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ON CLS-MODULES

A. TERCAN

In this note we consider CLS-modules. Let R be a ring with identity,
and let M be a right R-module which is the direct sum of its submodules
My and M>. At this case, we show that if M; and Ms are CLS-modules
such that M; is Ms-injective, then M is a CLS-module. In particular,
if My is a CS-module and M, is a CLS-module such that M; is M-
injective, then M is a CLS-module.

Throughout this paper all rings will have identities and all modules
will be unital. Let R be any ring and M a right R-module. A
submodule N of M is called a complement (in M) if N has no proper
essential extension in M, and the module M is called a CS-module
provided every complement in M is a direct summand of M (see, for
example, [2, 3, 6, 7]).

Recall that a direct sum of CS-modules need not be a CS-module
(see, for example, [10, Example 10]). In [6, Theorem 1] Kamal
and Muller proved that a module Mg is CS if and only if M =
Z5(M) ® N where Z3(M) and N are CS-modules and Z5(M) is N-
injective. Recently in [5, Theorem 8] Harmanci and Smith showed that
ifM =M ®MyPH---® M, is a finite direct sum of relatively injective
modules M;, 1 < i < n, then M is a C'S-module if and only if M;
is a CS-module for each 1 < ¢ < n. Kamal and Muller’s theorem [6,
Theorem 1] allows us to consider nonsingular CS-modules. In this paper
we define CLS-modules as a generalization of CS-modules, and we think
of when the finite direct sums of CLS-modules is a CLS-module.

Let R be a ring and M a right R-module. We will use Z(M) and
Z5(M) to indicate, respectively, the singular submodule of M and the
Goldie torsion (second singular) submodule of M.

Definition 1. A submodule N of M is a closed submodule of
M provided M/N is nonsingular. Note that the concept ‘closed
submodule’ has been used by some other authors. For example,
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according to [4], closed submodule is in the sense of complement as
in this note. On the other hand, in [7, p. 19], complement and closed
submodules are the same.

Example 2. Let K be a field and V a vector space over K such
that dim gV > 2. Let

ne[5 k] ={[3 i sremoerh

then R is a commutative ring such that it contains a complement ideal
which is not a closed ideal.

0V

Proof. Let E = [0 0

[0 Kv

]. Then FE is essential in Rr. Let F, =

0 0 ], v € V. Suppose that G < R such that F, is essential in G.

Thus, F, is essential in GNE and hence F,, = GNE. Let {lg 1]:;1

for some w € V,0+# k € K. Let € V such that ¢ Kv. Thus,

s 2][s ][ Jeons

]EG

Therefore, x € Kv, a contradiction. Thus, & = 0. Hence, G < F so
F, = G. It follows that F, is a complement in Ry for all v € V. But
E? =0 so E? < F,. However, E is not contained in F,. Thus F, is
not a closed ideal of R. ]

The next lemma is taken from [8, Lemma 2.3], and its proof is given
for completeness.

Lemma 3. Let Mg be a module.
(i) Every closed submodule is a complement.

(ii) If M is nonsingular, then every complement is closed.

Proof. (i) Suppose K is a closed submodule of M. Let N be a
submodule of M such that K is essential in N. Then N/K < Z(M/K)
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so that N/K = Z(M/K) so that N/K = 0, and hence K = N. Thus,
K is a complement in M.

(ii) Suppose K is a complement submodule of M which is not a
closed submodule. Then M/K is not nonsingular. There exists m € M,
m ¢ K, such that mE < K for some essential right ideal E of R. Let
r € R, k € K and consider mr + k. Let

F={reR:rseE}.

Then F is essential in Rg and (mr + k)F < K. If mr + k # 0, then
(mr + k)F # 0 and hence K N (mr + k)R # 0. Thus, K is essential in
mR + K so that K is not a complement in M.

Definition 4. A module My is called a CLS-module provided every
closed submodule of M is a direct summand of M.

Clearly, over a commutative integral domain, any torsion module is
a CLS-module. Moreover,

Corollary 5. (i) Every CS-module is a CLS-module.
(ii) Every nonsingular CLS-module is a CS-module.

Proof. By Lemma 3. o

The following example illustrates that CLS-modules actually differ
from CS-modules.

Example 6. Let p be any prime integer, and let M be the Z-module
(Z/Zp) ® (Z/Zp?). Then M is a CLS-module but is not a CS-module.

Proof. Since Mz is singular, then M is a CLS-module. Now let
K = Z(1 + Zp,p + Zp®). Then K is a complement in M of order p?
which is not a direct summand of M. Thus Mz is not a CS-module,
see [11]. o

The following result shows that CLS-modules behave like CS-modules
in terms of direct summands.
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Lemma 7. Any direct summand of a CLS-module is a CLS-module.

Proof. Suppose M = K @ K’ for some submodules K and K’ of M.
Let L be a closed submodule of K. Since

M KoK _K

LeoK' LoK ~ L
then L @ K' is a closed submodule of M so that L @ K’ is a direct
summand of M which gives that L is a direct summand of M. Then L

is a direct summand of K. It follows that K is a CLS-module. O

Note that a direct sum of CLS-modules need not be a CLS-module
in general, as the following example illustrates.

Let M be the Z-module Z ® Zs where Zy = {a/b: a,b € Z,b is odd}.
Now, obviously, Mz is torsion-free and Z,Z, are CLS-modules. But
M is not a CLS-module (see [7, p. 19]).

Proposition 8. A right R-module M is a CLS-module if and only
if there exists a submodule M' of M such that M = Zy(M) ® M’ and
M' is a CS-module. In this case M' is Za(M)-injective.

