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AN a-APPROXIMATION THEOREM 

FOR R°°-MANIFOLDS 

Vo Thanh Liem 

0. Introduction and preliminaries. Generalizing the CE-
approximation theorem of Arment rout [1,2] and Siebenmann [20] for 
finite-dimensional manifolds, Ferry proved an a-approximation theo­
rem for Q-manifolds in [8] and an «-approximation theorem for man­
ifolds of dimensions > 5 in a joint work with Chapman [6]. 

Recently, the author proved in [16] an a-approximation theorem for 
Q°°-manifolds: "Given an open cover a of a Q°°-manifold N, then 
there is an open cover ß of N such that every ^-equivalence from a 
Q°°-manifold M to N is a-close to a homeomorphism". 

It will be shown in this note that such an ^-approximation theorem 
also holds true for R°°-manifolds. So, the question (NLC 8) in [9] has 
an affirmative answer. 

As in [16], in the process of proving the main theorem, some results 
similar to a few properties of Z-sets in Q and l<i-manifold theory will 
be proved. These include: 

(1) relative R°°-deficient embedding approximation theorem (Theo­
rem 2.3); 

(2) unknotting theorem for R°°-deficient embeddings (Theorem 3.3); 
(3) collar theorem (Theorem 4.2); and 
(4) R°°-deficient subsets being strongly negligible (Theorem 5.3). 
For standard concepts such as the cone(X) of a topological space X, 

the mapping cylinder M(f) of a map / , the infinite mapping cylinder 
M( / i , /2,...) of a sequence of maps fi : X{-\ —» Xz, the limitation of 
a homotopy H : X x J —• Y by an open cover a of 7 , the n^ -star 
Stn(a) of an open cover a, etc., we refer to [8] or [16] for more details. 
All topological spaces are separable. 

Throughout this note, let R°° be the direct-limit space lim_>{Rn} 
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endowed with the direct limit topology, where Rn is the n-euclidean 
space. It has been proved that R°° « R°° x R°° [13, p.395] and 
that R°° is paracompact [11, p.298]. By an R°°-manifold, we mean 
a separable paracompact space that is locally homeomorphic to R°°. 
Let us denote [0,1] by either / or J , and lim_{[0, l]n ,2n} by I°° or 
J°°, where in(x) = (x,0). Then, from the corollary in [14], it fol­
lows that R°° « J°°. A subset X of an R°°-manifold M is said to 
be R°°- deficient if X is closed in M and there is a homeomorphism 
h:M - • MxR°°-such that h{X) C MxO, where D = (0,0, • • •) € R°°. 
Recall that M is R°° stable [12, p.48]. An embedding / : X -> M is 
said to be R°°-deficient if f(X) is R°°-deficient in M. A closed sub­
set X of M is said to be collared in M if there is an open embedding 
/ : X x [0,1) -+ M such that /(x,0) = x for all x G X. A collar 
/ : X x [0,1) —• M is normal if /(A" x [0, s\) is closed in M for each 
s G [0,1), and the restriction f\(X x [0, s]) of a normal collar / is called 
a closed collar of X in M. Observe that, if M is a paracompact and 
X is a collared subset in M, then there is a normal collar of X in M. 
Therefore, throughout this note, we will use normal collars without 
further notice if the involved spaces are paracompact. 

A map / : X —* F is said to be a near homeomorphism if / is a-close 
to a homeomorphism for any pre-chosen open cover a of F . Given an 
open cover a of F , a map / : X —• F is said to be an a-equivalence if 

/ - 1 (c0 a 
there is a map <7 : F —• A such that ^ o / ~ idx and /og-'idy (refer 
to [8] or [16]). A map / : X —y Y is called a fine homotopy equivalence 
if / is an a-equivalence for each open cover a of F . 

