ON THE ANALYTICITY OF THE HOMOLOGY

ALBERTO TOGNOLI

Introduction. Let W be a real analytic manifold and $\{\alpha\} \in H_P(W, \mathbb{Z}_2)$. We shall say that $\{\alpha\}$ is analytic if there exists a compact analytic subset S of W such that: $\{\alpha\} = (\text{fundamental class of } S)$. The purpose of this short paper is to prove

THEOREM 1. Let W be a paracompact real analytic manifold. Then any homology class $\{\alpha\} \in H_P(W, \mathbb{Z}_2)$ is analytic.

We remark that a similar result fails to hold in the real algebraic case (see [2]).

1. Definitions and well known facts. Let V, W be two differentiable (i.e., \mathbb{C}^{∞}) manifolds. Then, on the set M(V, W) of differentiable maps $f: V \to W$, we shall consider the Whitney topology (see [5, p. 42]).

In the following we shall use the known result: if $f \in M(V, W)$, then there exists a neighborhood U, in the \mathbf{C}^O topology, of f such that any $g \in U$ is homotopic to f (see [7]).

By a real algebraic variety we shall mean an affine real algebraic variety. A regular variety will be called an algebraic manifold. An algebraic map is the restriction of a rational map.

In the following we shall need

LEMMA 1. Let $V \subset \mathbf{R}^n, W \subset \mathbf{R}^q$ be two real algebraic manifolds and $V \xrightarrow{\varphi} W$ be a differentiable map. If V is compact and bordant to ϕ , then, for any $\varepsilon > 0$, there exists an algebraic submanifold $V' \subset \mathbf{R}^{n+q}$, an analytic isomorphism $V' \xrightarrow{\pi} V$ and an algebraic map $\varphi' : V' \to W$ such that:

Previously published in Proc. Amer. Math. Soc. Vol 104 (1988) no. 3, 920-922.

Copyright ©1989 Rocky Mountain Mathematics Consortium

968 A. TOGNOLI

(i)
$$\delta(\varphi(x), \varphi' \cdot \pi^{-1}(x)) < \varepsilon, x \in V;$$

(ii)
$$\delta'((d\varphi)(v), (d(\varphi' \circ \pi^{-1})(N)) < \varepsilon$$

for any tangent vector v, to V at x.

Here δ, δ' are two metrics on \mathbf{R}^q and on the Grassmaniann manifold.

PROOF. See [8]. \square

LEMMA 2. Let $V \subset \mathbf{R}^n, W \subset \mathbf{R}^q$ be two real algebraic manifolds and $\varphi: V \to W$ an algebraic map. Let us suppose that V is irreducible and there exists a Zariski open set $V' \subset V$ with the property that φ is injective on V'. Under these hypotheses, if T is the Zariski closure of $\varphi(V)$ in W, we have:

- (i) $T\supset \varphi(V)$, $\dim(T)=\dim(V)$; $T-\varphi(V)$ is contained in an algebraic set S with $\dim(S)<\dim(V)$,
 - (ii) (fundamental class of T) = φ_* (fundamental class of V).

PROOF. Property (i) is proved in [3, Lemma 1.1]. Property (ii) follows from the definition of the fundamental class, see [4], and the proof of the first part of the lemma. □

Now let $\varphi: V \to W$ be a differentiable map between differentiable manifolds. Let us denote by $\mathcal{E}(V)_x, \mathcal{E}(W)_{\varphi(x)}$ the stalks of the sheaves of the differentiable functions on V, W. We recall

DEFINITION. φ is called *finite*, in the point x, if $\mathcal{E}(V)_x$ is a finite $\varphi^*(\mathcal{E}(V)_{\varphi(x)})$ module.

We have

LEMMA 3. Let $\dim(V) \leq \dim(W)$ and let us suppose V is compact. Then the set of differentiable maps that are finite in every point is an

open dense subset of M(V, W).

PROOF. See [1, p. 96] (see also [5, p. 169]).

2. Proof of Theorem 1. Suppose w is a compact, real analytic manifold and $\{\alpha\} \in H_P(W, \mathbf{Z}_2)$. It is known, see [9], that we may suppose W is a real algebraic manifold. Moreover there exists a compact differentiable manifold V and a differentiable map $\varphi: V \to W$ such that

$$\{\alpha\} = (\varphi(\text{fundamental class of } V)), \text{ see } [7].$$

By Lemma 1 we may suppose there exists an algebraic manifold $\hat{V} = V' \cup V''$ and an algebraic map $\hat{\varphi} : \hat{V} \to W$ such that:

- (i) V', V'' are diffeomorphic to V;
- (ii) $\{\alpha\} = \{\hat{\varphi}_* \text{ (fundamental class of } V')\} = \{\hat{\varphi}_* \text{(fundamental class of } V'')\};$
 - (iii) $\hat{\varphi}|_{V'}$ is in general position with respect to $\hat{\varphi}(V'')$.

