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THE DISTRIBUTION OF RELATIVELY r-PRIME
INTEGERS IN RESIDUE CLASSES

J.E. NYMANN

ABSTRACT. If 1 is the only r-th power which is a divi-
sor of mi,ma,...,mg, then mi,ma,... ,mg are said to be
relatively r-prime. If @ = (a1,a2,...,a) is a k-tuple of non-
negative integers, h is a positive integer and x is a positive
real number, let Q(z; @, h,r, k) denote the number of k-tuples
of positive integers (m1,mz,... ,my) for which 1 < m; < =z,
m; = a; (modh), i =1,2,...,k and my,ma,... ,my are
relatively r-prime. An asymptotic formula with O-estimate
for Q(z;a,h,r, k) is determined. Special cases of this esti-
mate give earlier estimates for relatively prime integers and
r-free integers.

1. Introduction. For mj,ms,...,m integers and r a positive
integer we write (my, ma,... ,my), = d" if d is the largest integer
for which d" |m;(i = 1,2,...,k). If (m1,ma,...,mg), = 1, we say
mi,Mao,...,my are relatively r-prime. Note that in the case k = 1,
(m), = 1 means m is r-free. For aj,as, ... ,a; nonnegative integers, a
will denote the k-tuple {(aj,as,... ,ax). For h a positive integer and z a
positive real number, Q(z; @, h, r, k) will denote the number of k-tuples
of positive integers (mq, ma,... ,my) for which 1 < m; <z, m; = q;
(mod h), i =1,2,...,k and (mqy,ma,... ,mg), = 1.

Letting g = (a1, a2, ... ,ax), it is not difficult to see that if (g, h), # 1,
then Q(z;a, h,r, k) = 0 for all z. Section 3 of this paper is devoted to
obtaining an asymptotic formula with O-estimate for Q(z;a, h,r, k) in
the case (g,h), # 1. The remaining sections are devoted to showing
that special cases of this result give earlier results on the distribution of
relatively prime integers and r-free integers, and examining questions
of equidistribution of relatively r-prime k-tuples in the (admissible)
k-tuples of residue classes (mod h).

2. Preliminaries. A divisor d of n is said to be a unitary divisor if
(d,n/d) = 1. We write (a,n). = d if d is the largest unitary divisor of
n which divides a. ¢*(n) denotes the number of positive integers a < n
for which (a,n), = 1. Noting first that ¢* is multiplicative, it is not
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difficult to show
o*(m)= [ @-p).
pelin
Denote by ¢s(n) the number of positive integers a < n® for which
(a,n®)s = 1. Again noting that ¢, is multiplicative, we have

¢s(n) =n* [[(1—p"*).
pln

If n is r-free, w,(n), called the r-complement of n, is defined by
(1) we(m) =[] p
p¢ln

Note that (1) makes sense for 7 = 1 (n must then be 1) if we agree that
the empty product is 1.

The following result is not difficult to verify and can be found in [2].

Lemma 1. If S(z;a,(B,7) denotes the number of solutions of the
congruence ay = 3 (mod ) with 1 <y < z, then
S(5i0.B.7) = { 2] +e i ()8
0 if (a,7) 18
where € is either 0 or 1.

The following result plays a central role in the proof of the asymptotic
formula with 0-estimate for Q(z;a, h,r, k).

Lemma 2. If (g,h), =1 and rk > 1, then

w1 B @ ((@l@h))b)
e R e R T PR (PR N

where  denotes the Riemann zeta function.

Proof. Let
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It is easy to show that f is a multiplicative function. Since |f(d)| <
g*/d™* and 3 g*/d"* converges, > f(d) converges absolutely. There-
fore the series in the statement of the lemma, Y f(d), can be expressed
as an Euler product; i.e.

2 D f@=T[0+f@)+7r@)+...)=T[Q+ @)
d=1 p p

The last equality above holds because f(p*) =0 for a > 2.

Now assume p*||h and pt||g. Then, if s > ¢, f(p) = 0 while if s < ¢,
f(p) = —p~*("=#), Therefore we have

@) Jla+rw) =]Ja-»*) JJa—» ") [ @-p*2)

P pth pllh p’|lh
rlg Pl
K
II a-p%
rfl‘lh
P g

Noting that p¢||h and p¢|g is equivalent to p®||(g,h).« and using the
fact that ((rk) = [[,(1 - p~*")~1 the right hand side of (3) can be

rewritten as

(4) €y [Ja-p*n 7t I @-p o).

plh pe|l(g,h)«

Recalling the product expansion for ¢,x(h) and using the fact that p¢||n
is equivalent to p"~°¢||lw,(n) (for n r-free), (4) can be expressed as

(5) )T w (o)™t I @=p7).

pfllwr((g,h)+)

Using the product expansion for ¢*, we have

ok O (wr((g, ) )
Y pf|wr1;[g,h)*)(1 p) (wr((gsh)))*

Combining (2), (3), (4), (5) and (6) proves the lemma. o
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3. Asymptotic formula with 0-estimate for Q(z;a, h,r, k). We
will now state and prove the main result.