Let q be a nonnegative integer and G an open subset of a metric space 
(Af,d). G is said to be q-LC a t i G M (rei. M) (refer to [18, p.45]) 
provided that, given an open set U = N(x',e)i there is an open set 
V = N(x;6)(6 = 6(x,e) > 0) such that every map from the g-sphere 
into VnG is null-homotopic in Uf)G, where N(x; r) denotes {y : y E M 
and d(x, y) < r} for r > 0. G is said to be q — LC( rei. M) if it is q-LC 
at each x e X (rei. M). G is said to be q-LC (rei M) if it is q-LC at M 
(rei. M). If the choice of 6 is independent to x for all £ 6 M, G is said 
to be <?-ULC (rel- A0- A closed subset X of M is said to be q-LCC in 
M if M - X is ç - LC at X(rel. M). A closed embedding / : Z -> M 
is said to be 1-LCC if /(Z) is 1-LCC in M. Observe that if M is a 
finite-dimensional manifold and if / : Z —• M is 1-LCC embedding, 
then M - /(Z) is 1-LC (rei. M). By LCP (ULCP), we mean q-LC 
(q-ULG) for each q = 0,1, ...,p. The proof of the following lemma is 
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straightforward. 

LEMMA 0. Let M be a compact manifold and X a compact subset of 
its interior. Then M — X is 1-ULC (rel.M) if and only if X is 1-LCC 
in M. If dim X < dim M - 2, then M - X is 0-ULC 

We now state some known results that we will use in the sequel. 
From the theorem in [3] restated in §1 below, a closed embedding of 
a compact PL-manifold Nk into a manifold Mm without boundary, 
with 2k + 2 < m and m > 5, is locally flat if and only if it is a 1-LCC 
embedding. Hence, the following lemma can be deduced from Theorem 
0 in [12] and the proposition in Part C of [14]. 

LEMMA A. A space M is an R°°-manifold if and only if M is 
homeomorphic to lim-^Mn, where, for each n, Mn is a compact 
finite-dimensional manifold and it is a 1-LCC subset of the interior 
of Mn+i with 2 dim Mn + 2 < dim M n +i . 

The following is from Lemma 2.4 of [10]. 

LEMMA B. Let X = lim_>{Xn}, where Xn is a metric subspace of 
^n+i for each n. If K is a compact subset of X, then there is an 
integer n$ such that K is contained in Xno. 

Throughout this note, let In tM and dM denote the interior and 
the boundary of a finite-dimensional manifold M respectively. For 
convenience, we will use the same notations Rn for Rn x 0 C R°°, M 
for M x 0 C M x R°°, M x Rk for M x Rk x 0 C M x R°°, etc. 

1. Relative unknotting theorem in Rn . Bryant [3] has shown 
that "if X is a metric compact space and if f,g : X —• Rn are two 
s-homotopic 1-LCC embeddings, with n > 5 and 2 dim X + 2 < n, 
then there is an e-isotopy Ft of Rn, t G I, such that Fo = id and 
Fi o / = g". In this section, we will prove a relative version of Bryant's 
theorem that, according to our knowledge, has not appeared elsewhere. 
We need some notations and observations for the proof. 

Given a subset Z of a metric space (X, d) and a 6 > 0, let N(Z; 6) 
denote the ^-neighborhood of Z in X, {x G X\d(x, Z) < 6}. It follows 
from Lemma 0 that if X is a compact 1-LCC subset of Rn, then Rn — X 
is 1-ULC, i.e., given an e > 0, there is a 6 > 0 such that every <5-loop in 
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Rn —X is £-null homotopic in R n -X . By use of the PL-approximation 
theorem [19], Theorem 5.3 and the 0-ULC property of Rn~l -X from 
Lemma 0, we can show that if X is a compact subset of R n - 1 C Rn 

with dimX < n — 3, then X is 1-LCC in Rn . Observe that if X is a 
1-LCC subset of Rn and if h is a homeomorphism of Rn, then h(X) is 
also 1-LCC in Rn . 

THEOREM l. l . Let {X, X0) be a pair of compact metric spaces 
and let H : X x / —• Rn(n > 5) be a homotopy (rei. XQ) from a 
1-LCC embedding f to another g. Let Ö : X —+ I be a map such that 
^_1(0) = XQ. If 2dimX + 4 < n, then there is an isotopy Ft of Rn, 
t G I, such that 

(1) F0 = id, 

(2) Ft = id on f{X0) U (Rn - U), for each t G / , 

where U is the union of all members of li = {N(H(x x I);26(x))\x G 

x-x0}, 
(3) F(x x I) is either constant or limited by U, for each x G Rn, and 

( 4 ) F i / = ff. 
We need a few preliminary lemmas for its proof. 