Moreover, by Lemma 3, we may suppose

(iv) $\hat{\varphi}$ is finite in every $x \in \hat{V}$.

From Lemma 2, finally, we may assume that

(v) if T is the Zariski closure of $\hat{\varphi}(\hat{V})$ in W,]then $T - \hat{\varphi}(\hat{V})$ is contained in an algebraic set S such that $\dim(S) < \dim(V) = p$.

Now let $\tilde{\hat{\varphi}}:\tilde{\hat{V}}\to \tilde{W}$ be a complexification of $\hat{\varphi}$ (such $\tilde{\hat{\varphi}}$ exists, see [10]). We may assume $\tilde{\hat{\varphi}}$ is finite in any point of $\tilde{\hat{V}}$, because finiteness is an open condition, see [5, p. 168]. We shall suppose $\tilde{\hat{V}}=\tilde{V}'||\tilde{V}''.$ The map $\tilde{\hat{\varphi}}$ is finite, hence the image of any analytic germ \hat{V}_y is the germ of a complex analytic set of \tilde{W} , see [6, p. 162].

REMARK. The above facts imply that:

(a) T= real part of the closure, in the Zariski topology, of $\hat{\hat{\varphi}}(\hat{V})$.

970 A. TOGNOLI

(b) $d\tilde{\hat{\varphi}}$ has maximum rank on an open dense set of $\tilde{\hat{V}}$.

We deduce that, for any $x \in T$, we have three disjoint kinds of analytic irreducible germs of T_x :

- (1) germs of the image of \tilde{V}' , of dimension p;
- (2) germs of the image of \tilde{V}'' , of dimension p;
- (3) germs of the image of $\tilde{\varphi}^{-1}(S)$, of dimension lower than p;

This proves that $T' = \hat{\varphi}(V') \cup S$ is an analytic subset of W and, clearly,

$$\{\alpha\} = \{\text{fundamental class of } T'\}.$$

In fact, for any $y \in T$, the germ

$$Y_y = |\cup_i \tilde{\hat{\varphi}}(\tilde{V}'_{y_i})|_R$$

is real analytic, where

$$\bigcup y_i = \tilde{\varphi}^{-1}(y) \cap \tilde{V}', \quad |Z|_R = \text{ real part of } Z.$$

So $Y_y \cup S_y$ is real analytic and, clearly, $Y_y \cup S_y = T'_y$. In fact, in any point, T' is the union of a finite set of irreducible germs of T.

So the theorem is proved under the hypothesis that W is compact. In the general case, we may take a representative element α of $\{\alpha\}$ contained in a relatively compact open set U of W.

We can now realize U, up to analytic isomorphism, as an open set of a compact analytic manifold Z (take the unique analytic structure on the double of U).

We can now prove the analyticity of $\{\alpha\}$ in Z and this implies, clearly, the analyticity of $\{\alpha\}$ in W. \square

REFERENCES

- 1. A. Andreotti and P. Holm, *Quasianalytic and parametric spaces*, Real and complex singularities, (Proc. Ninth Nordic Summer School) Oslo, (1976), Sijthoff and Noordhoff, Alphen in den Rijn (1977).
- 2. R. Benedetti and M. Dedo, Counterexamples to representing homology classes by real algebraic varieties up to homeomorphisms, Compositio Math. 53 (1984).

- 3. —— and A, Tognoli, On real algebraic vector bundles, Bull. Sc. Math. (2) 104 (1980), 89-112.
- 4. A. Borel and A. Haefliger, La classe d'homologie fondamentale d'une espace analytique, Bull. Soc. Math. France 89 (1961), 461-513.
- 5. M. Golubisky and V. Guillemin, Stable mappings and their singularities, Graduate texts in Mathematics, Vol. 14. Springer Verlag, 1973.
- 6. L. Kaup and B. Kaup, *Holomorphic functions of several variables*, Walter de Gruyter, Berlin, 1983.
- 7. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helvetici 28 (1954), 17-86.
- 8. A. Tognoli, Algebraic approximation of manifolds and spaces, Sem. Bourbaki (1979-80) 73-94; Lecture Notes in Math. 842, Springer, 1981.
- 9. ——, Su una congettura di Nash, Annali Scuola Normale di Pisa (3) 27 (1973), 167-185.
- 10. ——, Algebraic geometry and Nash functions, Institutiones Math. Vol. 3, Acad. Press, New York, 1978.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DEGLI STUDI FERRARA, ITALY