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ON AN L'-FORCED AUTONOMOUS DUFFING’S
EQUATION WITH PERIODIC BOUNDARY
CONDITIONS IN THE PRESENCE OF DAMPING

CHAITAN P. GUPTA

ABSTRACT. Let ¢ : R — R be a continuous function,
e : [0,1] — R be a function in L1[0,1] and ¢ € R, ¢ # 0,
be given. Suppose that « € R, 1 < a < 2 be such that
lim| | o0 \%\ < 00, and let g— = limsup,_,_. g(u), g+ =
liminf, o0 g(u) so that —co < g— < g4+ < oo. Then if
g- < fol e(z)dr < g4, the boundary value problem w' +
cu' + g(u) = e, u(0) = u(l), «/(0) = u'(1) has at least
one solution. It is also proved that if g is increasing in R
(not necessarily strictly) and g is Lipschitz-continuous with
Lipschitz constant k, such that k& < 472 + ¢2 then the set of
solutions of u" + cu' 4 g(u) = e,u(0) = u(1), v'(0) = u’(1) is
a non-empty, compact, connected and acyclic set.

1. Introduction. Let ¢ : R — R be a continuous function,
e:[0,1] - R and ¢ € R, ¢ # 0, be given. This paper is devoted
to the study of the forced autonomous Duffing’s equation

u' +cu' + g(u) = e(x), 0<z<l1

(L.1) u(0) = u(1), o' (0) = u'(1).

This equation was studied by the author in [2], when e(x) € L2[0,1]. Tt
was proved in [2] that if g_ = limsup,,_, ., g(u), g+ = limsup,,_, ., g(w)
and —oco < g_ < fol e(z)dz < g4 < oo, then the equation (1.1) has at
least one solution. The motivation to study equation (1.1) came from
the observation that, if ¢ # 0, the linear boundary value problem

u” 4+ cu' = M\, 0<z<1,

(1.2) w(0) =u(l),  u/(0) =u'(1),

has A = 0 as its only eigenvalue.
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The purpose of this paper is to study the equation (1.1) when
e € L0,1]. It is shown that the equation (1.1) has at least one solution
when g(u) grows asymptotically as u® with a < 2 and e € L'[0, 1]. This
is rather different than the case e € L?[0, 1] when no asymptotic growth
is required on g. Some results on the structure of the set of solutions
of (1.1) are also presented.

2. Main results. Let X and Y denote the Banach spaces X =
C[0,1] and Y = L'[0, 1] with their usual norms. Let Y be the subspace
of Y spanned by the constant function 1 on [0, 1], i.e.,

Yo={u€eY |u(z)=c forae ze€|01],ceR},

and let Y7 be the subspace of Y such that Y =Y; @& Y. We note that
for u € Y we can write

(2.1) u(z) = <u(m) - /0 lu(x) dm) + ( /0 lu(x) dac)

for z € [0, 1]. We define the canonical projection operators P : Y — Y7,
Q:Y =Y by

(2.2) L
Q(u):/0 u(z) dz,

foru € Y. Clearly, Q@ = I — P, where I denotes the identity mapping on
Y, and the projections P and @ are continuous. Now let Xo = X NY5.
Clearly, X5 is a closed subspace of X. Let X; be the closed subspace of
X such that X = X; & X5. We note that P(X) C X1, Q(X) C X2 and
the projections P|X : X — X3, Q|X : X — X, are continuous. In the
following, X,Y, P and @ will refer to the Banach spaces and projections
as defined, and we do not distinguish between P, P|X (respectively
@, Q|X) and depend on the context for proper meaning.

Also, foru € X, v eY,let (u,v) = fol u(z)v(z) dz denote the duality
pairing between X and Y. We note that, for u € X, v € Y, so that
u = Pu+ Qu, v = Pv + Qu, we have

(2.3) (u,v) = (Pu, Pv) + (Qu, Qu).
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Let ¢ € R, ¢ # 0 be given. Define a linear operator L : D(L) C X —» Y
by setting

(24) D(L) = fue X | u(x) € AC[D, 1], u(0) = u(L),/(0) = w/(1)},
and for v € D(L),
(2.5) Lu=u"+cu.