LEMMA 1.2. If X and Y are two 1-LCC compact subsets of Mn, a 
manifold without boundary, and if àìm{X UY) < n — S, then X U Y is 
1-LCC in M. 

PROOF. Let x e XUY. If x G XnY, the 1-LCC property at x (rel.M) 
is easily verified. For x G l f l F , given a neighborhood U of x in M n , 
let V be a neighborhood of x in U obtained from the 1-LCC property 
of X at x. We will show that every map / : dA2 -* V - {X U Y) 
is null-homotopic in U — ( I U F) , where A2 denotes the standard 
2-simplex. 

Let (j) : A2 —• U — X be an extension of / over A2. Given an 
e > 0 such that e < min{dist(0(A2),X),dist(0(A2),Mn - £/}, there 
is a 6(0 < 6 < e/3) such that every <S-loop in Mn — Y is (s/3)-null 
homotopic in Mn - Y. Moreover, since dim Y < n — 3, Mn — Y is 
0-ULC. Hence, there is a positive number rj such that if x and y are 
in Mn - Y with d(x, y) < r?, then there is a (5/2)-path in Mn - Y 
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joining x and y. Now, let if be a PL-subdivision of A2 such that 
diam0(cr) < rj/3 for each 2-simplex a of K. Then, we can construct, 
by induction , a map tß : K^ U K W -+U-Y such that 

(1)^|ÖA2 = 0|9A2, 
(2) d(^(v), 0(v)) < r?/3 for each v G IfW, and 
(3) diam0(r) < rj/2 for each l-simplex r of K. 
Finally, we extend ip over each 2-simplex a of K^ into M n — F such 

that diamt/>((j) < s/3. Then, we can show that d(ip(x),(j)(x)) < 8 for 
all x G KW (J KW and it follows that d(^(x), </>(x)) < £ for all x e K. 
Hence ^(A2) C U-(XUY) by the choice of e, and the proof of Lemma 
1.2 is complete. 

Let Z be a closed subset of a PL-manifold M without boundary. If Z 
is 1-LCC, then M - Z is 1-LC (rel.Af ). Therefore, i f 2 < p < n - f c - 2 
where k = dim Z, it follows from Theorem 4 in [18] that M — Z is 
LCP (rel.M) since M - Z is £cp (rel.Af) [18, p.45]. So, for k > 2 and 
2A: + 1 < n, by use of the compactness of Jfc, Lemma 0 and Theorem 
6 in [18], it is tedious to show that a closed subset Z of IntM has the 
property Zk as in [14] if and only if Z is 1-LCC in M. Therefore, we 
can obtain the following lemma which is a special case of the Corollary 
5 in [14]. 

LEMMA 1.3. Let n be an integer > 5 and let (X, Xo) be a pair of 
locally compact metric spaces with 2dimX + 1 < n. Let f : X —» Mn 

be a proper map such that f\Xo is a 1-LCC embedding, where M is a 
PL-manifold without boundary. Then, given a map e : X —• [0,1] such 
that £:~1(0) = Xo, there is a proper 1 - LCC embedding g : X —• Mn 

such that 
(l)g(x) = f(x) ifxeXo, 
(2) d{f{x), g{x)) < e(x), all x € X - X0. 

PROOF OF THEOREM 1.1. Let X denote the quotient space (X x 
/ ) / - , where (x, 1) - (a/, 0) if f(x') = g{x), or (x, t) - (x, 0) if x e X0. 
Then, the given homotopy H : / ~ g induces a map H : X -> Rn . 
Observe that dimX < d imX+1 as follows. Let Xx = ( lx [0 ,1 /2 ] ) / ~X 