Theorem 1. If (g,h), =1 and rk > 1, then

L O(x/7) ifk=1

Q(z;a,h,r k) = A Ty O(zlog z) ifr(k—1)=1

rk
¢(rk) O(z* Y  ifr(k—-1)>2
where
L 6 (@n(g. 1))
Ork(h)  (wr((g,h)«))F
Proof. Since
1 ifn=
> utd)~{
0 ifn>1
dr|n"
we have .
Q(z;a,h,r k) =Y > p(d)
d’“|(m1,m2,...,mk)r
where > ° denotes the sum over all k-tuples (mi,ma,...,my) of
integers with 1 < m; < z and m; = a; (mod h), i = 1,2,... k.
We now count the number of times u(d) occurs in the above sum
noting that d cannot exceed z'/". If d"|(my,ms,...,ms),, then
m; = d"y; = a; (mod h) for some integer y; with 1 < y; < z/d",
1t =1,2,...,k. Now, using the notation of Lemma 1, this system of
congruences has Hle S(z/d";d",a;,h) solutions. By Lemma 1, this
product is zero unless (d",h)|a; for all i = 1,2,... k; i.e. unless

(d",h)|g. Furthermore, by Lemma 1, if (d",h)|g, the above product
is (z/(d"h)(d", h) + 0(1))*. Hence we have

Qia,hyrk) = D (oo (d k) +0(1) u(d)

d
1<d<az'/T
(d",h) g
(7) .
z p(d) ko, k-1 g \F1!
= B @,k +a 0 3 ( )

k rk ( ? T
f 1<d<z'/" d 1<d<gt/m d'h

(d"h) | g
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Now by Lemma 2 the first term in (7) is

LA pd) gy

(®) Ao "W 2 g n)t
z1/7‘<d
@.h)|g

We now show that the second term in (8) is 0(z'/").

N(d) r 1\k k 1
IDONCIUSIL EFED S
m1/7‘<d z1/7‘<d
(d"h)|g

< gk/ t—rkdt — 0($—k+1/r).

1/7-_1
Now going back to the second term in (7) we have

O( > (dfh>k_1>20< > dr(kl))

1<d<zl/" 1<d<zl/r
O(z'/") ifk=1
=4 O(ogz) ifr(k—1)=1
O(1) ifr(k—1)>2.

Combining these results we have

A O(z*y  ifk=1
Qi@ hyr k) = A + O(2"/") +{ O(zlog @) ifr(k—1)=1
(k) oo
(1) ifr(k—1)>2

The theorem now follows immediately. o

It should be mentioned that in special cases better error estimates
are known; for example, in the case k = 1 and r = 2 see [3, 6, 7,
8]. The error estimates given in Theorem 1 are sufficient for obtaining
probabilistic and density results. In the next section we will see how
Theorem 1 generalizes and ties together several earlier results.

4. Special cases and probabilistic interpretations. If we take
h =1 in Theorem 1, we have the following result of Benkoski [1].
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Corollary 1. The number of k-tuples of positive integers (my, ma,

Lomyg) with 1 <m; <z,i=1,2,...,k which are relatively r-prime
s given by
o O(zlogz) ifr=1 and k=2
k) +{ 0@y ifk=1
r
O(zF~1)  otherwise.

If we further specialize to the case r = 1, we have the following result
on the distribution of relatively prime integers which can be found in
(3, 4].

Corollary 2. The number of k-tuples (myi,mo,... ,my) of positive
integers with 1 <m; <z, 1=1,2,...,k which are relatively prime is

zF n O(zlog z) ifk=2,
¢(h) Oo(zF 1Y)  ifk>2.

If we specialize Corollary 1 to the case £ = 1, we have the following
classical result on the distribution of r-free integers.

Corollary 3. The number of r-free integers which do not exceed x
s given by
x

/7).
) O

If we specialize Theorem 1 to the case k = 1, we have the following
result of E. Cohen and R.L. Robinson [2] on the distribution of r-free
integers in residue classes.

Corollary 4. If (a,h) is r-free, then the number of r-free integers
not exceeding x and in the residue class of a (mod h) is given by

P g n((@,h)) o

/.
o) ol o o)
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If we specialize Theorem 1 to the case = 1, we have the following
result on the distribution of relatively prime integers in residue classes.

