ON CLS-MODULES

A. TERCAN

In this note we consider CLS-modules. Let R be a ring with identity, and let M be a right R-module which is the direct sum of its submodules M_1 and M_2 . At this case, we show that if M_1 and M_2 are CLS-modules such that M_1 is M_2 -injective, then M is a CLS-module. In particular, if M_1 is a CS-module and M_2 is a CLS-module such that M_1 is M_2 -injective, then M is a CLS-module.

Throughout this paper all rings will have identities and all modules will be unital. Let R be any ring and M a right R-module. A submodule N of M is called a *complement* (in M) if N has no proper essential extension in M, and the module M is called a CS-module provided every complement in M is a direct summand of M (see, for example, [2, 3, 6, 7]).

Recall that a direct sum of CS-modules need not be a CS-module (see, for example, [10, Example 10]). In [6, Theorem 1] Kamal and Muller proved that a module M_R is CS if and only if $M=Z_2(M)\oplus N$ where $Z_2(M)$ and N are CS-modules and $Z_2(M)$ is N-injective. Recently in [5, Theorem 8] Harmanci and Smith showed that if $M=M_1\oplus M_2\oplus \cdots \oplus M_n$ is a finite direct sum of relatively injective modules $M_i, 1 \leq i \leq n$, then M is a CS-module if and only if M_i is a CS-module for each $1 \leq i \leq n$. Kamal and Muller's theorem [6, Theorem 1] allows us to consider nonsingular CS-modules. In this paper we define CLS-modules as a generalization of CS-modules, and we think of when the finite direct sums of CLS-modules is a CLS-module.

Let R be a ring and M a right R-module. We will use Z(M) and $Z_2(M)$ to indicate, respectively, the singular submodule of M and the Goldie torsion (second singular) submodule of M.

Definition 1. A submodule N of M is a closed submodule of M provided M/N is nonsingular. Note that the concept 'closed submodule' has been used by some other authors. For example,

Received by the editors on September 10, 1993.

according to [4], closed submodule is in the sense of complement as in this note. On the other hand, in [7, p. 19], complement and closed submodules are the same.

Example 2. Let K be a field and V a vector space over K such that $\dim_K V \geq 2$. Let

$$R = \begin{bmatrix} K & V \\ 0 & K \end{bmatrix} = \bigg\{ \begin{bmatrix} k & v \\ 0 & k \end{bmatrix} : k \in K, v \in V \bigg\};$$

then R is a commutative ring such that it contains a complement ideal which is not a closed ideal.

Proof. Let $E = \begin{bmatrix} 0 & V \\ 0 & 0 \end{bmatrix}$. Then E is essential in R_R . Let $F_v = \begin{bmatrix} 0 & Kv \\ 0 & 0 \end{bmatrix}$, $v \in V$. Suppose that $G \leq R$ such that F_v is essential in G.

Thus, F_v is essential in $G \cap E$ and hence $F_v = G \cap E$. Let $\begin{bmatrix} k & w \\ 0 & k \end{bmatrix} \in G$ for some $w \in V$, $0 \neq k \in K$. Let $x \in V$ such that $x \notin Kv$. Thus,

$$\begin{bmatrix} k & w \\ 0 & k \end{bmatrix} \begin{bmatrix} 0 & (1/k)x \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix} \in G \cap E.$$

Therefore, $x \in Kv$, a contradiction. Thus, k = 0. Hence, $G \leq E$ so $F_v = G$. It follows that F_v is a complement in R_R for all $v \in V$. But $E^2 = 0$ so $E^2 \leq F_v$. However, E is not contained in F_v . Thus F_v is not a closed ideal of R.

The next lemma is taken from [8, Lemma 2.3], and its proof is given for completeness.

Lemma 3. Let M_R be a module.

- (i) Every closed submodule is a complement.
- (ii) If M is nonsingular, then every complement is closed.

Proof. (i) Suppose K is a closed submodule of M. Let N be a submodule of M such that K is essential in N. Then $N/K \leq Z(M/K)$

so that N/K = Z(M/K) so that N/K = 0, and hence K = N. Thus, K is a complement in M.