and X2 = {X x [1/2,1])/ - 2 , where (x, t) - i (x,0) if x G X0 and 0 < 
t < 1/2, and where (x,£) - 2 (&, 1) if x € X0 and 1/2 < t < 1. Then, 
XL and X2 are homeomorphic to the subspace U{x x [0, A(x)]|x G X} 
of X x / for some map A : X —> [0,1] with A-1(0) = X0 . Hence, 
dimXi = dimX2 < dim(X x I) = dimX -h 1. The latter follows 
from the Remark on p. 34 in [15] since X is compact. Now, set A — 
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rl{f{X) n g(X)) and B = g~l{f{X) n g{X)) and think of X x {1/2} 
as compact subsets of X\ and X2. Then, X = X\ (J^ X2, where 0 = 
ff-Vuid : ({Ax{0})u(Xx{l/2}))/ - ^ ( (Bx{l})U(Xx{l/2})) / ~ 2 . 
In other words, X is the union of two compact subspaces whose 
intersection is the compact subspace ((A x {0}) U (X x {1/2}))/ ~ i = 
( (£x{l}) \J{X_x{l/2})))/ ~ 2 . Hence, dimX < dimX+1, by Theorem 
III 2[15]. Let X 0 denote((X0 x / ) U (X x {0,1}))/ ~. Then, H\X0 is 
a 1-LCC embedding by Lemma 1.2. 

Now, from Lemma 1.3, there is a 1-LCC embedding H : X —» Rn 

such that: (1) d(H{z),H(z)) < 6(x) if z G X - X0 is represented by 
a point (x, £) in X x /; and (2) ~H(z) = H(z) if z G XÔ". First, by 
considering the homotopy H from #0 to ü/1/2, we can assume that 
f {X — XQ) f] g{X — XQ) — 0. Observe that if Z is a codimension 3 
1-LCC compact subset of R n _ 1 , then every closed subset of Z x R is 
1-LCC in Rn . Therefore, if e : X - • R n _ 1 is a 1-LCC embedding, then 
the map ë : X —• Rn defined by e(z) = (e(x),t • A(x)), where (x,t) is a 
representative of z G X, is a 1-LCC embedding. Hence, again by [3], 
we can assume that / (X) C R n _ 1 x {0} and ~H{x,t) = (f(x),t\(x)). 
(Recall that 2 dimX + 2 < n.) 

As in the proof of Theorem 9.1 in [5], we need only to construct an 
isotopy corresponding to such a homotopy H. Let //, rj : R n _ 1 —• [0,1] 
denote the extensions of A/ - 1 and 6f~l respectively over R n _ 1 such 
that the set Y — {x\fi(x) > 0} = {|^(x) > 0} is contained in the 
neighborhood U D R n _ 1 of / ( X - X0) i n j T " 1 . Then, an isotopy 
Ft

x : Rn -+ Rn such that Ft
lf is equal to Ht/2 for each t,0 < t < 1, 

can be defined as follows: 

Ft(x,s)=l 

{x, s) iî x e (Rn 1 - Y) or(x G Y and s is not in 
the open interval (-rj(x)/j,(x), (1 + rj(x))fj,(x))), 

(s+r>^{x))(r1(x)+t)-ri(xMx), i f x € F a n d 
-T)(x)fi(x) < S < 0, 

( l+fey)( 1 + */(*) - f) + */*(*)> if x G F andO < 5 < 
(l + »7(x))/i(a;). 

Similarly, we can define an isotopy Ft
2 of Rn such that F^F^f is 

equal to Ht/2 for each 1 < t < 2. Now, we define F* to be: (1) F\t 

if 0 < t < 1/2, and (2) F2
2

t_i^i if 1/2 < * < 1. Since F j and F0
2 

are the identity, Ft is a well-defined isotopy that we want to establish. 
Therefore, the proof is complete. 
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ADDENDA TO THEOREM l.l . (1) For each t, Ft is an extension of 
Htf~

x if the induced map H : X —• Rn is a 1-LCC embedding. 

Such notions as proper homotopy, proper homotopy equivalence, etc., 
are defined in analogy with the corresponding notions from the ordinary 
homotopy category. Observe that it is straightforward to show that 
every proper map is a closed map. 

(2) / / X is a locally compact, f and g are proper maps and XQ is a 
closed subset of X such that X — XQ is compact, then Theorem 1.1 also 
holds true. 