(Here ACY0,1] denotes the space of real-valued absolutely continuous
functions on [0, 1].) It is easy to see that L is a linear Fredholm mapping
with ker L = X5, ImL = Y;. Further, the mapping K : Y7 — X,
defined for u € Y; by

(2.6) (Ku)(z) = o(z) - /0 o() dz,
where
T 13 et _ 1
2.7) w(z)= /0 /0 eC<t*f>u(t)dtd§fC(667_11) /0 e“tu(t) dt,

(note that we have assumed ¢ # 0), satisfies the following conditions:
(2.8)
(i) forueY, KP(u) € D(L), LKP(u) = P(u),

.. 1
(ii) for u € L?[0,1], (KP(u),P(u)) > *WHP(U)H%HOJ]-
Indeed, note for v = KP(u) € D(L),
1
(KP(). P) = (0.20) = = [ v 2~ ol

and so (KP(u), P(u)) > —(1/(47% + 02))\|P(u)||%2[0711; since
1
Lol = [ 0+ ) de

1

= / [(v")? + 2¢0'v" + *(v')?] dx
0
1

:/ [(’U”)Q—FCQ(UI)Q] dx
0

1
> (47 + 02)/ v de.
0
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Let, now, g : R — R be a given continuous function. Let N : X —
X C Y be the nonlinear mapping defined by

(Nu)(z) = g(u(z)), = €l0,1]

for u € X. It is then easy to see, using the Arzela-Ascoli theorem, that
KPN : X — X; is continuous and compact.

Theorem 1. Let g : R — R be a given continuous function. Let
c,a,A,r and R with a < A, r <0 < R, ¢ # 0 be such that

(2.9) g(u) > A, foru>R,

and
g(u) < a, foru<r.

Suppose further thata € R, 1 < a <2 and 8 € R, > 0 are such that

9(w)

ua

(2.10) lim

|u|—o00

=3

Then, for every given function e(x) € L*[0,1] with a < fol e(z)dz < A,
the Duffing’s equation
u +cu' + g(u) =e, 0<z<1,

(2.11) u(0) = u(1), u'(0) = /(1)

has at least one solution.

Proof. Define functions ¢g; : R — R and e; : [0,1] — R by setting

_A+ta
2 )
A+a

ei(z) =e(z) — 5

Then ¢g; : R — R is a continuous function and e : [0,1] — R is such
that e;(x) € L'[0,1]. Furthermore,

g1(u) > =(A—a)>0, foru>R,

g1(u) < =(a—A) <0, foru<r,
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and
1

%(a—A)S/O el(w)de%(A—“)-

Now, the Duffing’s equation (2.11) is equivalent to the equation

u + cu' + g1(u) = ey, 0<z<l1,

(2:12) u(0) = u(1), u'(0) = u'(1).

Now, for X = C[0,1] and Y = L'[0,1] we consider the Niemytski
operator N : X — Y defined for u € X by

(Nu)(z) = g1(u(z)), z € [0,1],

and the linear operator L : D(L) C X — Y defined in (2.4) and (2.5).

Now the equation (2.12) is equivalent to the operator equation
(2.13) Lu+ Nu = ey,
in X. Now to solve (2.13) it suffices to solve the system of equations

Pu+ KPNu = K Pey,
QNU = Qela

in X. Indeed, if u € X solves (2.14), then v € D(L) and

(2.14)

LPu+ LKPNu = Lu+ PNu = LKPe; = Pey,
QNU' = Qela
which gives, on adding, that Lu + Nu = e;.

Now (2.14) is clearly equivalent to the single equation
(2.15) Pu+ QNu+ KPNu = KPey + Qey,

which has the form of a compact perturbation of the Fredholm operator
P of index zero. We can, therefore, apply the version given in [5,
Theorem 1, Corollary 1, 6, Theorem IV.4, 4] of the Leray-Schauder
continuation theorem, which ensures the existence of a solution for
(2.15) if the set of all possible solutions of the family of equations

(2.16)  Pu+ (1 — A\)Qu+ AQNu + AK PNu = AK Pe; + AQey,
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A € ]0,1], is a priori bounded, independently of A\. Now (2.16) is
equivalent to the system of equations

Pu+ MKPNu = MK Pey,

(2.17) (1= X)Qu+ AQNu = AQe;.

Let, now, uy € X be a solution of (2.17) for some A € ]0,1[, then
uy € D(L) and

Puy + AKPNuy = AKPey,

(2.18) (1 =XN)Qux + AQNuy = AQe;.

It follows that
Luy + (1 — N)Quy + Nuy = dey,

i.e.,

1
(2.19) u +euy + (1 - )‘)/0 ux(z) dz + g1(ur) = Aer,

ua(0) = ua(1),  uy(0) = wuj(1).

