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MODIFICATIONS OF TOEPLITZ MATRICES:
JUMP FUNCTIONS

ALICIA CACHAFEIRO AND FRANCISCO MARCELLAN

ABSTRACT. In [1] the authors have studied formal proper-
ties of the orthogonal polynomial sequences related to a mod-
ification of a measure on a Jordan curve by a finite number
of jump functions in points of the curve. In this paper we
analyze, for infinite Toeplitz matrices with nonsingular prin-
cipal minors, the addition of jump functions in points placed
outside (inside) the unit circle. Necessary and sufficient con-
ditions for the regularity of the new Toeplitz moment matrix
are provided and the relation with the polynomial modifica-
tions of the moments is established in a similar way to the
Hankel case [8].

Introduction. Let p be a Borel, finite and positive measure on
the unit circle. In recent papers [1, 2, 3] we have studied formal
properties of the monic orthogonal polynomial sequences (M.O.P.S.)
corresponding to the measure u obtained by adding to u a finite number
of masses of Dirac on points of the circle. This problem appears in [6]
and the generalization studied in [1] relates this type of modification
with the polynomial ones.

In this paper we consider a situation as general as possible: Let M be
an infinite, Hermitian and Toeplitz matrix with nonsingular principal
minors. We consider a modification that represents an extension of the
Dirac’s delta in a point placed not necessarily on the circle. In Section
1 necessary and sufficient conditions for the new moment matrix M
to be Hermitian, Toeplitz and with nonsingular principal minors are
given. In Section 2 the connection between this type of modification
and others introduced in [5] are provided. Some interesting examples
are presented in Section 3 and, finally, if the moment functional L
associated to M is semiclassical in the sense of [9], then it is shown in
Section 4 that £ (moment functional associated to M) is semiclassical
too. In this sense we extend a known result for Hankel matrices [8].
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1. Let M = (c¢n)nez be an infinite, Hermitian and Toeplitz matrix
with nonsingular principal minors. We consider the space of the
Laurent polynomials S, i.e., the linear closure of (2"),cz, and the
linear functional L defined in S by:

L(z") =c¢, n > 0, L(z"")=¢,=c_n n >0,
L(].) =cCp € R\{O}

Definition 1.1. A linear functional satisfying the above conditions
is called regular.

Let (¢n(2)) be the monic orthogonal polynomial sequence correspond-
ing to L. If we denote by k,, = L(¢(2)¢n(1/2)), it is well known that
kp/kn-1=1—|$,(0)* ([6]). We also define the sequence of n-kernels
by Kn(z,y) = X7 o k; 16 (2)6;(y).

Given a € C\{0} and A € R\{0}, we consider the linear form
L:S — C such that £(2") = L(z") + (A"'/2)(a™ + 1/a"™). If |a| = 1,
we are in the situation of [2] for L positive definite. The first question
we try to solve is to study the properties of the functional £, assuming
la] # 1. A similar question has been studied in [4] from another point
of view.

Proposition 1.2. i) £ has a Hermitian and Toeplitz moment matriz

M.
ii) M has nonsingular principal minors if and only if

K, (a,a) 2A+ K, (a,1/a)

2)\+Kn(l/a,a) Kn(l/&,l/a) 7é0 Vn € N.

Proof. The first part of the statement is obvious. In order to prove the
second part, we use a known result ([9]) which says that the condition
of nonsingularity of the principal minors is equivalent to the existence of
a monic orthogonal polynomial sequence corresponding to that matrix.

“=” Assume L is regular and (¢, (z)) is the corresponding M.O.P.S.,
then for n > 1

) Un(2) = 6n(2) + 2 ins65(2)
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where
pni L(9(2)95(1/2)) = L(¥n(2)$;(1/2))
— (A71/2)(Un(a)¢j(1/a) + Pn(1/a)$;(a))
= —(A71/2)(Wu(a)$;(1/@) + u(1/2)$;(a))-
Therefore, by substituting in (1), we have
(2) ¥n(2)
= ¢n(2) — (A71/2)(¥n(a) Kn-1(2,1/8) + Pn(1/@) Kn-1(2,))
and taking z = a and z = 1/a we get
$n(a) = Yu(a)(1+ (A 1/2)Kn_1(a, 1/a))
+9n(1/a)(A1/2)Kn-1(a, a)
$n(1/3) = Yn(a)(A"'/2)Kn-1(1/a,1/a)
+9n(L/a)(1+ (A7 /2)Kn-1(1/a,a))

or, equivalently, in matrix form, ¢,,(a) and v,,(1/a) are solutions of the
system