(3) Theorem 1.1 and the above Addenda (1) and (2) also hold true if 
Rn is replaced by a manifold which is homeomorphic to an open subset 
ofRn. 

THEOREM 1.4. Let XQ be a closed subset of a locally compact metric 
space X with 2dimX -f 4 < n(n > 5) and H : X x I —* Rn a proper 
homotopy (rei. XQ) from a proper 1-LCC embedding f : X —• Rn to 
another g. Then, there is an isotopy Ft of Rn(t G I) such that: 

(1) F0 = id; 
(2)F1f = g; 
(3) / / 6 : X -> [0,oo) w a map that <5_1(0) = X0, let U = 

{N(H(x x I); 6(x)) : x G X — XQ and U the union of all members 
of li, then the isotopy F can be chosen such that F(x x I) = {x} if 
x G /(Xo), U{Rn - U) or F{x x I) is limited byti if x G U ; and 

(4) / / the induced map H is a proper i-LCC embedding, then F can 
be chosen such that Ft is an extension of Htf~

x{t G I ) . 

PROOF. Consider the one-point compactification Rn U{°°} °f Rn 

as the n-sphere Sn. Let XQO = X(J{oo} and XQJ00 = XoU{°°} 
denote the one-compactification of X and Xo, respectively. Since 
H is proper, we can extend H to H' : X^ x I —• Sn by defining 
H'{oo x I) = oo G Sn. If H is a 1-LCC proper embedding, it is 
straightforward to show that H' : Xoo —• Sn is 1-LCC at oo G S n ; 
hence, H' is a 1-LCC embedding. The rest of the proof is the same 
as that of Theorem 1.1 for the pair of compact spaces (Xoo,Xo,oo) 
by noting that S72"1 is bicollared in Sn as R n _ 1 is in Rn and that 
Bryant's unknotting theorem also holds true for 1-LCC embeddings of 
compacta into Sn. Moreover, since the isotopy F of Sn keeps oo fixed, 
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F\(Sn — {oo}) is a desired isotopy of Rn and the proof is complete. 

THEOREM 1.5. Let M be a manifold of dimension n > 5. Let (X,XQ) 

be a pair of compact metric spaces, and let H : X x I —> Int M be a 
homotopy (rei. XQ) from al — LCC embedding f : X —» Int M to 
another g. If 2 dimX + 4 < n, then there is an isotopy Ft(t G I) of M 
such that 

( l ) F 0 = idM; 
(2) Fif = g; 
(3) / / S : X —• [0,1] is a continuous map such that 6 1(0) = XQ, let 

U = {N(H(x x I); S(x)) : x GX — XQ} and U the union of all members 
of U, then the isotopy F can be chosen such that F(X x I) = {x} if 
x e f(Xo) \J(M - U) or F(X x I) is limited byti if x € U; and 

(4) If H induces a 1-LCC embedding H —• IntM, then F can be 
chosen such that F{f{x) x [0,s]) C F(f(x) x [0,t]) C H{x x I) for all 
xeX and0<s<t<l and F(f(x) x I) = H{x x I). 

PROOF. Consider a PL-triangulation of intM. Since X is com­
pact, without loss of generality, we can assume that M is a compact 
PL-manifold and we will work with a handle decomposition of M by 
using st(<j, K"), where à is the barycenter of a simplex a of a triangu­
lation K of M and where Kn is the second barycentric subdivision of 
If [19, p.81]. Let M = UoUMi U... U#n, where ty is the union of the 
z -handles. The proof will be inductive on the indices of handles. 

Following the proof of Theorem 1.1, we can assume that f{X) D 
g{X) = f{X0) and H : X -+ Mn is a 1-LCC embedding. Then, 
since X is compact, we can break the given homotopy into small pieces 
and assume that H is an ^-homotopy where e is so small that the 
(n 4- 4^-neighborhood of each ^ is the union of a finite family of 
pairwise-disjoint open balls. 

