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REES RINGS AND DERIVATIONS

SILVIA MOLINELLI AND GRAZIA TAMONE

ABSTRACT. Let A be aring, {I,} a filtration of ideals of A
and R = &I, T™ (contained in A[T]) the Rees ring associated
with {In}. We study the derivations D of A[T] such that
D(A) C A and D(R) C R.

Introduction. Let A be a noetherian ring and {I, },cz a filtration
of ideals of A. Let R = ®p>l,T" (respectively R’ = @neczl,T") be
the Rees ring associated with {I,,} for n > 0 (respectively for n € Z).
One can remark that R C A[T] and when F = {I"} (where I is an
ideal of A) then R is the well-known “Rees algebra.”

In this paper we first consider derivations D of the polynomial ring
A[T] such that D(A) C A, and we determine several conditions on D(T")
and D(I,) in order that D(R) C R and D(R') C R'. In particular,
we discuss five filtrations, namely {I"}, {T™}, {1 : (J)}, {(I")a},
{(I™)a} (see definitions 1.4, 1.6, 1.8, 1.9).

In Section 2 we consider the Rees rings associated to the previous
five filtrations. If D € Der (A[T7) is a derivation of one of these rings,
we wonder on which of the others D is also a derivation. We give
several implications and show some examples of implications which do
not hold.

Further, if A is a noetherian domain containing a field of characteristic
zero, for any filtration {I,} in A we show that each D € Der (A[T)
such that D(R) C R is also a derivation of the Rees rings associated
respectively to {I,} and {(I,),} (where I,, (respectively, (I,,),) is the
integral closure of I,, in A (respectively in A), see definition 1.9).

We recall that several properties of R have been studied in some
cases. For example, when F' = {I(™} (I prime, i.e., R is the “symbolic
Rees algebra”), many authors have studied when R is Noetherian,
Gorenstein, Cohen-Macaulay (see [1, 2, 3, 4]). Further, in [12] there
are some finiteness results related to certain filtrations.
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Finally, we remark that the problem studied in this paper can be seen
as a particular aspect of the following general question: if A, B,C are
rings such that A C C C B and D € Der (B) is such that D(A) C A,
under what conditions does one have D(C) C C? The question has
been studied by the authors in some cases (see, e.g., [5, 6, T]).

1. Let A be a noetherian ring and F = {I,,} be a filtration of ideals
of A, i.e., a sequence {I,,} of ideals such that Iy = A, I,, C I, for all
n >1and L, I, C L4, for all m,n € N. Further, let F = {I,,,n € Z}
where I,, = A for n < 0 and I,, is as before for n > 0. From now on let
R = ®p>0,T" (contained in A[T]) and R’ = ®nezl,T" (contained in
A[T,T-1]) be the associated Rees rings with respect to F and F".

Further, for each ring B, we let Der (B) denote the B-module of all
the derivations of B.

Now, let D € Der (A[T]) be such that D(A) C A. First, we find
necessary and sufficient conditions in order that D(R) C R.

Proposition 1.1. Let A, F = {I,,}, R as before, D € Der (A[T])
such that D(A) C A and D(T) = X;q;T7 (for j = 0,...,7). Then
D(R) C R if and only if the following conditions hold:

I) D(I,) C I, for each n > 1,
II) (k—j+1)gj € Iy : Ix—_j4+1 for each (k,j) such that1 < j <k.

Proof. According to the assumptions on D, for each f(T') = Z;p;T* €
R one has:

D(f(T)) = Sk[D(pk) + it j=r(i + Vpis19;]T".
Then D(R) C R if and only if the following condition holds:
(1) D(pk) + p1gr + 2p2qe—1 + -+ + (k + 1)pry1qo € Ik

for each k£ > 1 and each py, € I},.

Now we show that condition (1) is equivalent to I) and II). In fact,
if (1) holds, one has, in particular, (taking p; = ps = -++ = p—1 = 0):
D(Iy) C I for each k > 1. Further, for each (j, k) such that 1 <j <k
one has (putting p, =0 for h # k—j+1): (k—j+ )pr—jt+19; € Ii,
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ie., (k—j+1)gj € I : Is_j41. On the other hand, conditions I) and
IT) obviously imply (1). O

Corollary 1.2. Under the same notation as in Proposition 1.1, one
has:

(i) if A contains a field of characteristic zero, then condition II) of
Proposition 1.1 is equivalent to:

Ir') g; € ﬂ (I = Tp—jt1) for all j > 1.
k>j

(i) if the filtration F = {I,} is such that:
(*) Ij I CIjJrl:IlJri fO’I‘ alli>0

then the condition: II") q; € I : Iy for all j > 1, is equivalent to II)
of Proposition 1.1.