<1+1’\71Kn1(a,1/d) AT“IK,L,l(a,a) > < Yn(a) )
A Kn,a(1/a,1/a) 1+ 27K, 1(1/a,a)) \¥a(1/3)
® ¢n(a)

:<mum0 net

If we denote by A, 1 the determinant of the above matrix of coeffi-
cients, then
L+ 25kt Ak
Akt 14k
=14+ Ayt = kgt (ko +271)
=ky'(co+ A1) =ky'L(1) £0.
On the other hand, if A,,_1 # 0 for some m, (2) becomes

%_‘

Om(2) K-1(z,a) Kp-1(z,1/a)
dm(a) K,,—1(a,a) 22\ + Kpp—1(a,1/a)
dm(1/a) 2X+ Kp—1(l/@,a) Km-1(1/a,1/a)
Km,l(a,a) 2)\+Km,1(1,1/c_l)

4) Ym(z) = ‘

2\ + Kp—1(1/a,a) K,-1(1/a,1/a)
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where the denominator is equal to —4M2A,,_;. It follows from the

hypothesis that K, = L(¥m(2)¥m(1/2)) # 0, L(¥m(2)dm(1/2)) # 0

and taking into account (4), we obtain:

L(Ym(2)dm(1/2))
:L(¢m(z)¢3m(1/z)) +(A7/2) (¥ (@) pm (1/a) + (1)) $m (a))

1 _— _
Sy — A (@B AT 2N + Kopr (1)

— b(1/@) B (D) K1 (a, )
b L A G @@+ K (a,1/a)]

2041 2
— ¢m(@)dm(a) Kin-1(1/a,1/a)).
On the other hand, we have

=kp+——

2\ + Ky, (a,1/a) K., (a,a)
Km(l/a 1/a) 2\ + Kn(1/a,a)
$m(a)¢m(1/a) Kn(a,a)
ko | om(1/8)pm(1/a) 2\ + K, (1/a, a)

2/\+Km_1(a 1/a) K,.(a,a)
Kpn-1(1/a,1/a) 2\ + Kn,(1/@,a)

L | ¢m(a)pm(l/a) Kpn-1(a,a)

kp, | &m(1/0)m(1/a) 2A + K,—1(1/a,a)
2A+ K, —1(a,1/a) K,_1(a,a)
K,_1(1/a,1/a) 2X+ K,_i(1/a,a)

L L2 /a) dn(a)dnla)
o | Ko 01/ 1/8) (1) om0

=4)\?A,, + (¢m( Yom (1/@)[2X + Kp—1(1/a, a)]
— 6m(1/@) P (1/@) Kpn1(a; a)
+ 6m(a)pm (1/@)[2A + K1 (a,1/a)]
— ¢m(@)pm(a) K-1(1/a, 1/a))

= AN Ay + _[ (Y (2)bm(1/2)) = k] - AN Arpa
= AN A, 1£(1/1m( )om(1/2))kz

4N A,, =

+

(5) +
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In the hypothesis A,,—1 # 0, from (5) A,, # 0 holds. Then, as Ag # 0
we can deduce by induction A, # 0 for n > 1 using the regularity of
the linear functional £, i.e., L(¢n(2)¢n(1/2)) # 0 for n > 1.

“<" Tt suffices to show that the sequence defined by (4) satisfies the
following conditions:

E(d’n(z)d_’m(l/_z)) =0 m#n
L(Yn(2)Yn(1/2)) # 0,

and it follows easily from (4) and (5). u]

Remarks. 1. From (5) we deduce that K,, = k,(A,/A,_1) for n > 1.
Moreover, taking into account the expressions of My, My and Ag, we
get:

det M,, = A, det M,,.

(We denote by M,, and M,, the principal minors of M and M.)

2. From

/\72
An—l = T(‘Kn—l(l/aa a)|2 — Kn_l(a, a)Kn_l(l/&, l/d))
/\71
+ T(Kn_l(l/a, (L) + Kn_l(a, l/C_L)) + 1
it follows that the functional £ has associated a M.O.P.S. for every
A € C\{0} except, at most, a countable set.