SUBLEMMA. Let a : X —• [0,oo) be a map such that a~x(0) = XQ. 
Then, there is a map ß : X —» [0, oo) such that 

(a) / r ^O) =X0, and 
(b) if x,y e X - XQ and d(H(x x I),H(y x I)) < ß(x), then 

dx(H(x x I), H(y x I)) < a{x)/A, where dy denotes the Hausdorff 
metric [7, p.205]. 

PROOF. The proof is straightforward by use of the fact that H is an 
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embedding and that X — XQ is locally compact and a-compact. 
Using the sublemma, we can define inductively a decreasing sequence 

of functions rjk : X —• [0,1), k = 0,1, . . . , n, such that 
0 ) ^ ( 0 ) = X0; 

(ii) for each x G X - X0, 6(x) = r?n+i(a;) > r/n+i(x)/4 > rjn(x) > 
rin{x)/4 >...> m(x) > f?i(x)/4 > r/0(z); and 

(iii) if x,2/ G X - Xo and d(H(x x J), #(?/ x /)) < rji(x), then 
dx(H(x x I),H(y x /)) < rfc+i(x)/4 for each i. 

Let S/c = Mo U )/i U... U#fc. We will inductively construct isotopies 
F°,FX, . . . ,F n of M that have the following properties: for each fc = 
0,1, ...,n: 

(A) F0* = id 
(B) Ft* fixes / (X 0 ) U B*-i U (M - N{Xk; {k + 4)e))(* G / ) , 
(C) if Uk = {N(Hk{x x J);ryJ.(x)/2)|x G X - X # } , where a homotopy 

iJfc, a closed subset XQ and a map rj'k with 0 < r/̂ . < rjk (which will be 
defined later). Let Uk denote the union of all members of Uk', then F* 
fixes M — Uk and Fk(x x I) is limited by Uk if x G Uk] and 

(D) for each t G J, F?f = Ä? and F^Äf"1 = # * if fc > 1. Then, a 
wanted isotopy F of M will be defined by 

Fix, t) = F*(x, (n + 1)* - i) if - <t< ^—- where i = 0,..., n. 
n n + 1 

First let us define F°. Let Z0 = ^ ( i V ^ e ) ) , ^ = pr x (Z 0 ) , 
X0 ,A = r W M > ; A ) ) and X^A = / " W o î A ) ) , for A > 0. Observe 
that X0 UI 0 ) 2 £ . Define Xg = (X - X0,3£) UX0 and let <j)0 : X -* [0,1] 
be a map such that 

0) o0ô1(1) = ^o,2£» a n d 

(ii)o0ö1(O) = X - X o , 3 £ . 
Define r/ó(x) = (^o(^)^o(^)5 for each rr G X and üT° : X x J —• M by 

# ° ( M ) = i/(x,^o(a:)). Then 0 < rj'0 < r/o, and H° is a 1-LCC 
embedding. Now, applying Theorem 1.1 and its addenda to each 
component of 7V()/o;5£), we can obtain a desired isotopy F° (rei. 
/(Xg) U (M - N(Ho; 4e))) of M such that F?f = H?{teI). 

Now, let us define F1. Let Zi = H^jN^oul/^I)), Xi = 
pr x (Z i ) , X1)A = / " ' ( W o u ^ A ) ) a n d Xlx = r W o U J / i i A ) ) , for 
A > 0. Observe that Xi C Xi,2 e . Define X<J = (X-Xi , 4 £ )UX 0UX^ 2 £ -
Let </>i : X —• [0,1] be a map such that 

(i) K^rHl) = * U D x o , 3 £ D 0ÖX((O,1]) by (ii)o, 
( i i ) 2 ^ 1 ( 0 ) = ^ - X 1 , 4 £ . 



402 V.T. LIEM 

Define rf[(x) = (j>i{x)r]i{x) for each x G X and H1 : X x I —> M 
by Hl{x,t) = H(x,(l - t)<t>o(x) + t<l>i{x)). Then 0 < r/J < 771, 
and i / 1 is a homotopy (rei. XQ) from ifj to H\ such that if1 is a 
1-LCC embedding. Again, applying Theorem 1.1 and its addenda to 
each component of N()ti; 6e), we can obtain a desired isotopy F1 (rei. 
F{X&) U % U ( M - Ntfuoe))) of M such that F}H% = H}(t G J). 