Now, multiplying the equation in (2.19) by u) and integrating over
[0, 1], we obtain that

1 1
c/ u = )\/ e1(z)u)\ () dz,
0 0

which implies, using Holder’s inequality, that

(2.20) el [[uhl|Z2p0,1) < Mlexllzro - [[wh] 2o o,

Since now u (0) = ux(1), there exists a {x € (0, 1) such that v/, (§x) = 0.
It follows that, for = € [0, 1],

(2.21) ()] = \ [ dt\ < 11l i
A

Now, we get from the equation in (2.19) that

[uX|Lr0,1) < lel - [JuhllLipo,1) + [[uallLrjo)

(2.22)
+ [lg1 (wx)llz1jo,1 + llexllLrfo,1)-
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Next, assumption (2.10) implies that there exists a constant C' > 0
such that
lg1(w)] < (B+1)Jul* +C,

for v € R; and, accordingly, we get
(2.23)
g1 (@)l L2001 < (B + Dfullzzp01) + C

< 2°7H B+ D(IIPull 21 1) + [|Qul*) + C

o— 1 (07 (07
<o l(g ”(W”“"”“’” l1Qull ) e

It now follows, from (2.20), (2.22) and (2.23), that

el 1A\ 210,11 < Calluhllz2go,0) + Callwh]]Z210,1) + Csl|Quall

(2.24)
+ Cy||Qual|* + Cs,

for some constants Cy,Cs,C3,C4,Cs > 0, independent of A € (0,1).
Since, now, 1 < a < 2, it follows easily from (2.24) that there exist
constants C, D > 0, independent of A € (0,1) such that

(2.25) luh[[Z2p0,1) < € + DIIQuall*.

Now we claim that there exists a & € [0, 1] such that r < uy(§) < R.
Indeed, suppose that uy(z) > R for every z € [0,1]. Then we get from
the second equation in (2.18) and our assumptions on g; and e; that

(I-=MNR+X- %(A—a) < (1 =XN)Quy + AQNuy
=AQe; < \- %(A—a),

so that (1 — A\)R < 0, which is a contradiction since A € ]0,1[ and
R > 0. Similarly, uy < r for z € [0, 1] leads to a contradiction. This
proves the claim.

It next follows that, for every z € [0, 1],

226) jux(2)] < max(—r, R) + /0 1w ()] de

< max(—7, R) + [|u}\||22[0,1]-
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Noting that ||Qu|| < |Jul[g~p,1 for u € X, we get from (2.25) and
(2.26) that

(2.27) llualli = lluallZoepo ) < € + Dlluall%,

for some constants C' > 0, D > 0, independent of A € (0,1). (Note that
the constants C and D in (2.27) are not the same as those in (2.25).)
Since now a < 2, it follows that there is a constant C' > 0, independent
of A € (0,1), such that

luallx < C.

This completes the proof of the Theorem. i

Corollary 1. Let g : R — R be a continuous function and c € R,
¢ # 0 be given. Let g_ = limsup,,_, ., g(u), g+ = liminf, . g(u) be
such that —oo < g_ < gy < oo. Suppose further thata € R, 1 < a < 2
and B € R, B> 0 be such that

g(u)

ua

lim
|u|— o0

= 3.

Then, for every e(z) € LY0,1] with g < fol e(zx)dr < gy, the
Duffing’s equation

u +cu' + g(u) =e, 0<z<l1,

(2.28) u(0) = u(1), u'(0) = u/(1),

has at least one solution.

Theorem 2. Let g : R — R be a strictly increasing function and
c€R, c#0, given. Let g =limy,, o g(u) and g+ = lim,_,o g(u).
Suppose that g is a Lipschitz continuous function with constant k, i.e.,
foru,v € R,

(2.29) l9(u) — g(v)] < kfu -],

with
k < 4w? + 2.
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Then, for every e € L'[0,1] with —oco < g_ < fol e(z)dz < g4 < oo,
the boundary value problem

u’ +cu' + g(u) = e, 0<z<l1,

(2.30) w(0) = u(1), u'(0) = u'(1),

has ezactly one solution u in X = CI0,1].

Proof. Tt suffices to show that (2.30) has exactly one solution u in X.
Let, now, u; and us € X be two different solutions for (2.30). Then

(2.31)  u) —uh +c(u) —uy) + g(ur) — g(uz) =0, 0<z<l1.

Note that (2.23) implies u} — u} € L%[0,1]. It follows that

0=- /OI(U'l —up)* da + /Ol(g(ul) — 9(u2))(ur — up) dx

1 1
:—A(%—%VW+A\WM—MWMM—wa

1
>__ -
T~ 4p? 42

1 1 ! )
v mra) ), lg(u1) — g(uz)|” dz,

in view of (2.31). Using, now, (2.29), we get that g(u;(z)) = g(uz(z))
for almost every z € [0, 1], which implies u; (z) = uz(z) for almost every
z € [0, 1], since g is strictly increasing on R. Hence, u;(x) = uz(x) for
every x € [0, 1] since u; and uy are continuous in [0, 1].