(ii) Suppose K is a complement submodule of M which is not a closed submodule. Then M/K is not nonsingular. There exists $m \in M$, $m \notin K$, such that $mE \leq K$ for some essential right ideal E of R. Let $r \in R$, $k \in K$ and consider mr + k. Let

$$F=\{r\in R: rs\in E\}.$$

Then F is essential in R_R and $(mr+k)F \leq K$. If $mr+k \neq 0$, then $(mr+k)F \neq 0$ and hence $K \cap (mr+k)R \neq 0$. Thus, K is essential in mR+K so that K is not a complement in M.

Definition 4. A module M_R is called a CLS-*module* provided every closed submodule of M is a direct summand of M.

Clearly, over a commutative integral domain, any torsion module is a CLS-module. Moreover,

Corollary 5. (i) Every CS-module is a CLS-module.

(ii) Every nonsingular CLS-module is a CS-module.

Proof. By Lemma 3. \Box

The following example illustrates that CLS-modules actually differ from CS-modules.

Example 6. Let p be any prime integer, and let M be the **Z**-module $(\mathbf{Z}/\mathbf{Z}p) \oplus (\mathbf{Z}/\mathbf{Z}p^3)$. Then M is a CLS-module but is not a CS-module.

Proof. Since $M_{\mathbf{Z}}$ is singular, then M is a CLS-module. Now let $K = \mathbf{Z}(1 + \mathbf{Z}p, p + \mathbf{Z}p^3)$. Then K is a complement in M of order p^2 which is not a direct summand of M. Thus $M_{\mathbf{Z}}$ is not a CS-module, see [11].

The following result shows that CLS-modules behave like CS-modules in terms of direct summands.

Lemma 7. Any direct summand of a CLS-module is a CLS-module.

Proof. Suppose $M = K \oplus K'$ for some submodules K and K' of M. Let L be a closed submodule of K. Since

$$\frac{M}{L \oplus K'} = \frac{K \oplus K'}{L \oplus K'} \cong \frac{K}{L}$$

then $L \oplus K'$ is a closed submodule of M so that $L \oplus K'$ is a direct summand of M which gives that L is a direct summand of M. Then L is a direct summand of K. It follows that K is a CLS-module. \square

Note that a direct sum of CLS-modules need not be a CLS-module in general, as the following example illustrates.

Let M be the **Z**-module $\mathbf{Z} \oplus \mathbf{Z}_2$ where $\mathbf{Z}_2 = \{a/b : a, b \in \mathbf{Z}, b \text{ is odd}\}$. Now, obviously, $M_{\mathbf{Z}}$ is torsion-free and \mathbf{Z}, \mathbf{Z}_2 are CLS-modules. But M is not a CLS-module (see [7, p. 19]).

Proposition 8. A right R-module M is a CLS-module if and only if there exists a submodule M' of M such that $M = Z_2(M) \oplus M'$ and M' is a CS-module. In this case M' is $Z_2(M)$ -injective.

Proof. Suppose that M is a CLS-module. Thus, $Z_2(M)$ is a direct summand of M so that $M=Z_2(M)\oplus M'$ for some submodule M' of M. Note that M' is nonsingular and, by Lemma 7, a CLS-module and hence a CS-module by Corollary 5. Conversely, suppose $M=Z_2(M)\oplus M'$ for some CS-module M'. Let K be a closed submodule of M. Then $Z(M) \leq K$ and hence $Z_2(M) \leq K$. Thus $K=Z_2(M)\oplus (K\cap M')$. Now $M/K \cong M'/(K\cap M')$ so that $K\cap M'$ is a closed submodule of M'. Hence, by Corollary 5, $M'=(K\cap M')\oplus K'$ for some submodule K'. Then $M=K\oplus K'$. It follows that M is a CLS-module. The second part is obvious. \square

Theorem 9. Suppose that a right R-module M is a direct sum of $M_1 \oplus M_2$ of CLS-modules M_1 and M_2 such that M_1 is M_2 -injective. Then M is a CLS-module.

Proof. Let N be a closed submodule of M. Then M/N is nonsingular.