Similarly, we can obtain inductively the isotopies F2,F3,..., Fn sat­
isfying (A)-(D) as we wanted (0n(z) = 1 for all x G X.) 

Now, we outline the proof to show that F is an e-isotopy. Given a 
point y0 e M for each i = 1,2, ...,n, let yi = Fl~1...FiFi(yo). For 
each i = 0,1,2,..., n, it follows from (C) that 

(*) if i/o é tf, F % ; x /) C N(W(xl x J); 1 / 2 ^ ) ) , for some 
xt e X - X0 or Fl(Vl x I) = {yt}; 

(**) if i/o £ £/, then F % z x / ) = {y0}, for all i = 0,..., n. 
Let Ti = F°(y0 x 7) U... UF*(^ x I). We will prove by induction that 

Tz C N{H(x% x /);2/r?i+i(zi),), for some £\ G X - X0 , if y0 e £/. By 
(*), it is clear that the statement holds true for i = 0. Now, let us 
assume that y0 G U and that Tk-i c N(H(xk-iI);xrjk(Xk-i)/2) 
for some x^-i G X - XQ. Then, T* = Tk-iF

k{yk x 7) is con­
tained in N{H(rik-1 x 7);ffa(a*1i)/2) U N(Hk(xk x I);rjk{xk)/2) by 
(*). Let Xfc G {xjfe1i,Xifc} such that ^(z*;) = max{?/fc(xfc-i),^(a;jfc)}. 
Since Fk-1(yk-lil) = yk = Fk(yk,0) belongs to both N ( # ( z * - i x 
I);rik(xk-1)/2) and N(Hk(xk x I);r]k(xk)/2), we have d(i7(zfc_i x 
I),H(xk x J)) < diH&k-x x I),Hk{xk x I)),rj)k(xk); so, d*(H(xk-i x 
I),H{xk x /)) < r7Jt+1(fjfc)/4 by (iii). Therefore, both N{H{Xk^1 x 
7);?7ife(5jfc—1)/4) and N(H(xkxI);rjk(xkxI)/2;rjk(xk)/2) are contained 
in N(H{xk x I);tfk(xk)/2 + r/fc+iO**)/4)- Consequently, by (ii), 7\ C 
7V(#(f* x /) ; r? f c + i fe) /4 + ^(x f c)/2) C # ( # ( £ * x 7);r/fc+1(ffc)/2). 

Therefore, F(y0 x 7) = Tn C N(H(xn x I);l/2rjn+1(xk)) for some 
afn G X — XQ. Hence, F(?/o x -0 is limited by U and F satisfies 
(3). Moreover, (1) and (2) follow since F$ = id (by (A)) and 
Ff . . . F 0 / = H" = g, and (4) follows from (D). So the proof is complete. 

COROLLARY 1.6. Let XQ be a closed subset of a locally compact 
metric space X with 2dimX + 4 < n, n > b, and M a piecewise-linear 
n-manifold without boundary endowed with a complete metric d, Let 
H : Xxl —• M be a proper homotopy (rel,Xo) from a 1-LCC embedding 
f : X —• M to another g. Then there is an isotopy Ft{t G I) of M 
enjoying the properties similar to (l)-(4) in Theorem 1.5. 
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PROOF. The proof is similar to that of Theorem 1.5. We assume 
that H is a proper 1-LCC embedding. Fix an XQ G M and let 
A : M —> [0,oo) be a map defined by X(x) = d(x,XQ). By use of 
Theorem 3.5 on p. 298 in [7], it can be shown that À is proper. Let À be 
a PL-approximation of A such that, for each r > 0, Mr = A-1 ([0, r]) is a 
compact PL-submanifold of M whose boundary dMr is PL-bicollared 
in M. For 0 < p < q, define MVA — A_1([p, (/]), Zv,q — H~1{MPiq) and 
Xp,q — Prx(^p,g)î a ^ MVA,ZVA and XPiq are compact. 