Corollary 5. If (a1,az,...,ar, h) =1, then the number of k-tuples

(my,ma,...,myg) of integers with 1 < m; < x and m; = a; (mod h),
1 =1,2,...,k which are relatively prime is given by
1 2* n O(zlog z) if k=2,
ér(h) C(k) Oo(zF=1Y  ifk > 2.

Theorem 1 and each of the above corollaries have probabilistic inter-
pretations. The following corollary is an example.

Corollary 6. Assume (a1,as,...,ax,h) = 1. If k positive integers
are chosen such that the ith integer is chosen at random from the
residue class of a; (mod h), then the (limiting) probability that these k
integers are relatively prime is

1
— [[a-p"""

Proof. If the ith integer is chosen between 1 and « and in the residue
class of a; (mod h), then there are [x/h] ways that integer can be
chosen. Hence the limiting probability of the corollary is

lim = =

[z/h]F gr(R) C(k) — C(k

Q(x;a,h,1,k) AR 1 ) H(l Ry
plh

It should be noted that the probability given in Corollary 6 is only
dependent on the distinct prime factors of h.

5. Equidistribution. In this section a; will denote both the
integer a; and the residue class of a; (mod k) and @ = (a;, ag, ... ,ar)
will denote both the k-tuple of integers and the k-tuple of residue
classes (mod h); the context will make clear which is intended. A



1480 J.E. NYMANN

k-tuple (a1,as,...,ar) of residue classes (mod h) will be called 7-
admissible if (a1,as,... ,ag, h), = 1. From Theorem 1, these are the
k-tuples of residue classes for which there exist k-tuples of integers
(my,ma, ... ,my) with m; = a; (mod h) and (my,ma,... ,mg), = 1.
Let ®(h;r, k) denote the number of r-admissible k-tuples of residue
classes (mod h).

Theorem 2.
®(h;r,k) = h* [T (1-p~")
pT|h

Proof. Note first that (ai,as,...,ar,h), = d" if and only if
(ar/d",az/d" ... ,ar/d",h/d"), = 1. Hence

Wb =" @(h/d";r, k).
dr | h
Now applying (a form of) the M6bius inversion formula we have
Bt k) = 3 wld)(h/d ) = 1S ()™,
dr|h dr | h
Using the fact that for f a multiplicative function,
You@fd) =[] 1-fw),
dr|h Pk

the theorem follows immediately. u]

The density of the k-tuples of relatively r-prime integers in the k-
tuple of residue classes @, denoted by 6(a, h,r, k), is defined by

Q(z;a, h,r k)

§(a,h,r,k) = lim -

T—00 x

From this definition and Theorem 1, we have the following result.

Lemma 3.

5(a, by k) = {A/g(rk) if @ is r-admissible

0 if @ is not r-admissible
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where A is as given in Theorem 1.

The relative density of the k-tuples of relatively r-prime integers in
the k-tuple of residue classes @, denoted by ¢*(a, h,r, k), is defined by

* s Q(I;a,h,r, k)
1) (a, h,r, k) = Ilglgo Q(I, a,l,r, k‘)

From the definitions of 6(a, h, r, k) and 6*(a, h, r, k) and Theorem 1, we
have the following relationship:

8* (@, h,r, k) = ((rk)é(a, h,r, k).

The k-tuples of relatively r-prime integers are said to be equidistributed
(mod h) if the relative density §*(a, h, r, k) has the same value for each
r-admissible k-tuple @ of residue classes (mod h).

Since there are ®(h;r, k) r-admissible k-tuples of residue classes, we
have the following result.

Lemma 4. The k-tuples of relatively r-prime integers are equidis-
tributed (mod h) if and only if 6*(a,h,r,k) = 1/®(h;r k) for every
r-admassible a.

A positive integer h is said to be r-full if whenever a prime p divides
n, p" also divides n. We are now ready to state the main result of this
section which generalizes a result of Cohen and Robinson [2].

Theorem 3. The k-tuples of relatively r-prime integers are equidis-
tributed (mod h) if and only if h is r-full.

Proof. By Lemmas 2 and 3 and Theorems 1 and 2, equidistribution
(mod h) occurs if and only if

9) ¢*((wr((g,h):))*) _ [[a-»"

PRCADR)

p"th

for every r-admissible @ = (ay,as, ... ,ar) where g = (a1, az,...,ax).
Now if h is r-full and @ is r-admissible, (g, k). = 1 and hence the left
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hand side of (9) is 1. Also the right hand side of (9) is 1 since it is
the empty product. Conversely assume (9) holds for every r-admissible
a. Taking a = (1,1,...,1), the left hand side of (9) is 1. Hence the
right hand side of (9) must be the empty product and hence h is r-full.
mi
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