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LINEAR SPACES OF SEQUENCES 

GEORGE BRAUER 

ABSTRACT. If A = (ank) denotes a non-negative reg­
ular summation matrix and 1 < p < oo, then LP(A) de­
notes the space of sequences s = {sn} such that | | s | | P = 
lim sup(^2ank\sk\p)l/p is finite. The sequences in Lp(A) 

are represented as bounded linear operators from Lp (A) to a 
space of continuous functions. The induced operator topolo­
gies are in part related to the strength of the matrix A. Condi­
tions for a sequence to be an extreme point of the unit sphere 
of LP(A) are given. 

0. Introduction. Let A = (ank) be a non-negative regular 
summation matrix, that is, the elements ank{n = 0 , 1 , . . . ; k = 0 , 1 . . . ) 
of A satisfy the conditions 

(i) ank > 0 , n = 0 , l , . . . ; k = 0 , 1 , . . . , 

(ii) limn^oo ank = 0, k = 0 , 1 , . . . . 

(iii) l i m ^ ^ YlkLi ank = 1 
[3, p. 43]. By the space LP(A), where p is a number greater than 
or equal to 1, we understand the space of sequences s = {sn} such 
that ||s||p = lim sup(^2^=0a1lk\sk\p)l/p < oo; two sequence s and t are 
identified in LP(A) if \\s - t\\p = 0, that is, if A evaluates the sequence 
{\sn -t)n\p} toO. 

Lau [4] studies similar Lp spaces of functions defined on the real 
line rather than the set TV of natural numbers. He obtains, among 
other things, the duals of the Lp spaces and a determination of the 
extreme points of the unit sphere in his Lp spaces. We will obtain 
analogous results for the space LP(A); also we regard the elements 
of Lp(A) as bounded linear operators from Lp'(A) (throughout, the 
symbol p' will denote the number p/(p - 1) for p > 1) to a space 
of continuous functions and we will relate the operator topologies to 
the strength of the summation matrix A. The matrix A will always 
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514 LINEAR SPACES OF SEQUENCES 

be assumed to satisfy (i), (ii) and (iii). The number p will always be 
assumed to satisfy 1 < p < oo; often analogous results for the cases 
p — 1, thus p' = oo or p — oo, can easily be obtained. 

In most cases our results hold no matter whether real or complex 
sequences are involved. Therefore, we will assume the sequence to be 
real or complex, depending on which kind makes the proof simpler. 

If E is a subset of TV, then the quantity \imnsup^2keEank will be 
denoted by A(E);\imn-^oc YlkeE ank (if it exists) will be denoted by 
ME). 

We will be dealing frequently with the Stone-Ceck compactification 
ßN of the discrete space N of natural numbers; therefore we make a few 
remarks about the Stone-Cech compactification. If X is a completely 
regular space, then there exists a compact space ßX in which X is 
densely imbedded such that every bounded continuous function on X 
can be continuously extended to ßX. For a description of the Stone-
Cech compactification we refer the reader to [2, pp. 82-93]. If / is a 
bounded continuous function on the space X we will always denote its 
continuous extension to ßX by /^ ; if v is a point of ßX, the symbol 
F@ will always express the fact that the function f& has been evaluated 
at the point v. The symbol TV will always denote the discrete space 
of natural numbers. If E Ç TV, the closure of E in ßN — TV will be 
denoted by E*; in particular TV* = ßN - N. 

If t is in a sequence space Lp (A), then, for each point v in TV* the 
functional L(t,v) on LP(A) given by 

(1) L(t , i / )(s)= (5^anfcÄ*ijb) , seLp{A), p>\, 

is bounded and ||L|| = \\t\\p>. We have 

THEOREM 0.1. The Junctionals L(t,^)(s) given by (1), as t ranges 
over Lp (A) and v ranges over N* are weak * dense in the dual of 
Lp(A). 