1 1
s = Lol + 5 [ lo(u) = glu) P do

This completes the proof of the Theorem. i

We next present some results on the structure of the set of solutions
for the Duffing’s equation (1.1).

Theorem 3. Let g : R — R be a continuous function and c € R,
¢ # 0, given. Let g— = limsup,,_, . g(u), g+ = limsup,,_,. g(u) be
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such that —oo < g_ < gy < oo. Suppose further thata € R, 1 < a < 2
and B € R, B >0, such that

g(u)

ua

= 8.

lim
|u|—o00

Then, fore(z) € L*[0,1] with g_ < fol e(z) dz < gy, the set of solutions
of the Duffing’s equation

u’ +cu' + g(u) =e, 0<z<d,
(2.32) w(0) = u(1), u'(0) = u'(1),

is a nonempty, compact subset of C1[0,1].

Proof. The set of solutions of (2.32) is nonempty by Theorem 1.
Further, following the lines of the proof of Theorem 1, it is easy to show
that the set of solutions of (2.32) is bounded in W?!(0,1). Accordingly,
it follows by the compact embedding of W2(0,1) C C1[0,1] it is a
compact subset of C1[0,1].

Hence, the theorem. ]

Theorem 4. Let g : R — R be an increasing (not necessarily
strictly) function and ¢ € R, ¢ # 0, be given. Suppose that g is
Lipschitz-continuous with Lipschitz constant k, i.e., for u,v € R,

|9(u) = g(v)| < klu — v,

with

k< 4n? + 2.
Let g+ =limy 400 g(u) so that —o0o < g_ < g4 < 0o. Then, for every
e(r) € LY0,1] with g < fol e(z)dz < gy, the set S of solutions of

(2.32) is a nonempty, compact, connected and acyclic subset of D(L),
where L is defined in (2.4) and (2.5).

Proof. The set S of solutions of (2.32) is a nonempty, compact
subset of C''[0,1] by Theorem 3. Now to show that S is connected,
for each n = 1,2,..., consider the functions g, : R — R defined by
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gn(u) = g(u) + (1/n)u. Then, for each n, g, is a strictly-increasing
function with Lipschitz constant k + 1/n. Since now k < 472 + c2,
there exists an ng such that k + 1/n < 472 + ¢% for n > ny. Now, for
each v € S, define

Sp(v) = {u € D(L) | Lu+ g(u) + %u =Lv+g(v)+ %v}

For n > ng, it follows by Theorem 3 that S, (v) is a set consisting of
a singleton-point, since (g,)— = —oo and (g,)+ = oo; and so S, (v)
is a connected set. Using, now, a result of Bebernes-Martelli [1], we
conclude that S is connected. Finally, for p > 0, we see that

rn = sup{||gn () — g(W)l|z2p01) [ w € D(L), [[ullL2p0,1) = £}
1

= —p,
n
so that lim,,_, o 7, = 0. Also, for every v € D(L), the problem
1
Lu+ Ny(u) =u" + cu' + g(u) + —u = v,
n
has exactly one solution for every v € D(L). It follows, again using a

result from [1], that S is acyclic.

This completes the proof of Theorem 4. ]

Remark 1. Theorem 3 generalizes Corollary 10 of [3]. Also, Theorem
4 generalizes Theorem 9 of [3].

Remark 2. If g, in Theorem 4, satisfies the condition g < g(u) < g+
for every u € R, instead of increasing, then it is easy to show, using
the example of g : R — R used in Example 11 of [3], that the set of
solutions of

u' +u + g(u) =0,
u(0) =u(l),  /(0)=12(1),

is not a connected set. Indeed, g is defined by

(2.33)

-1 ifu< -2
u+1 if —2<u<0
glu)=¢ —u+1 f0<u<?2

u— 3 f2<u<4
1 if u > 4.
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We see that g(—1) = g(1) = g¢(3) = 0. Also, it is immediate by
multiplying the equation in (2.33) by v’ and integrating over [0, 1] that
fol u'? dx = 0, so that u(z) = constant, for z € [0,1]. Accordingly, the
set S of solutions of (2.33) is given by

S = {ug,us,uz | ur(z) = -1, us(z) = 1,uz(z) = 3,z € [0,1]}.

Clearly, S is not a connected set.
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