Proof. Suppose that M is a CLS-module. Thus, Z5(M) is a direct
summand of M so that M = Zy(M)®M' for some submodule M’ of M.
Note that M’ is nonsingular and, by Lemma 7, a CLS-module and hence
a CS-module by Corollary 5. Conversely, suppose M = Zs(M) & M’
for some CS-module M’. Let K be a closed submodule of M. Then
Z(M) < K and hence Z3(M) < K. Thus K = Z3(M) @ (K N M'").
Now M/K = M'/(K N M') so that K N M’ is a closed submodule of
M'. Hence, by Corollary 5, M' = (K N M') & K' for some submodule
K'. Then M = K ® K'. It follows that M is a CLS-module. The
second part is obvious. ]

Theorem 9. Suppose that a right R-module M is a direct sum of
My, @& My of CLS-modules My and My such that M, is Ms-injective.
Then M is a CLS-module.

Proof. Let N be a closed submodule of M. Then M /N is nonsingular.
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Now My /(NNM;) =2 (M1+N)/N implies NNM; is a closed submodule
of My. Thus N N M; is a direct summand of M; and hence of M. It
follows that N N M is a direct summand of N so N = (NNM;) ® K
for some submodule K of N. Let m; : M — M;, i = 1,2, denote the
canonical projections. Consider the diagram

0 K & My exact

|

M,

where o = m3|k and 8 = 71 |k. Note that o is a monomorphism and
M is Ms-injective. Thus, there exists a homomorphism ¢ : Ms — M;
such that pa = . Let

L={z+¢(x):z e M}

Then it can easily be checked that L is a submodule of M and L = Ms.
Moreover, M = M1 ® L. If k € K, then k = my+msy for some m; € M;,
t=1,2. Then

my = B(k) = pa(k) = ¢(m2),

and this implies that & = p(mgy) + mg € L. Thus, K C L. Since

M M o L

N NnM K’
then L/K is nonsingular, i.e., K is a closed submodule of L. But
L = Ms, so that K is a direct summand of L. Thus, N is a direct
summand of M. It follows that M is a CLS-module. |

Let n be a positive integer and M7, My, ... , M, are right R-modules.
Then these modules are called relatively injective if M; is Mj-injective
for all 1 < ¢ # j < n, see [5]. Then we have the similar result of
[5, Theorem 8] for the finite direct sums of CLS-modules which are as
follows.

Theorem 10. Let R be a ring and M a right R-module such that
M=M ®&MsP---D M, is a finite direct sum of relatively injective
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modules M;, 1 <1 <n. Then M is a CLS-module if and only if M; s
a CLS-module for each 1 <i <mn.

Proof. The necessity is clear by Lemma 7. The converse follows by
induction on n and using Theorem 9. O

Corollary 11. Suppose that a nonsingular right R-module M is
a direct sum My & My of CS-modules My, My such that My is Ms-
injective. Then M is a CS-module.

Proof. By Corollary 5 and Theorem 9. o

The next result has also been proved by Harmanci and Smith [5,
Theorem 4].

Corollary 12. Suppose that a Tight R-module M is a direct sum
M; ® My of CS-modules My, My such that My is My-injective and Mz
s nonsingular. Then M is a CS-module.

Proof. Tt is clear that Zo(M) = Z5(M;) is a direct summand of Mj.
Thus, M; = Z3(M) @ M; for some nonsingular submodule M| of Mj.
Now

M = Zy(M) & M, & Mo.

Note that M| is Ms-injective, M{ is a CS-module and M{ & M, is
nonsingular. By Corollary 11, M & M is a CS-module. But by [6,
Theorem 1] Zy(M) is Mj-injective and hence Zy(M) is (M| © Ms)-
injective. Again, by [6, Theorem 1], M is a CS-module. o

Corollary 13. Suppose M = My ® Ms where My and My are CS-
modules such that My is My-injective. Then M is a CS-module if and
only if Zo(M) is a CS module.

Proof. The necessity is clear by [6, Theorem 1]. Conversely, suppose
that Zy(M) = Zo(My) & Za(Ms) is a CS-module. There exist sub-
modules M7 of My and M) of My such that M; = Z5(M;) & M; and
My = Zy(My) @ Mb. Then M = [Zo(My) @ Zy(My)] & (M) & M3).
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By [6, Theorem 1] and the fact that M; is Ms-injective, we know that
Zy(My) ® Zo(My) is (M, ® M})-injective. Also M, & M}, being non-
singular, is a CS-module by Corollary 11. Hence, by [6, Theorem 1],
M is a CS-module. O

Recall that any CS-module M also satisfies the following properties.

(i) Every semisimple submodule of M is essential in a direct
summand of M, and

(ii) Every submodule of M has a complement which is a direct
summand of M.

A module which satisfies property (i) (property (ii)) is called weak
CS-module (module with (C11)), see [9, 11].

Finally we state some examples which illustrate that there is no
relationship between CLS-modules and weak CS-modules, modules
with (C11) and CLS-modules.

Example 14. Let R be as in Example 2. Then Rp is an indecom-
posable module. Since Rg has no proper closed submodules, then R
is a CLS-module which is neither weak CS-module nor module with

(011).

Example 15. Let M be the Z-module Z @ Z; where Zy = {a/b :
a,b € Z,bis odd}. Then Mz is not a CLS-module. But it is a weak
CS-module by [9, Corollary 1.17].

Example 16. Let Mz = Z®Z @ --- . Then M satisfies (C11) but
is not a CLS-module.

Proof. By [11, Corollary 5.1], Mz satisfies (C11). Now suppose that
¢ : M — Q is an epimorphism. Let K = kery. Thus, M/K = Q
which is nonsingular. Hence K is a closed submodule of M. If K were
a direct summand of M, then we would have M = K & L for some
submodule L of M. Thus, L = Q, which is a contradiction. It follows
that Mz is not a CLS-module. a
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