PROOF. Suppose that s is in LP(A), s ^ 0. Let 

*fc = kr_2sfcifsfc#o, 
tk = 0 if sk = 0. 
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Then t e LP (A) and ||*||p,= \\S\\P . We have 

<ß 
L(t,v)s = (^önfc|sfc|pJ 

fc=0 

There is a point v € B* such that L(t, v)s = ||s||£ ^ 0. In other works 
if all functional of the form (1) annihilate s, then 5 = 0. The result 
follows. D 

1. The sequences in Lp as bounded operators on Lp . 
Operator topologies. Throughout, the operator from Lp (A) to 
C(N*) corresponding to a sequence in LP(A) will be denoted by the 
corresponding capital letter, that is, if s is a sequence in LP(A), then 
the operator S is defined by 

OC ß 

S(t)(v) = (Y,ankSktk)ì/, te Lp {A), veN*. 
k=0 

In addition to the norm topology and the weak topology on LP(A) we 
have 

(a) The strong operator topology: A net of operators 5 ( a ) corre­
sponding to sequences {s ( a )} in LP(A) converges to 0 in the strong 
operator topology if and only if 

oc 

lim lim sup 7 anfcSfc
a tk 

fc=0 

= 0 

for all* € l / ( , 4 ) -

(b) The weak operator topology: A net {s(a)} in LP (A) converges 
to 0 in the weak operator topology if and only if the quantities 
n^^Lo^nks^hk} are uniformly bounded and 

00 \ ß 

lto(£«n*4Q)**)„=° 
k=0 

for each sequence t G Lp'(A) and each point v € B*. (cf. [1, p. 265].) 
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The summation matrix B is said to include the summation matrix A 
if every sequence evaluated by A is evaluated by B to the same value. 
Then we have 

THEOREM 1.1. If A and B are non-negative regular summation 
matrices, A is invertible and B includes A, then LP(A) Ç LP(B). Also 
the identity mapping injecting LP(A) into LP(B) is continuous relative 
to the norm topology. 

PROOF. Let (sn) be a sequence in LP(A). Let {un} and {vn} be 
the sequences {J2T=o ank\sk\p} and {Y^h=obnk\sk\p} respectively, thus 
v = BA~lu (clearly v exists). If we let c = (cnk) denote BA~l, then 

oc 

LUB|i/n |<LUB]T|cn , | 
k=0 

oc 

< L U B ^ | c n f c | L U B K | . 
fc=0 

The fact that B includes A and thus BA~l is regular guarantees that 
L U B ^ ^ Q \cnk\ < oo. Hence S is in LP(B). Also, the norm of 5 in 
LP(B) is at most LUB^£L 0 |cnfc| times the norm of s in LP(A). This 
completes the proof, o 

However it is not true that if the regular matrix B strictly includes 
the regular matrix A, then the space LP(B) strictly includes the space 
LP(A). For example if A is the identity matrix and B is the Nörlund 
matrix defined by the equations 

&00 = 1 , 

bn.n = &n,n-l = 1 / 2 , bnM =0 k^U,k^U>l, 

then B strictly includes A, yet LP(A) coincides with LP(B) (and the 
L(A) norm is equivalent to the LP(B) for all p). However we have a 
result in the opposite direction. 

THEOREM 1.2. Suppose that the matrices A and B are non-negative 
and regular, and that there exist disjoint subsets E,F of N such that 
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(2) AQ(E) does not exist, 

(3) Bo(E) = 0, and 

(4) A(F) > 0, B(F) > 0, limnmaxifc€F6n.fc = 0. 

Then, for each p > 0, there exists a sequence of elements {s (m)} in 
Lp(A)r)Lp(B) which converges to 0 in the norm topology of LP(B) but 
not in the weak operator topology of LP(A). 

Conditions (2) and (3) insure that B evaluates the sequence 1E (i.e., 
the sequence s — {sn}, where sn = 1 k e E, sn — 0, k £ E) to 0 
while A does not evaluate 1#. 

PROOF. Let s ( m ) = IEUF™ (m = 1,2,... ) where, for each m, F m is a 
subset of F such that B(Fm) > 0,limTO^x B(Fm) = 0. The sets Fm 

with the stated properties exist because of (4). Certainly {s (m)} tends 
to 0 in the norm topology of LP(B). On the other hand let t = i£-
Then 

DC 

lim s u p ^ a n A - 4 m ) ^ = A(E) > 0. 
fc=0 

Hence there is a point v G N* such that 

L{s{m),t)(v) = A(E)>0 

for all m. The sequence {s(m)(*)} does not tend to 0 pointwise on N* 
and hence is not weakly convergent to 0 in C(N*). Thus the sequence 
{s(m>} does not converge to 0 in the weak operator topology in LP(A). 