3. (4) has a similar form to that obtained in [1] for the case of two
masses placed on the curve.

4. If |a| — 1 it is easy to get that the limit functional £ is regular if
and only if A + K, (a,a) # 0 for all n € N. In this case,

Pn(a)

O O vy ey )

K, 1(z,a) n>1.

2. Let L be a functional and ¢ the associated indefinite inner product,
and consider the functional L; such that the corresponding indefinite
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inner product is ¢; defined as follows:

$1(P(2), Q(2)) = L1(P(2)Q(1/2))
= ¢((z = a)(z = 1/a) P(2), (z — a)(z = 1/a)Q(2)).

In particular, if L is regular, then L; is regular if and only if

K,(a,a) K,(a,1/a)

Bn =K. (1/3,a) K.(1/a,1/a

) #0 Vn > 1.

Furthermore, if we denote by @, (z) the M.O.P.S. corresponding to
Ly, it is easy to show that:

(6) (z—a)(z—-1/a)Qn2(2)

Pn(2) Kn_1(z,a) Kn_1(z2,1/a)
Pn(a) K 1(a,a) K, 1(a,1/a)
¢n 1/(1 Kn 1(1/6_1, a) Kn,l(l/c_z,l/c—z)

,a K, _1(a,1/a)
Kn 1( K, 1(1/a,1/a)

Professor Garcia-Lazaro pointed out the above result to the authors
[6]. (Compare this result with that obtained in [6] for L positive
definite). Now then, by operating on (4), we get

(7)

Ym(2) = ﬁ ( ~ Bo1(z — a)(2 — 1/2)Qm—2(2) + 126y (2)
0 e [ iy i)
= i (Buae = (e~ ) a(2) + 0% (2
+22Q5)(2) +20Q%)(2))
where
- QM (2) € (2~ 1/a)Pm—2)" N (2 — a)Ppm_y

QP (2) € (2 — a)Pp_2)™™ N (2 = 1/a)P,,_.
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Note that in the case |a| = 1, the result has been obtained in [1]. The
fact that Q% (2) = QP (2) € ((z — @)Pm—2)*" N (z — a)P,y_; means
that the sequence (R, (z)), with Q%)(z) =(z—a)Km—_1(a,a)Rm_1(2),
is M.O.P.S. corresponding to the functional L(*) such that

pD(P(2),Q(2) = LY (P(2)Q(1/2)) = ¢((z — a) P(2), (= — 0)Q(2)).

3. Next we give some applications of the previous sections. Consider
for |b| # 1 the regular functional L such that the associated M.O.P.S.
is ¢, (2) = 2" 1(2—b), n > 1. Tt is well known that L has the following
moments:

cp =0b" neN and c_, =0b" n € N.

The corresponding functional £ introduced in Section 1 will be regular
if and only if

Ku(a,a) 2\ + Kn(a,1/a) |,
2\ + K,(1/a,a)  K,(1/a,1/a) '

Now then, assuming |a| # 1, we have:
ja —b? |a]*" — 1
1—b |a]? -1

1/a b la>* 1 1
L= [aP =1 "

Kn(a,1/a) =1+ ljbw(a—b)(l/a—l_)).

K,(a,a) =1+

K,(1/a,1/a) =1+

Therefore, for A # A, n € N, with

_ Re K,(a,1/a) = \/K,(a,a)K,(1/a,1/a) — Im2K,(a,1/a)
2

)\:t

we have the regularity of L.

The following are some interesting cases:

1. The situation corresponding to b = 0 has been studied in [4].
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2. Ifa = b, we get K,(a,a) = Kp(a,1/a) = 1, K,(1/a,1/a) =
1/|a|?®, that is, XX = (=14 1/|a|™)/2. Furthermore, K, _1(z,a) = 1,
K, 1(a,1/a) = 2"~ 1/a"~! and therefore

n—1

2" Yz —a) 1 e
(‘)‘2 1 142X\
1—|a 1
1-lal® 142\ —s
_ @r [a>=2
Yn(2) = 1 1+2)
142\ s
1—|a2)(1+2) - 222
— (e a) + (1 —|a)(1+ )

a"(1/]a?"=2 — 1 — 4x — 4)?)