Proof. (i) holds because k — j + 1 is a unit for j < k.

(ii). If IT) holds, for k = j one has: ¢; € I; : I for all j > 1, i.e., II").
On the other hand, if II") and (%) hold, one has immediately IT). O

Remark 1.3. In general, a filtration F = {I,,} does not satisfy (x).
For example, let A = k[X,Y] (k field), F = {I,} where [, = A,
I, = (Y")N(XY?) for each n > 1. One has: I} = (XY?) = I, so that
I, : I; = A. On the other hand, I3 : Iy # A, since XY? ¢ I3.

Nevertheless, we can show that some filtrations {I,} satisfy the
property () defined in Corollary 1.2. We need some definitions.

Definition 1.4. Let A be a noetherian ring, I an ideal of A,
M = A\(Up), where p € {minimal prime ideals in Ass(A/I)}. The
ideal I(™ = I"Ay; N A is called “the n-th symbolic power of I1.”

Remark 1.5. Let I be as in Definition 1.4, let n > 1, and I" =
Q1N NQrNQr+1 N+ NQs be a reduced primary decomposition
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of I™, where Q1,...,Q are the isolated primary components of I™.
Then I™ = Q; N---NQy. In particular, if I = p is a prime ideal, one
has (™ = p"A,N A for each n > 1.

Definition 1.6. Let A be a noetherian ring, I, J ideals of A. For
each n > 1, we put I" : (J) = {z € A| zJ*¥ C I" for some k > 1}.

Remark 1.7. The filtration considered in Definition 1.6 has been
studied in [9, 10, 12]. If I" = Q1 N---NQ,NQ N---NQ’, is a reduced
primary decomposition of I, where /Q; 2 J for j = 1,...,r and

V@i D Jfori=1,...,s, putting S = N;(A4A\,/Q;) (for j=1,...,r),
one has I" : (J) = ["AsNA=Q;N---NQ,, as one can easily see.

Definition 1.8. Let A be aring, I an ideal of A, A a multiplicatively
closed set of nonzero ideals of A. The ideal In = Ugea{IK : K} is
called the “A-closure of I” (see [11, Theorem 2.1]).

If I, A are as in Definition 1.8, one can see that {(I")a}, n >0, is a
filtration [11, Theorems (2.4), (2.4.2), (2.4.4)].

Definition 1.9. Let A, A’ be rings such that A C A’, and let I be an
ideal of A. Theset {r € A’ | z* +ayz* 1+ + oz i+ -+ =0
for some k > 1, a; € I'(i = 1,... ,k)} is called the integral closure of
I in A’; we let I, denote it when A’ = A and I denote it if A’ is the
integral closure A of A (see, e.g., [8, example 3 p. 34]).

Remark 1.10. 1) If A is the set of all the ideals of A that are not
contained in any minimal prime ideal of A, then In = I, for each ideal
I € A (see [11, Theorem (3.2.3)]).

2) It is well known that the integral closure of I in A’ is an ideal of
the integral closure of A in A’; in particular, one can see that I, C /T
when A = A’

From now on, we shall put (for an ideal I of A): F, = {I"},
F, = {I™}, (F) = {I" : (J)} (which depends on the fixed ideal J
of A), Fa = {(I")a} (for each A as in Definition 1.8), F, = {(I").}
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for n > 0.

Lemma 1.11. Let A be a noetherian ring, I and J ideals of A,
A as in Definition 1.8. The filtrations F,, Fy, (F) and (when I € A)
Fa satisfy condition (x) of Corollary 1.2. In particular, F, satisfies
condition (*) when ht (I) > 0.

Proof. 1) If F = F,, the proof is trivial.

2) As regards Fy, the result 1) : 1) < JU+) . [0+ for each
i >0 and j > 1 follows from 1), after noting that I(*) : I®) = (I®A; :
IPApy )N A= ((TAp)*: (IAp)®) N A for each a,b > 0.

3) For the filtration (F), according to Remark 1.7, the proof is
similar to the one of 2), if Ay (respectively, I(")) is replaced by Ag
(respectively by I" : (J)) for each h.