THEOREM 1.3A. Suppose that A and B are non-negative regular 
summation matrices, A is invertible and that B includes A. If for 
each index a , s ( a ) is in Lp(A)(lLp(B) and s(a) tends to 0 in the strong 
operator topology ofLp(A), then {s ( a )} tends to 0 in the strong operator 
topology of LP(B). 
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PROOF. Let t be a sequence in LP(A) U LP(B). For each index a let 
oc 

uin] =Ylanksika)tk' 
k=0 
oo 

«4o) = $>*#>**. 
fc=0 

We will show that if limQ limn sup | tin | = 0, then lima limn sup|&4 | = 
0 Let C — (cnk) = BA~l. Since C is a regular summation matrix, 
{]CA*LO \cnk\} is bounded (cf. [3, p. 43]). We have 

lim sup 11/"| < lim sup V^ \cnk\ limsup|un
a)| 

fc=0 

for all a. Hence if lim« limn sup|tzn | = 0, then limQ limn sup|i/n | = 0. 

Now suppose that limQ limn sup| X]fcLoa«fcsfc ^1 = 0 ^or a ^ se~ 
quences t in Lp (J4), but lima suplimnsupEònfcS£ w/)A; > 0 for some 
sequence w in Lp (A) not in Lp (A). By the uniform boundedness theo­
rem the norms of the sequences {s^} are bounded in LP(A). By Theo­
rem 1.1 the norms of the sequences {Va )} are bounded in LP(B). Hence 
without loss of generality we may assume that YlT=o bnk\Sk \p < 1 for 
all n and all a. Since w £ Lp (A) there is a set E Ç TV such that, for 
each positive integer j , there is an index rij such that 

keE 

and Wk tends to infinity as k tends to infinity through E, while 
YlkeN-Eank\wk\P ls bmmded by some constant M. Let w = w' + it?" 
where 

w'k — Wk if A: € £ , 

wi = 0 if k $ E. 

We note that w" € Lp (A) and hence limQ limn sup 

0. By what was shown above, 

lim lim sup | ] P bnkS^w'â \ = 0. 
fc=0 

Eoo (a) a 
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By our choice of w there exists a positive constant rj and arbitrarily 
large values of a such that 

oc 

lim sup ^2 bnks£* Wk\ >rj. 
k=0 

Hence, for arbitrarily large a, there are arbitrarily large integers n such 
that 

oc 

(5) X>4Q )«4 > TZ/2 

fc=0 

or 

(6) f>„*4a)«4 > *?/2 
k=0 

and for such n, YH^o^kWk^' exceeds a positive constant. But (5) or 
(6) can hold only if 

4a) > (v/Wwtf-1 iffceSi 
or 

s{a) < ( I J / S T ) ! ^ ! " ' - 1 if* e J* 

for some subset £ i of E such that 

keEx 

where r denotes the quantity ^2keEl t>nkWk\
p' which is bounded away 

from 0 - recall that J2T=o M ^ V ^ l f o r a11 n a n d a* F i n a l l v , w e l e t 

the sequence w"' be defined by the equations 

w'{' = w'k keEu 

u4" = 0 fc^i-

There are arbitrarily large n such that 

00 

\52bn*Ska)<\>(nßTr'+1T>0. 
k=0 
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Also, for all n, 
oc oc 

k=0 k=0 

which is bounded. Hence w1" G LP(A). But since the net 
{lim n sup| 5Zfc=o bnkSfc w'k'} does not tend to 0, neither does the net 
{limn sup XlfcLo ankSk wk'}i °y the first part of the proof. Hence {s^a)} 
does not tend to zero in the strong operator topology of Lp (A), o 

THEOREM 1.3B. Under the hypotheses of Theorem 1.3A, if a net 
{s^} in Lp(A)CiLp(B),p > 1, tends to 0 in the weak operator topology 
of LP(A), then it tends to 0 in the weak operator topology LP(B). 

