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REMOVING THE JUMP-KATO’S DECOMPOSITION

T.T. WEST

ABSTRACT. A simple proof, using the adjoint operator
and Hahn-Banach theorem, is given of Kato’s Decomposition
which removes the jump at the origin in the nullity (or defect)
of a semi-Fredholm operator by subtracting a finite dimen-
sional summand.

Let X be a Banach space over the complex field and let B(X) denote
the Banach algebra of bounded linear operators on X. For T' € B(X)
set n(T') = dimker(T') and d(T') = codim T'(X). Define the generalised
kernel K(T') and the generalised range R(T) of T' to be the subspaces

K(T) = Jker(T™), R(T)=[)T"(X).

Write
@, (X)={T € B(X):n(T) < co and T(X) is closed in X},
®_(X)={T'eB(X):d(T) < 0o and T(X) is closed in X}.
P, (X) = &4(X)UP_(X) is the set of semi-Fredholm operators in
B(X),while ®(X) = &, (X) N ®_(X) is the set of Fredholm operators
in B(X). T € ®,(X),i(T) = n(T)—d(T), a finite or infinite integer,
is the index of T. X™* denotes the dual space of X and T* the adjoint
operator of T'.

If T € &,.(X), then R(T) is a closed subspace of T, and if T =
T|R(T) denotes the restriction operator, then it is well known [3]
that n(Tr) < n(T),n(Tr + A) = n(T + A) for A # 0,d(Tg) = 0 and
Tr € ®(R(T)). This result is important in that it reduces properties
of semi-Fredholm operators to those of Fredholm operators.

If T € ®,(X) then 3e > 0 such that n(T 4+ \) is constant (< n(T))
for 0 < |A| < e, while if T € ®_(X) the same is true of d(T + ).
Therefore we can define the jump of T

J(T) =n(T) —n(T+X), 0<|A<e, for T € &, (X)
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and
J(T)=d(T)—d(T+A), 0<|A\<eg forTe®_ (X).

Continuity of the index ensures that the jump is unambiguously defined
for T € ®(X).

Now let T' € B(X). The first two lemmas are entirely elementary.

LEMMA 1.
ker(T) C T™(X) < ker(T?) Cc T" (X))
& ker(T") C T(X).
LEMMA 2.

K(T) Cc R(T),
S ker(T) CTH(X), n=12,...,
Sker(T") CT(X), n=1,2,....

PROPOSITION 3. If T € &, (X) then

J(T) = 0 & K(T) C R(T).

er(Tgr), (Lemma 2)

But n(T + A) = n(Tg + A) for A # 0 since, for these values of A,
ker(T + A) C R(T), therefore n(T'+ A) = n(Tg + A) for all values of A.
Now d(Tg) =0

=d(Tr+ ) =0, |\ <e,
= n(Tgr + A) is constant, |\ <e¢,
= n(T + A) is constant, |\ < e.
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Conversely suppose that n(T + \) is constant for |A| < . Then

n(Tr) < n(T) = n(T + X) = n(Tr + A), 0< |\ <e.

n(TR) > n(TR + )\), 0< |)\‘ <eg,
= n(Tgr) = n(T),
= K(T) C R(T).

Suppose now that T € ®_(X). Then T* € &,(X*) and, for
0< A <e,

J(T) =d(T) — d(T +X) = n(T") — n(T" + X) = j(T7),
so j(T) =0« j(T*) = 0. Now

K(T*) c R(T"),
<ker(T™) c T*(X*), n=1,2,... (Lemma 2),
STY(X)t Cker(T)*, n=1,2,...,
&T"(X) D ker(T'), since all subspaces are closed,
<R(T) D K(T).o

If T € &,(X), Kato’s decomposition is nontrivial & j(T') # 0 <
K(T) ¢ R(T), and in this case 3 a smallest integer v such that

ker(T"~') C T(X), but ker(T") ¢ T(X).
PROPOSITION 4. With these hypotheses we can choose a cascade
v, Ty, ..., T 1y satisfying
y € ker(T")\T'(X),

Ty € ker(T" Y)\T?(X),
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further, y, Ty, ... ,T;’l are linearly independent modulo T" (X).