4) As concerns the filtration Fa, first we show: (I9)a : In C (I771)a,
for each j > 1, where I € A. In fact, let * € (I7)a : Ia; then there
is a K € A such that zInK C I’K, so in particular z(IK) C 'K
(since I C Ia, see [11, Theorems (2.4), (2.4.1)]) = I’"}(IK), where
IK € A according to the assumptions on I and A, so that z € (I77!)a.
It follows that (I/)a : (I)a C (I’ !)a C (according to [11, Theorem
(2.4.4)]) C (IITH)a: (I't)a. O

In particular, if A is as in Remark 1.10 1) and ht (I) > 0, then
F, = Fx satisfies condition (x).

Now our aim is to characterize the condition D(R) C R when R is
the associated Rees ring with respect to the filtrations considered in
Lemma 1.11.

Lemma 1.12. Let A be a noetherian ring, I, J ideals of A, F = {I,,}
a filtration of ideals of A, D a derivation of A. If F = F, (or Fy, or
(F)), then condition I) in Proposition 1.1 is equivalent to:

') D(I) C L.

Proof. 1) If F = F,, the proof is trivial.
2) Let F = F,. We suppose D(IV) c IM; then, if M is as in
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Definition 1.4, one has: D(IApr) C IAp, so D(I™Ap) C I™ Ay, which
implies that D[(I"Ap) N A] C I"Ap N A,

3) Let F = (F). Since I" : (J) = I"Asg N A (see Remark 1.7), we
can proceed as in the proof of 2). o

Remark 1.13. In general condition I') does not imply condition I).
Let us consider the filtration Fj; we exhibit a ring A, a derivation D €
Der (A) and an ideal I of A such that D(I,) C I, but D((I"),) ¢ (I"),
for some n > 1. Let A = k[X,Y]/(Y? — XPP(1+ X)) = k[z,y] where
k is a field and ch (k) = p, I = (z), D the derivation of A induced
by D = X0/0Y € Der (k[X,Y]). We can see that I, = (z,y) and
y € (IP),, since y? = (zP)P(1 + ). One has obviously: D(I,) C I,. On
the other hand, D((I?),) ¢ (I?),, since D(y) = = ¢ (I?),, otherwise
in k[z,y] = A one has:

" a4 b b, =0

for some r > 1 (with o; = B;2P%, 3; € A), then z"(1 + ByaP~1 +--- +
BrxP™") = 0. It follows that =" = 0 in k[z,%](5,,), a contradiction,

since z is a parameter in [z, y](5,y)-

From Proposition 1.1, Corollary 1.2, Lemma 1.11 and Lemma 1.12 it
follows:

Corollary 1.14. Let A, F, R, D be as in Proposition 1.1 and let I,J
be ideals of A.

a) If F = F, (or Fs, or (F)), then D(R) C R if and only if
D(L)C I and gj € I; : I for all j > 1.

b) If F = Fa with I € A (in particular, if F = F, with ht (I) > 0),
then D(R) C R if and only if D(I,) C I, for alln > 1, and g; € I; : I1
forj > 1.

Now we wonder when one has D(R') C R’ (where R' = ®,czI"T"
and D € Der (A[T]) is such that D(A) C A, D(T) = X;q;17 for
j=0,...,r). First we note the following facts:

Lemma 1.15. Let R,R',D be as above. If D(R') C R/, then
D(R) C R.
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Remark 1.16. In general, the converse of Lemma 1.15 is not true. We
show the following examples.

1) Let A = k[z,y] (k field) where 3 = xy, and let D € Der (A[T])
be such that D(z) = z, D(y) = 2y, D(T) = yT®. Further, let
F = {I"},ecz where I = (z). It is easy to see that D(A) C A,
D(I) C I, and condition II") of Corollary 1.2 is satisfied. Then
D(R) C R (Corollary 1.14 a)). On the other hand, D(R') ¢ R’ since
D(T') = —D(T)T~2 = —yT ¢ R’ because y ¢ I.

2) Let A = k[t5,t11,¢24,¢28] C k[t] where k is a field of characteristic
zero (here A is an integral domain), F' = {I"},cz where I = (¢°,¢!!),
D = t9/8t € Der (A) such that D(T) = t?¥T3. 1t is easy to verify that
D(R) C R, according to Corollary 1.14 a). On the other hand, one has:
D(T~') = —t?8T ¢ R' since t*® ¢ I; then D(R') ¢ R'.

In general we can prove the following result.

Proposition 1.17. Under the same assumptions as in Lemma 1.15,
the following conditions are equivalent:

1) D(R') C R;
2) D(R) C R and q; € I;_o for all j > 3.