PROOF. We first note that if the norms of s^ are bounded in 
LP(A), then these norms are bounded in LP(B). We next show that if 
t G Lp'(A) n Lp'(B) and the net 

k=0 

tends to 0 for each v G N*, then so does the net (v^)^ — 

(5ZfcLo^fcSfe *fc)f- T° do this we note that v — T(u) where T is 
the linear operator represented by the matrix C — (cnk) = BA~l. The 
operator T may be regarded as a linear operator on C(N*) which is 
continuous in the norm topology and consequently in the weak topol­
ogy of C(N*) (cf. [1, pp. 422-423].) Hence if the net {uM}ß tends to 
0 pointwise on N*, so does the net {(u^)^}. To rule out the possi­
bility that the net (Eb^-s^ tk)„ does not tend to 0 pointwise on N* 
for some sequence w in Lp (B) not in Lp (A) we use the method of 
Theorem 1.3A. This completes our sketch of the proof. D 

THEOREM 1.4. If {s ( a )} is a net of sequences in Lp(A),p > 1 
and there exists a subset E of N and an infinite collection of indices 
{&'} Ç {a} such that 

A(E) = lim sup V^ ank > rj > 0 
k£E 
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and, for each k in E, either s[a ) > z for all a' or s[a } < -z for all 
a1, where z is a positive constant, then {s£ } does not tend to 0 in the 
weak operator topology. 

PROOF. Let the sequence t be defined by the equations 

tk = l ifkeE and s[a,) > z for all a 

tk = -l like E and 4"'* < ~z f o r a I1 « ' 

tk = 0 if k ^ E. 

Then 

lim supYja n^5A
a tk > 7]z 

for infinitely many indices a', that is, the net {s[n does not tend to 0 
in the weak operator topology, o 

COROLLARY. If for each integer k such that the A* column of A 
contains infinitely many non-zero elements, there are arbitrarily large 
values nk such that allk^ exceeds a positive constant //, then, for each 
p > 1, the weak operator topology coincides with the norm topology. 

PROOF. Let E denote the set of integers k such that the k-th column 
contains infinitely many non-zero elements. By the preceding theorem, 
if s ( a ) tends to zero in the weak operator topology, then lima.sA.'v = 0 
for each k in E. But then lim | | s ( a ) | | p = 0. a 

The same proof actually works also for the case p = 1. 

The preceding results indicates that for weak summation matrices, 
that is, matrices evaluating few divergent sequences the various topolo­
gies we are considering coincide. The next result indicates that if the 
summation matrix A represents a fairly strong method, there is a con­
siderable gap between the norm topology and the weak operator topol­
ogy. 
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THEOREM 1.5. If, for each subset E of N such that 

A0{E) = lim]P ank 
he E 

exists and is positive, there exist disjoint subsets E\E<i of E such that 
E\ U E2 — E,AQ(E\) and AQ(E2) exist and are both equal to AQ(E)/2, 

then there is a sequence {s^} from LP(A) for each p > 1, which 
tends to 0 in the weak operator topology but not in the norm topology 
ofLP(A). 

PROOF. Let E be a subset of TV such tha t A0(E) > 0. There exist 
sets Eu,Ei2 such tha t 

E = En U E12 

A0(Eii=Ao(Ei2 = A0(E)/2. 

Also there exist £21, £ 2 2 ^ 2 3 ^ 2 4 such tha t En = E21 U £22, ^12 — 
£ 2 3 U £24 and A0{E2i) = A0{E22) = ^0(^23) = Ao{E24) = ME)/*-
In general, we have, for each z, sets j+ i .2j-i£»:+i,2j such tha t 

Eij = Ej+i,2j-i U Ei+i.2j 

and 

i 4 0 ( ^ + i . 2 i - i ) - A0(Et+U2j) = A0(El3)/2 = A0(E)/T+4 

for j = 1, 2 , . . . , 2 \ For the construction of the sequence {Vm^} with 
the stated properties, we use a technique similar to the one used in 
constructing the Rademacher functions. Let s^ — 1#, tha t is, 

s[l) = 1 keE 

s{
k
l)=0 k£E, 

And for m > 1, let 

Sk = 1' ^ ^ m l U E m 3 , , , £ m , 2 m - h 

sk = — 1, A: E ErTl2 U ETU4 • • • £ m , 2 m » 
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4m )=0, k£u%Emr 