PROOF. If v = 1 we are done. So assume v > 2 and y €
ker(T%)\T(X). Then Ty € ker(T” 1), so suppose that Ty € T?(X).
Then

T~ (Ty) (T(X) = {y + kex(T)} [ T(X) # 2;

thus 3z € ker(T) such that y + z € T(X). Now z € ker(T) C
ker(T%~') C T(X) by hypothesis, so y € T(X) which is false, and
this process can be continued.

If 4 complex numbers oy, 0 < k < v — 1 such that

v—1
Z axThy € TV (X),
0
apply T¥~! to this inclusion to get
0Tty e T 1(X) C T¥(X),

which gives ap = 0. A similar argument gives a, =0, k=1,...,v — 1.
]

PROPOSITION 5. Under the same hypotheses we can choose f €
ker(T*") such that

I y) =6y, 0<i, j<v-L
PROOF. Since y, Ty, ..., T 1y are linearly independent modulo the
closed subspace T"(X), by the Hahn-Banach Theorem
3f € T%(X)* = ker(T™)

such that
F(Tty) =1,

and '
f(Tiy) =0, 0<j<v—2
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Now T*f(T" 'y) =T*"f(y) =0, and, for 0 < j <v — 2,

T*f(T7y) = f(T7"y),
so T*f(T"2%y) =1, and T* f(T7y) = 0, 0 < j < v — 3. Continuing the
process proves the proposition. Observe that

f € ker(T")\T*(X™),

T*f € ker(T* Y)\T**(X™),
T 1 € ker(T*)\T* (X*),
T f =0,

forms a cascade adjoint to that in Proposition 4. 0O

The construction of the decomposing projection of Kato’s theorem
combines the two cascades. Let Y denote the subspace spanned by
v, Ty, ..., T 1y of Proposition 4.

PROPOSITION 6.

v—1
P=) TYfeI" ™y
§j=0

is a projection in B(X) with range Y which commutes with T; T|Y is
nilpotent and j(TY) = 1.

PROOF. P is a projection in B(X) by Proposition 5.

v—1 v—1

TP=Y TYfeT"Iy=>Y TYfeT" Jy,
j=0 j=1
v—1 v—2

PT =) T ferily=Y 1" fer i1y,

j=0 j=0
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hence PT = TP. Clearly T|Y is nilpotent, n(T|Y) = 1, and, Y being
finite dimensional, j(T|Y)=1.0

Our main result is a special case of Kato’s decomposition theorem,
[1, Theorem 4].

THEOREM 7. If T € &, (X), then T = Ty & Ty, where Ty is a finite
dimensional nilpotent direct summand Ty € &4 (X), and j(T2) = 0.

PROOF. Let T € ®4(X). If j(T) = O there is nothing to prove.
If j(T) > 0 let P be the non-zero finite rank projection of Propo-
sition 6 commuting with 7. Clearly T'|ker(P) is semi-Fredholm and
Jj(Tker(P)) = j(T') — 1. Continuing the process a finite number of
times reduces the jump of the residual operator to zero. O

Let T € B(X) and let K be a compact set contained in the semi-
Fredholm domain of T, that is the set of complex numbers {\: A\+7T €
®,(X)}. The points 4 € K such that j(pu +T) > 0 form an isolated
and therefore a finite set. Thus, by repeating Kato’s Decomposition a
finite number of times, we can simultaneously remove all jumps in K.
]

THEOREM 8. If T € B(X) and K is a compact subset of the
semi-Fredholm domain of T, then T = Ty @ T», where T1 is a finite
dimensional nilpotent direct summand and j(p+ T2) =0 for p € K.

Applications of Kato’s Decomposition are given in [2, 3 and 4]. Here
we use it to examine the increasing sequence of finite dimensional
subspaces ker(7T*) where T' € ®, (X) (dually the decreasing sequence
of subspaces T%(X) of finite codimension where T € ®_(X)).

Let T' € ®4(X) where v is the least positive integer such that
ker(T%) ¢ T(X)

and j(T) is the jump of T'. Kato’s decomposition gives
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ker(T"*) = ker(TF) @ ker(T¥),
n(T*) = n(TY) + n(T3),
K(T) =K(T) PK(1),

R(T) = R(T)) DR(T),

where dim(X7) < 00,7} is nilpotent of order exactly v, j(T) = j(T1)
and j(Tz) = 0. Thus, to examine ker(T*), it suffices to examine the
sequences ker(T}) and ker(7¥), combining the results.