Proof. For each g(T) = Y, sopkT* + ShapT" (b = —n,...,—1)
belonging to R’ (ap € A for h <0, py € Iy for k > 0), one has:

D(g(T)) = D(ZrpeT*) + 21D (ap) T +Sphap, T D(T),
h=-n,...,—1,

where D(T) = X;q;17, j =0,...,r. So 1) is equivalent to: D(R) C R
and

(2)  Zphap, TV 'D(T) € R, foreacha, €A, —n<h<-1.
Now (2) can be written as:

Sk<o[Shtjmk(h+1)an1¢]T* + Sk0[Shyj=r(h+1)any;¢]T" € R,
which is equivalent to:

(3) (—n+1)a_ni1Gnik + (—n+2)a niolnik—1+ -+ a_1qry2 € I
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for each k, 1 < k < r —2, and each ap, € A, —n < h < —1. By
putting in (3) a_py1 =+ =a_3 =0 and a_; = 1, in particular we
obtain gx42 € I. On the other hand, it is obvious that the condition
“gj € I " for all j > 3 implies (3). O

2. From now on, we let R, (respectively, Rs, (R), Ra, R,) denote
the associated Rees rings R with respect to F' = F, (respectively
F,,(F), Fa, F,) defined in Section 1 (see definition following Remark
1.10).

Let D € Der (A[T]) be such that D(A) C A. Let us consider the
following conditions:

1) D(Rp) C Ry;
) D(R) C Ry;
) D((R)) C (R);
4) D(RA) C Ra;
5) D(R,) C R,.

We wonder whether there is some connection between condition 1)
and each of the other ones. One has:

w N

Proposition 2.1. Let A be a noetherian ring, D € Der (A[T]) such
that D(A) C A. If condition 1) holds, then also conditions 2) and 3)
hold.

Proof. 1) = 2). According to the assumption 1) and Corollary 1.14
a), we have: D(I) C I. Then D(IAy NA) C IAy NA (where M is as
in Definition 1.4), i.e., D(I1Y)) € IV (see Definition 1.4). Besides, let
D(T) = ¥,q;Tj, j = 0,...,r. According to 1) and Corollary 1.14 a),
one has ¢; € I’ : I for j > 1. Further, I’ : I C IO : 1MW: in fact, if
xI C I7, then 2IM) = z(TApNA) C (zI)AprNA C IV (see Definition
1.4). So g; € IU : IM for j > 1. Then 2) follows from Corollary 1.14
a).

1) = 3). One can proceed as in “1) = 2),” by recalling that
I :(J)y=I"AsN Afor j > 1, where S is as in Remark 1.7. O
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Remark 2.2. In general, neither condition 2) nor condition 3) implies
condition 1) in Proposition 2.1. We show two examples.

9) % 1). Let A = K[X,Y], k field, = (X2, XY) = (X) N (X2,Y),
E, = {I",n > 0}, F, = {I™,n > 0}. Further, let D = X9/0X +
d/0Y € Der(A[T]). One has: D(IM) c IV, since IV = (X)
(Remark 1.5). On the other hand, D(I) ¢ I since D(XY) ¢ I. Then
D(R,) C R, but D(R,) ¢ R, (see Corollary 1.14a)).

3) # 1). Let A,I,R,,D be as in the above example, and let
J = (X%Y). If (F) = {I" : (J)} one has I : (J) = (X) (Remark
1.7), then D((R)) C (R) and D(R,) ¢ R,.

Remark 2.3. In general, neither of the implications “1) = 5)” nor “5)
= 1)” holds, as we now show.

1) # 5). Let A = k[X,Y]/(Y?P — XP(1 + X)) = k[z,y] where k is
a field of positive characteristic p, I = (z), Fp, = {I"}, Fo = {(I")a}
Further, define D belonging to Der (A[T]) by: D(z) = 0, D(y) = 1,
D(T) = 0. It is enough to show that D(I) C I and D(1,) ¢ I, (see
Corollary 1.14). One has I, = (z,y) (since z € I, y € I, and (z,y) is
maximal), D(I,) ¢ I, and D(I) C I.

5) # 1). Let A =k[X,Y]/(YP — XP) = k[z,y] (k field, ch (k) = p),
I = (z), F, = {I"} and F, = {(I")a}. Define D € Der (A[T]) by
D(z) =y, D(y) =z, D(T) = 0. One has: I, = (z,y), D(I,) C I, and
D(I) ¢ I (since y ¢ I). The conclusion follows from Corollary 1.14.

The above examples also show that 1) # 4) and 4) % 1) in Proposi-
tion 2.1 (Remark 1.10).