Clearly ||s(m>|| does not tend to 0 since | | s ( m ) | | p = (A(E))^P for all m 
and all p. Now let £ be a sequence in Lp (A). If t is unbounded, then 
we may write N ~ F UG where t is bounded on F and | ^ | tends to 
infinity as k tends to infinity through values of k in G. We have, for 
each ra, 

k£G k£G 

But since ]C/fceGawfc|£fc|p' *s bounded and p' > l,J2keG ank\tk\ tends to 
0. Hence we need only show that 

lim ( y^ anks
{Jn tk) =0 

keF 

for all points v G N* and for alH G Lp (A). This is shown in the same 
way that the Rademacher functions on the unit interval are shown to 
converge weakly to 0 in all Lebesque spaces Lp[0, l],p > 1 (cf. [1, p. 
342]). (In fact the Boolean algebra generated by the diadic subintervals 
of the interval [0,1]. Hence the sequence {s (m)} tends to 0 in the weak 
operator topology. D 

THEOREM 1.6. Suppose that in addition to satisfying (i), (ii), (iii) 
the matrix A is triangular and there exist pairwise disjoint subsets 
S{Tn\m = 1,2,...) of N such that 

(m) 

lim sup Y^ ank\s{™]\p > n, 
kes 

for some positive constant r\. Then the sequence {Vm)} fails to converge 
to 0 in the weak operator topology of LP(A). 

PROOF. We will construct a sequence t in Lp (A) and a double 
sequence of integers {n^}, i = 1,2,..., j = 1,2,... i + 1, tending 
to infinity such that 
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exceeds a positive constant for each value of i and j . To begin with, 
there is a positive constant 77 and an integer n\ = n\\ such that 

E «n l lfc|4
1,|P>^ 

We let 

ft = l41 )rM1 ) iffceS«1', *<m, 

4 = 0 if41) = 0orifc^5(1), fc<m. 
We note that tk is now defined for k < n\. 

There exists an integer ri\2 > " i such that 

E «n12,fc|4
2)lp>V2; 

fc€5<2> 

the integer 7112 may also be chosen so large that 

Now let the integer ri2i be chosen so large that 7121 > ni2> 

E «naifc|4
1)lp > »/A fce^1) 

k>n\2 

and 

^ a„fc|4
2)lP<^/8 

A: < n 12 

for n > ri2i. We define, for ni2 < k < 7121*. 

^ = l^^ l" - 2 Si^ if fc € 5<1} and 4 1 } # 0, 

tk=0 iî k£S{l) or S{
k
1] =0. 

The sequence {tk} has now been defined for A: < 7121-

We continue in this manner. Suppose that a sequence of integers 
^11^12? ^211 ^22, ft23> • • • » ttij has been chosen and that the sequence tk 
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has been defined for k < n\j. If j < i we choose rijj+i so that, if j < z, 
we choose n ^ + i > riij and so that 

E a " ^ + . l 4 J + 1 , | P > V 2 , *€S(;+1> 
k>riij 

and 
V an^max< i | 4 m ) | p </ ; / 8 
*-—' 0<m 

for n > n,;,j+i. We define ^. for n^ < k < riij+i by the equation 

tk = i«?+ 1 )r2 ^ + 1 ) 

if k € &J+l) and s[Ì+l) ? 0, 

tk=OiikeSu+1)ors(
k
j+1)=0. 

Likewise, for j = i + 1, we first choose the integer rij+ij so that 

Yl ankl+1Js[l)\p > ri/2, k > riij 
kesw 

and 
y^ ank max \s,7n \p < 77/8 

for n > riij+i. In this case we define tk for n,,7+i < fc < n,+i.i by the 
equations 

tk = | 4 1 ) r M 1 ) if * 6 5(1) and 41 } # °> 
* * = 0 if A : ^ 5 ( 1 ) o r 4 1 ) = 0 . 

This completes the inductive definition of the sequence t. We note that, 
for each i and j , j < i, 

k<ESu) 

- y^ ank max \s{™]\p > r}/4. 
*—' m<j—l 

k<riij-i 
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Hence, if v is a point in N* which is in the closure of {n?j}, then 

(7) (Y,ankSkJ)*k) >Vß-
k=0 

To show that s(m) does not tend to 0 in the weak operator topology 
in LP(A) we need only show that t € Lp (A). We may assume that the 
norms | |^m^| | are uniformly bounded, for otherwise, by the uniform 
limitedness theorem, the sequence { s ^ } cannot converge in the weak 
operator topology. Hence there exists a universal constant M such that 

f>„*.|4Jt<M. 
n = 0 

For ntj < n < n7 , J + i , 

n oc 

a n j tmax |4 m ) | p + ^ ank\tk\
p 

k=0 k<7iij-i k=riij-i 

U) 

keS fc€5(J + 1) 