First let us consider the operator T} on the finite dimensional space
X1. It is clear from the proof of Theorem 7 that X; is a direct sum
reducing 77,

i(T)

Xl = @ }fia
i=1

i(T)

= @ Sia
i=1

where each S; is a cyclic nilpotent operator of order v;,dim(Y;) = v;
and at least one v; (say v;(r)) equals v, thus

1<y, < vir) = v

Now
ker(SY™1) € Si(Y7),

but

Y; = ker(S;") ¢ S;(Y;) for each i.
In fact if y; € ker(S;")\S;(Y;), S; can be represented as a v; X v; Jordan
block matrix with ones on the leading subdiagonal and zeros elsewhere
relative to the basis {y;, Sivi,...,SY ‘y;i}. Clearly n(S;) = d(S;) =
j(S;) =1 for each i. Further

i(T) i(T)

dim(X;) = Z dim(Y; Z Vi,
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and, since at least one v; equals v, we have the following bounds on
dlm(Xl),

(1) +v — 1< dim(Xy) < §(T)r.
Clearly any such direct sum of S;’s is a possible candidate for T;.

We now turn to examine 75 noting that, since j(73) = 0, we have
K(Tz) C R(T») by Proposition 3.

PROPOSITION 9. (i) Let T € &, (X) then j(T) = 0 < n(T*) = kn(T)
for each k;

(ii) let T € ®_(X) then §(T) = 0 < d(T*) = kd(T) for each k.

PROOF. (i). Let T € ®,(X), since j(T) = 0 & K(T) C R(T), we
may restrict our attention to the restriction Tz of T to the Banach space
R(T'), and in this case Tr € ®(R(T")) with d(Tr) = 0 [3, Corollary 1.8].

Thus it suffices to consider a surjective operator I' € ®(X). Then
the sequence of mappings on the finite dimensional spaces which are
restrictions of 7T,

ker(T*) — ker(T*=') — - — ker(T?) — ker(T) — (0)
are all surjective. For clearly
T(ker(T*)) C ker(T*™1),

and if y € ker(T*~1), since T is surjective, 3z € X such that Tz = y,
but TFz = T+ 1y = 0.

The kernel of each of these maps is ker(T), and using the fact that
the sum of the dimensions of the image and kernel is the dimension of
the whole space, we see that

n(T*) = n(T*Y) + n(T),

thus
n(T*) = kn(T) for each k.

Part (ii) follows at once by duality. O
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Thus, reverting to our original situation of 7' = T7 @ T, we see that,
for k > v, the codimension of ker(7%~!) in ker(7T*) is constant. In fact

we have
i(T)

T = Z S; @ T,
=1
§(T)

n(T) = Z N(Si) +n(Tz),

n(T) = j(T) + n(Tz),
hence
n(T+ ) =n(Tz), 0<|\<e.

Further, for & > v,
n(T*) = n(T7) + n(T3),
= dim(X1) + kn(T3).
Thus, for k£ > v,
() = n(T¥) = n(Tz) =n(T+X), 0< A <e.

The corresponding results for the decreasing sequence T%(X), where
T € ®_(X), follow at once by duality. O

THEOREM 10. Let T € ®.(X) with v the smallest positive integer
such that
ker(T") ¢ T(X).

Then, for k > v, for 0 < || < g, € sufficiently small,
(T — n(TF) = n(T+X)  for T € &, (X),
while
d(TF) —d(T*) =d(T + ) for T € ®_(X).
REFERENCES

1. T. Kato, Perturbation theory for nullity, deficiency and other quantities of
linear operators, J. Analyse Math. 6 (1958), 261-322.



612 T.T. WEST

2. M. O’Searcéid, Economical finite rank perturbations of semi-Fredholm oper-
ators, Math. Z. 198 (1988), 431-434.

3. T.T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc.
Roy. Irish Acad. Sect. A 87 (1987), 137-146.

4. J. Zemanek, Approzimation of the Weyl spectrum, Proc. Roy. Irish Acad.
Sect. A87 (1987), 177-180.

DEPARTMENT OF MATHEMATICS, TRINITY COLLEGE, DUBLIN, IRELAND