:z"_l(z—a— L[’ >
afl — |a|?—2(1 4+ 2))2?]
(1+2X0)(L—|af?)
a*(1/[a]**=2 — (14 2A)?)
:Z,H(Z_ aPn(1+2)) — 1 )
afla|?=2(1 4+ 2X)2 — 1]
(1+20(1 = |a*)[ef*"~*
an[l — (14 2X)2|a|?"2]

We remark that L is regular for A = —1/2 and 9,,(2) = 2"~ (2 — 1/a).

3. If b= 1/a, then K, (a,a) = |a|*", K,(a,1/a) = K, (1/a,1/a) = 1,
that is, A¥ = (=1 =+ |a|")/2. Furthermore, K,,_1(z,a) = 2" 1(a)" "},
K, _1(z,1/a) =1, and therefore

Yz —1/a) 2 Ya)mt 1
a" (a—1/a) la|?n—2 22 +1

0 2+ 1 1
¥n(2) = a? 2 2A+1
A+1 1

anfl a2_ n— “\Nn—
i1 R E T @ A+ 1)
la2=2 — (2X + 1)2

ol o a2l — )
=2 ( ~ M ATy 1)2]>
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(2A + 1)a""(|a)?> - 1)
afla|?»—2 — (20 +1)2]
(s B - 1)
a2 = A+ 1)7)
(2A + 1)a" (|a)?> - 1)
alla T A+ 1

We remark that £ is regular for A = —1/2 and ¢,,(z) = 2" (2 — a).

4. In the case |a| = 1, according to Remark 4 in Section 1, we get:

Yn(2) = dn(2z) — %an(z,a)
with ( " 7) 1( ) .
z—0b)(a—0b) 2" (a)" -1
Kn-1(z0) =1+ =570 2a— 1
and
|a —b[?

Kn-1(a,a) =1+ (n— 1)1——|b\2'

Now then, for A # )\, with A\, = —(1+ (n — 1)|a — b?/(1 — |b]?)), we
have

nle) = 1(am) - IR g T
)H—l—l—(n—l)w - —a 7o)
anfl(a _ b)
_ -
A1+ (n— 1)\142'!2

4. In order to study the semiclassical character of the new functional,
we give the following definitions [9]:

Definition 4.1. Given a linear functional L in S, we define
the derivative DL as the linear functional such that DL(P(z)) =
—iL(zP'(2)) for all P(z) € S.
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Remark. DL(z™) = —incy, for all n € Z\{0} and DL(1) = 0. Then
DL is not regular in the sense of Definition 1.1.

Definition 4.2. A regular Toeplitz functional L is semiclassical if
there exist polynomials A(z) and B(z), A(z) # 0, such that the follow-
ing equation holds: D(A(z)L) = B(z)L, where D is the derivative.

Proposition 4.1. If L is semiclassical, then L is semiclassical too.
Proof. Our aim is to prove that £ satisfies D((z —a)?(z—1/a)?A(z)L)

= (iz[(z—a)?(2 —1/a)?) A(2) + (2 —a)?(2 — 1/a)?B(z)) L, and therefore
L is semiclassical. Indeed:

D((z - a)*(z — 1/a)*A(2)L)
= D((z — a)*(z — 1/a)*A(2)L

+ (2 —a)?(z — 1/a)*D A(z)%(éa + 61/a))
+iz((z —a)*(z — 1/&)2)'A(z)%(5a +61/a)

= (z—a)*(z—1/a)*B(2)L
+ (2=~ 1/a°D(AE) (0. + 81/a)
+iz((z — a)*(z — 1/a)?)' A(2) L.

Since (z — a)?(z — 1/@)?D(A(2)(M/2)(6a + 61/3)) = 0,

(z—a)*(z — l/d)2B(z)%(§a +01/5) =0,
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and taking into account the definition of £, we have
D((z—a)*(z — 1/a)?A(2)L)
= (z—a)Q(z—l/&)QB(z),C — (Z—a)2(z—1/@)23(2)%((5,14-51/@)

+iz((z - a)*(2 — 1/2)*) A(2)L
= ((z —a)*(z — 1/a)*B(2) + iz[(z — a)*(z — 1/a)*) A(2))L.
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