Remark 2.4. We can see that 1) implies 5) when A is a noetherian
domain containing a field of characteristic zero (see the following
Proposition 2.7). On the contrary, condition 1) does not imply 4) even
if A satisfies the above assumption, as the following example shows.

Let A = k[X, XY, XZ,Y?2, 22,Y 7] C k|X,Y, Z], k field, I = (X Z),
A={(X,XZ)",n>1}, F, ={I"} and Fa = {(I")a}.

Let D = —(XY)0/0X + (Y)0/0Y + (YZ)0/D0Z. One can see that
D € Der(A[T)), D(A) ¢ A and D(I) C I (so D(R,) C R,, see
Corollary 1.14 a)). On the other hand, one has: XZ? € Ia, since
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(XZ%)X € I(X,XZ) and (XZ2)(XZ) € I(X,XZ), s0 (XZ2)K C IK
for K = (X,XZ?). Further, D(XZ?) = XY Z? does not belong to
Ia, otherwise there is an n > 1 such that (XY Z?)X" € I(X,XZ)" =
(XZ)(X™, X"Z,...,X"Z™), in which case YZ € AorY € A (as one
can verify), a contradiction.

Now, more generally, we consider a filtration F' = {I,,} of ideals of
A and the Rees ring R associated to F. Let F = {I,,} in the integral
closure A of A and F, = {(I,).} in A (see Definition 1.9); from now
on, we let R (respectively, R,) denote the Rees ring associated with
F (respectively with F,). Further, let D € Der (A[T]) be such that
D(A) C A. Our aim is to prove that D(R) C R implies D(R) C R and
D(R,) C R,.

First, we show the following facts

Lemma 2.5. Let A be a noetherian domain containing a field of
characteristic zero, I an ideal of A, and D € Der (A). Under the same
notation as in Definition 1.9, if D(I) C I, then D((I"),) C (I™), and
D(I™) C I" for allm > 1.

Proof. Let D(I) C I; by putting D(T) = 0, we obtain a derivation
D € Der (A[T)]) such that D(R,) C R, (Corollary 1.14 a)). Let R be
the integral closure of R. Then, D(R) C R (see [13, 5]), since R is
a noetherian domain containing a field of characteristic zero. On the
other hand, R=A@IT®---®I"T" & - (see, e.g., [12, p. 126]). Tt
follows that D(I™) C I™ for all n > 1 (see Proposition 1.1 I)); then we
have also D((I™),) C (I"), since (I"), = I" N A. o

Lemma 2.6. Let A be a noetherian domain, o, 3 ideals of A, A the
integral closure of A. One has:

1) (a:aB)ACc a5
2) a:g4 B Cag:iaBa.

Proof. 1) Since (a :4 B)A C oA 3 BA, it is enough to show
that a4 T BA C a T B. We recall that, for each ideal a of A,
one has: @ = (NaV) N A, where the intersection is taken over all

the valuation overrings V of A (see, e.g., [14, Vol. II, Appendix 4,
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Theorem 1]). Then, if z € A is such that z(8A4) C 4, then (for each
V _as before) x5 C z[(BV) N A] C (zBV)N A C (aV) N A, so that
zB C N(aV)NA] =a.

2) One can proceed as in 1) by recalling that for each ideal « of A
one has: a, = (NaV)N A, where V € {valuation overrings of A}. o

Now we can prove

Proposition 2.7. Let A be a noetherian domain containing a
field of characteristic zero, F = {I,} a filtration in A, F = {I,},
F. = {(I.)a}, R,R,R, as before. Further, let D € Der (A[T]) be
such that D(A) C A. Then if D(R) C R one has D(R) C R and
D(R,) C R,.

Proof. Let D(R) C R. One has D(I,,) C I, for each n (Proposition
1.1 1)) then D(I,) C I,, and D((I,)a) C (I,), for all I,, (see Lemma
2.5), i.e., condition I) of Proposition 1.1 holds (for R and R,). Now
let D(T) = %;q;77, j = 0,...,7. According to the assumption,
Proposition 1.1 and Corollary 1.2 (i), we have ¢; € Ng>;(Ix : Tp—j41)
for all 7 > 1. Then ¢; € ﬂij(Tk: : Tk—j-{—l) and gq; € nij((Ik:)a :
(Ii—j+1)a) for all j > 1 (Lemma 2.6). So D(R) C R and D(R,) C R,
(see Proposition 1.1 and Corollary 1.2 (i)). O
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