Now $M_1/(N\cap M_1)\cong (M_1+N)/N$ implies $N\cap M_1$ is a closed submodule of M_1 . Thus $N\cap M_1$ is a direct summand of M_1 and hence of M. It follows that $N\cap M_1$ is a direct summand of N so $N=(N\cap M_1)\oplus K$ for some submodule K of N. Let $\pi_i:M\to M_i,\ i=1,2$, denote the canonical projections. Consider the diagram

$$0 \xrightarrow{\qquad} K \xrightarrow{\alpha} M_2 \quad \text{exact}$$

$$\downarrow \beta \qquad \qquad M_1$$

where $\alpha = \pi_2|_K$ and $\beta = \pi_1|_K$. Note that α is a monomorphism and M_1 is M_2 -injective. Thus, there exists a homomorphism $\varphi: M_2 \to M_1$ such that $\varphi \alpha = \beta$. Let

$$L = \{x + \varphi(x) : x \in M_2\}.$$

Then it can easily be checked that L is a submodule of M and $L \cong M_2$. Moreover, $M = M_1 \oplus L$. If $k \in K$, then $k = m_1 + m_2$ for some $m_i \in M_i$, i = 1, 2. Then

$$m_1 = \beta(k) = \varphi \alpha(k) = \varphi(m_2),$$

and this implies that $k = \varphi(m_2) + m_2 \in L$. Thus, $K \subseteq L$. Since

$$\frac{M}{N} = \frac{M_1}{N \cap M_1} \oplus \frac{L}{K},$$

then L/K is nonsingular, i.e., K is a closed submodule of L. But $L \cong M_2$, so that K is a direct summand of L. Thus, N is a direct summand of M. It follows that M is a CLS-module. \square

Let n be a positive integer and M_1, M_2, \ldots, M_n are right R-modules. Then these modules are called *relatively injective* if M_i is M_j -injective for all $1 \leq i \neq j \leq n$, see [5]. Then we have the similar result of [5, Theorem 8] for the finite direct sums of CLS-modules which are as follows.

Theorem 10. Let R be a ring and M a right R-module such that $M = M_1 \oplus M_2 \oplus \cdots \oplus M_n$ is a finite direct sum of relatively injective

modules M_i , $1 \le i \le n$. Then M is a CLS-module if and only if M_i is a CLS-module for each $1 \le i \le n$.

Proof. The necessity is clear by Lemma 7. The converse follows by induction on n and using Theorem 9. \square

Corollary 11. Suppose that a nonsingular right R-module M is a direct sum $M_1 \oplus M_2$ of CS-modules M_1, M_2 such that M_1 is M_2 -injective. Then M is a CS-module.

Proof. By Corollary 5 and Theorem 9. \Box

The next result has also been proved by Harmanci and Smith [5, Theorem 4].

Corollary 12. Suppose that a right R-module M is a direct sum $M_1 \oplus M_2$ of CS-modules M_1 , M_2 such that M_1 is M_2 -injective and M_2 is nonsingular. Then M is a CS-module.

Proof. It is clear that $Z_2(M) = Z_2(M_1)$ is a direct summand of M_1 . Thus, $M_1 = Z_2(M) \oplus M'_1$ for some nonsingular submodule M'_1 of M_1 . Now

$$M = Z_2(M) \oplus M'_1 \oplus M_2$$
.

Note that M_1' is M_2 -injective, M_1' is a CS-module and $M_1' \oplus M_2$ is nonsingular. By Corollary 11, $M_1' \oplus M_2$ is a CS-module. But by $[\mathbf{6}$, Theorem 1] $Z_2(M)$ is M_1' -injective and hence $Z_2(M)$ is $(M_1' \oplus M_2)$ -injective. Again, by $[\mathbf{6}$, Theorem 1], M is a CS-module. \square

Corollary 13. Suppose $M = M_1 \oplus M_2$ where M_1 and M_2 are CS-modules such that M_1 is M_2 -injective. Then M is a CS-module if and only if $Z_2(M)$ is a CS module.

Proof. The necessity is clear by [6, Theorem 1]. Conversely, suppose that $Z_2(M) = Z_2(M_1) \oplus Z_2(M_2)$ is a CS-module. There exist submodules M_1' of M_1 and M_2' of M_2 such that $M_1 = Z_2(M_1) \oplus M_1'$ and $M_2 = Z_2(M_2) \oplus M_2'$. Then $M = [Z_2(M_1) \oplus Z_2(M_2)] \oplus (M_1' \oplus M_2')$.

