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ON THE ANALYTICITY OF THE HOMOLOGY 

ALBERTO TOGNOLI 

Introduction . Let W be a real analytic manifold and {a} e 
Hp(W, Z2). We shall say that {a} is analytic if there exists a compact 
analytic subset S of W such that: {a} = (fundamental class of S). The 
purpose of this short paper is to prove 

THEOREM 1. Let W be a paracompact real analytic manifold. Then 
any homology class {a} G Hp(W,Z2) is analytic. 

We remark that a similar result fails to hold in the real algebraic case 
(see [2]). 

1. Definitions and well known facts. Let V, W be two differen­
t i a t e (i.e., C °°) manifolds. Then, on the set M(V, W) of differentiate 
maps / : V —• W', we shall consider the Whitney topology (see [5, p. 
42]). 

In the following we shall use the known result: if / e M(V, W), then 
there exists a neighborhood £7, in the C ° topology, of / such that any 
g G U is homotopic to / (see [7]). 

By a real algebraic variety we shall mean an affine real algebraic 
variety. A regular variety will be called an algebraic manifold. An 
algebraic map is the restriction of a rational map. 

In the following we shall need 

LEMMA 1. Let V cHn,W Cllq be two real algebraic manifolds and 
V^W be a differentiable map. IfV is compact and bordant to <j), then, 
for any e > 0, there exists an algebraic submanifold V C Rn + q ,

7 an 
analytic isomorphism V—>V and an algebraic map if' : V —> W such 
that: 
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968 A. TOGNOLI 

(i) *(<?(*), <p'-w-l{x))<e, xeV; 

(ii) 6'{(d<p)(v), (d(<p'o*-1)(N))<e 

for any tangent vector v, to V at x. 

Here <5,6f are two metrics on R 9 and on the Grassmaniann manifold. 

P R O O F . See [8]. • 

LEMMA 2. Let V C R n , W C R 9 be two real algebraic manifolds 
and if : V —> W an algebraic map. Let us suppose that V is irreducible 
and there exists a Zariski open set V C V with the property that (f is 
injective on V. Under these hypotheses, if T is the Zariski closure of 
(p(V) in W, we have: 

(i) T D '<p{V), dim(T) = dim(V'); T — <p(V) is contained in an 
algebraic set S with dim(5) < dim(V), 

(ii) (fundamental class of T) = ip* (fundamental class ofV). 

PROOF. Property (i) is proved in [3, Lemma 1.1]. Property (ii) follows 
from the definition of the fundamental class, see [4], and the proof of 
the first part of the lemma. D 

Now let {p : V —* W be a differentiate map between differentiable 
manifolds. Let us denote by S(V)XiS(W)ip^x) the stalks of the sheaves 
of the differentiable functions on V,W. We recall 

DEFINITION. <̂  is called finite, in the point x, if'£(V)x is a finite 
(P*(^(^)<p(.r)) module. 

We have 

LEMMA 3. Let dim(V) < dim(PV) and let us suppose V is compact. 
Then the set of differentiable maps that are finite in every point is an 
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open dense subset of M(V, W). 

PROOF. See [1, p. 96] (see also [5, p. 169]). D 

2. Proof of Theorem 1. Suppose w is a compact, real analytic 
manifold and {a} G Hp(W, Z2). It is known, see [9], that we may 
suppose VF is a real algebraic manifold. Moreover there exists a 
compact differentiable manifold V and a differentiable map ip : V —> W 
such that 

{a} = (^(fundamental class of V)), see [7]. 

By Lemma 1 we may suppose there exists an algebraic manifold 
V = V U V" and an algebraic map fi : V —> W such that: 

(i) V\V" are diffeomorphic to V; 

(ii) {a} = {(fi* (fundamental class of V')} = {(^*(fundamental class 
of V")}; 

(iii) fi\v is in general position with respect to fi(V"). 

Moreover, by Lemma 3, we may suppose 

(iv) fi is finite in every x £ V. 

From Lemma 2, finally, we may assume that 

(v) if T is the Zariski closure of (fi{V) in W, ]then T - (fi(V) is 
contained in an algebraic set S such that dim(5) < dim(V) = p. 

Now let fi : V —> W be a complexification of fi (such fi exists, see 

[10]). We may assume fi is finite in any point of V, because finiteness 

is an open condition, see [5, p. 168]. We shall suppose V = Vr/||Vr,/. 

The map fi is finite, hence the image of any analytic germ Vy is the 

germ of a complex analytic set of VF, see [6, p. 162]. 

REMARK. The above facts imply that: 

(a) T — real part of the closure, in the Zariski topology, of fi(V). 
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(b) d(p has maximum rank on an open dense set of V. 

We deduce that , for any x G T, we have three disjoint kinds of analytic 
irreducible germs of Tx : 

(1) germs of the image of V7, of dimension p; 

(2) germs of the image of V", of dimension p; 

(3) germs of the image of (p (5) , of dimension lower than p; 

This proves that T" — (p{V) U S is an analytic subset of W and, 
clearly, 

{a} = {fundamental class of T ' } . 

In fact, for any y G T, the germ 

is real analytic, where 

\jyi = fi~ (y) n V\ \Z\R = real part of Z. 

So Yy U Sy is real analytic and, clearly, Yy U Sy = Ty. In fact, in any 
point, T' is the union of a finite set of irreducible germs of T. 

So the theorem is proved under the hypothesis that W is compact. 
In the general case, we may take a representative element a of {a} 
contained in a relatively compact open set U of W. 

We can now realize C/, up to analytic isomorphism, as an open set of 
a compact analytic manifold Z (take the unique analytic structure on 
the double of U). 

We can now prove the analyticity of {a} in Z and this implies, clearly, 
the analyticity of {a} in W. n 
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