From (4) we get
(6) Y Wi =Y W5 > (Sl;p Wjo)° = 2_551]1;) vio-

J J

Note that (17|Zk|)n = Ck:o'(Sao (Zk)) where 0 < M; < C < My < +o00.
Therefore we get

Tu— / w(z)biCl do(€),
S 2kE€Day (€)

whenever v € F. Then, using (5), (6) and the continuity of L, we
obtain

2SAS3pUj7O(£)S’ do(§) S/SZ"DJ',O(OUJ',O(Q do(§)
<c|[ (ij,()(sv)s/r o )| -

<C- Q(/S(su,p w;1(£))° da(£)> 1/3

J

<C ( /S (supvj,1(€)” da(f)) 1/5‘

J
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Since different apertures give equivalent norms, this implies

275 J0]|% o < Cllo]|%/*

00,8’ 00,8’
and that suffices.

To finish the proof of the theorem we have to show that 4) implies
3). Let us choose an e-separated sequence zp in B such that the
nonisotropic balls Ejs(zi) cover B for some ¢ < 1. There is a §; € (§,1)
such that Es(w) C Ejs, (z) whenever w € Eg(2). If ¢ < 2, we use

| aepea < 3 [ g an)
D(&) Es(zk)

zLED(E)

<C Y swp g0
szD(E)E‘s(zk)

<c ¥ <M)2/<2q>.

(1 —|z])matn
The case ¢ > 2 is even simpler, and we leave it to the reader. ]
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