<77/8 + 2 M + l , 

provided n is sufficiently large. Similar estimates can be given if 
ni,i+i < n < n , + u . Thus t G Lp , and (7) shows that the sequence 
{VJ)} does not tend to 0 in the weak operator topology. D 

2. Extreme points of the unit ball of LP(A). 

THEOREM 2.1. Suppose that the matrix A is triangular. Suppose also 
that s is a bounded sequence in LP(A) of norm one such that the set of 
integers n for which 

n 

J2ank\Sk\P<l-6 
k=0 

for a fixed positive constant 6, can be written as a disjoint union of 
intervals I7n arranged in increasing order, and that the intervals I'in 

complementary to Irn are also arranged in increasing order in such a 
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way that I'm lies between Iin and Iin+\- Moreover, if Im. is the interval 
[nm, m\n] (so that I'm is the interval (nf

rn, nm+i) , then suppose that there 
exists a positive constant 6f < 6 and an integer n^, such that nm > n^, 
and 

(8) nnk/anm+l.k<(l-6')-1 

tf 0 < k < n,n'm <n< nm+\. Finally, suppose that 

(9) A(UmIm) > 0. 

Then s is not an extreme point of the unit ball Q of LP(A). 

PROOF. We will show that the sequences s±at, where 

tn = 1 if n e UmIm 

tn = 0 if n £ U m / m 

and a is a suitable constant, are in Q. (We note by (9) that ||f||p > 0). 
If n G Im for some n, then, since 

n 

A—0 

we have 

n 

(io) 5>nt|«fc±«<*i,,<i-«' 
k=0 

if a is sufficiently small. If n £ Ulm, then n must lie in some interval 
(nm>nm+i- In this case 

n n 

^Tank\sk±atk\
p = Y^(anM/anrn+1M)a7irn+lM\sk±atk\

p. 
k=0 k=0 

By (8) and (10) the limit superior of this quantity is at most 1. It 
follows that s is not an extreme point of Q. o 
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THEOREM 2.2. Suppose that A is as in Theorem 2.1 and that 
s e Lp(A),\\s\\p = 1 and moreover that the quantity 

oc 

y^ank\sk\p 

k=0 

tends to 1 as n tends to infinity along a set E — Uj such that, for some 
positive constant M, 

un i < Mari7n^k, 0 < k < n ,n m _ i < n < nm. 

Then s is an extreme point of the unit sphere of LP(A). 

PROOF. Suppose that there exists an element t ^ 0 in Lp (A) such 
that ||s+£||p = \\s — t\\p = 1. Let F be a subset of E; we first show that, 
for all such F,5ZfcLoa^^l^lP tends to 0 as n tends to infinity through 
values in F. We use a method of Lau [4, p. 160]. Let Lp(an) denote 
the Lebesque space with the measure an of a set Q Ç N given by 

an(Q) = y^Qnfc 
keQ 

so that the norm in Lp(an) of a sequence s is 

INU=($>^HP)1/P-
keQ 

The space Lp(an) is uniformly convex. If the quantity (Ylank\tk\p)l^p 

does not tend to 0 as n tends to infinity through F , then there exists a 
positive constant n and arbitrarily large n such that \\t\\n > rj. Given a 
positive number e, the values | |s-H| |n | | s — £||n are greater than 1 — e if n 
is a sufficiently large integer in F. Hence there exists a positive constant 
6 such that | | s | | n = ||((s + t) + ( s - t ) ) / 2 | | n < 1-6 for arbitrarily large 
n in F. We have a contradiction. It follows that Yl^Loank\tk\p tends 
to 0 as n tends to infinity through values of n in F; this holds for each 
subset F of E. In other words ^ f c L o 0 ^ ! ^ ^ t enc* s t o ^ as n t e n d s to 
infinity through values in E. It remains to show that Y^T=oank\tk\p 
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tends to infinity through values not in E. If n is such an integer, say 
ftm-i < n < n m , where n m _i and nm are consecutive integers in E, 

n rim 

k=0 k=0 

and this quantity tends to 0 as was shown above. Hence ||£||p = 0 and 
s is an extreme point of the sphere. 
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