By [6, Theorem 1] and the fact that M_1 is M_2 -injective, we know that $Z_2(M_1) \oplus Z_2(M_2)$ is $(M_1' \oplus M_2')$ -injective. Also $M_1' \oplus M_2'$, being nonsingular, is a CS-module by Corollary 11. Hence, by [6, Theorem 1], M is a CS-module. \square

Recall that any CS-module M also satisfies the following properties.

- (i) Every semisimple submodule of M is essential in a direct summand of M, and
- (ii) Every submodule of M has a complement which is a direct summand of M.

A module which satisfies property (i) (property (ii)) is called weak CS-module (module with (C_{11})), see [9, 11].

Finally we state some examples which illustrate that there is no relationship between CLS-modules and weak CS-modules, modules with (C_{11}) and CLS-modules.

Example 14. Let R be as in Example 2. Then R_R is an indecomposable module. Since R_R has no proper closed submodules, then R_R is a CLS-module which is neither weak CS-module nor module with (C_{11}) .

Example 15. Let M be the **Z**-module $\mathbf{Z} \oplus \mathbf{Z}_2$ where $\mathbf{Z}_2 = \{a/b : a, b \in \mathbf{Z}, b \text{ is odd}\}$. Then $M_{\mathbf{Z}}$ is not a CLS-module. But it is a weak CS-module by [9, Corollary 1.17].

Example 16. Let $M_{\mathbf{Z}} = \mathbf{Z} \oplus \mathbf{Z} \oplus \cdots$. Then M satisfies (C_{11}) but is not a CLS-module.

Proof. By [11, Corollary 5.1], $M_{\mathbf{Z}}$ satisfies (C_{11}) . Now suppose that $\varphi: M \to \mathbf{Q}$ is an epimorphism. Let $K = \ker \varphi$. Thus, $M/K \cong \mathbf{Q}$ which is nonsingular. Hence K is a closed submodule of M. If K were a direct summand of M, then we would have $M = K \oplus L$ for some submodule L of M. Thus, $L \cong \mathbf{Q}$, which is a contradiction. It follows that $M_{\mathbf{Z}}$ is not a CLS-module. \square

Acknowledgment. The author wishes to thank Professor Patrick F. Smith for many useful comments during the preparation of this paper.

REFERENCES

- 1. F.W. Anderson and K.R. Fuller, Rings and categories of modules, Springer Verlag, New York, 1974.
- 2. A.W. Chatters and C.R. Hajarnavis, Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford, Ser. (2) 28 (1977), 61–80.
- 3. A.W. Chatters and S.M. Khuri, Endomorphism rings of modules over nonsingular CS-rings, J. London Math. Soc. 21 (1980), 434–444.
 - 4. K.R. Goodearl, Ring theory, Marcel-Dekker, New York, 1976.
- 5. A. Harmanci and P.F. Smith, Finite direct sums of CS-modules, Houston J. Math 19 (1993), 523–532.
- 6. M.A. Kamal and B.J. Muller, Extending modules over commutative domains, Osaka J. Math. 25 (1988), 531-538.
- 7. S.H. Mohamed and B.J. Muller, Continuous and discrete modules, London Math. Soc. Lecture Note Series 147, Cambridge University Press, 1990.
- 8. F.L. Sandomierski, *Nonsingular rings*, Proc. Amer. Math. Soc. 19 (1968), 225-230.
- 9. P.F. Smith, CS-modules and weak CS-modules, in Non-commutative ring theory, Lecture Notes in Math. 1448 (1990), 99-115.
- 10. P.F. Smith and A. Tercan, Continuous and quasi-continuous modules, Houston J. Math. 18 (1992), 339-348.
 - $\textbf{11.} ------, \textit{Generalizations of} \textbf{CS-modules}, \textbf{Comm. Algebra} \textbf{21} \ (1993), 1809-1847.$

Hacettepe University, Department of Mathematics, Beytepe Campus, 06532 Ankara, Turkey