Choose an increasing sequence 0 < r± < r2 <... such that U{Mrfe|A; = 
1,2,...} = M and that H(Xrkirk+1 x I) misses both dMrk_1 and 
dMrk+2. Consequently, if A3 — Xr4gir4g+2{s — 1,2,...), then {H(AS x 
I)\s = 1,2,...} is a pairwise-disjoint family. Let 0i : X —» [0,1] 
be a map such that ^ ( l ) = U{A5|s = 1,2,...} and ^{O) = 
X — U{N(As;es)\s = 1,2,...}, where es > 0 is chosen such that 
{N(A3; 2es) : s = 1, 2, • • •} is a pairwise-disjoint family. Define Hi (x) = 
H(x, t<t>\(x)), a homotopy from / to H{. Since {N(AS; e) : s = 1,2,...} 
is pairwise-disjoint, from Theorem 1.5, we can obtain an isotopy F1 of 
M corresponding to the homotopy H1 such that Fl f = il*. 

As in the proof of Theorem 1.5, define H2 : X x J —> M by 
if2(x,i) = # (x , (1 - *)0i(x) + *)(02(z) = 1 for all x G X). Then tf2 

is a homotopy (rei. ^ ( l ) U X0) from Hi = H§ to Hi = H1 = g 
and H2((X — 0^"1(1)) x /) is a family of relative compact sets of 
pairwise-disjoint closures. Therefore, from Theorem 1.5 again, we can 
obtain an isotopy F2 of such m that F2H{ = H2 = g. 

Finally, define Ft = F%t_i+1 if ^~± < t < | , i = 1,2. Then F is 
a desired isotopy of M if we choose rji and r/2 carefully to control the 
tracks of the isotopies F1 and F2 as in the proof of Theorem 1.5. Also, 
it should be pointed out that the property (4) in Theorem 1.5 is strong 
enough to carry out a similar property in Corollary 1.6. 

2. Approximation theorem. In this section, Bn denotes the PL 
n-cell n r = i [ ~ n ' n ] ^ By Lemma A, we can think of R°° as lim_> B n . 
If (X, Xo) is a pair of closed subsets of R°°, let us set Xk = {X n 
Bk) UX0(fc > 0). Let Pz : Y x Z - • Z denote the projection. For 
convenience, we also use M to denote the subspace M x 0 of M x R°°, 
etc. 

LEMMA 2.1. Let (X,Xo) be a pair of closed subsets of R°°, and let M 
be an R°°-manifold. Given a map f : (X,Xo) —» (M x R°°,M) such 
that f\Xo is a closed embedding and given an open cover a of M x Ä°°, 
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there is a closed embedding g : X —• M x R°° such that 
(i) g\X0 = f\X0, 

(ii) # ais a-close to f, 
(iii) PR°°£7 induces an embedding ~g : X/XQ —• Ä°° suc/i £/ia£ 

^|(Xjt/Xo) 25 a 1 — LCC embedding into Rdk, with dk 's subject to the re­
lations 2dk-i +4 < d/c, do = 6; consequently, 2dim(J¥fc/Xo)+4 < d^-i-

PROOF. Let M = lim— Mn as in Lemma A. By Lemma B, we 
can take a subsequence of {Mn} and assume that f(X n Bh) C 
Mk x Rdfc. For a map 0 : X -» M x R°°, we set 0O = PM<\>A\ = 

PRifafa = PR2<l>r-,<l>m,:;n = ( ^ X - X R J ^ a n d ^ * , - = ^ R ~ ) & 

where R£° = lim_+{0 x R f c ^ 0 x R f c x R^+i ^ • • • } c R ° ° ; and we will 
use similar notations for a map 0 : X —• M x R p x /£+i-

The proof will be similar to that of Lemma 3.1 in [16]. We will only 
outline it. Let {as\s = 0,1,2, ••} be a sequence of open covers of 
M x R°° such that 

(i) a0 = a, 
(ii) St(ai,<*i) < tti-i, (z > 1). 
We will construct inductively a sequence of maps {g^ \n = 0,1,2, • • •}, 

where ^ n ) : I ^ M x R ° ° , such that 
(l)gM\Xn^=g^-^\Xn.i; 
(2) 0<n) and ̂ f""1) are St(a2n,a2n)-close; 
(3) g^(Xn - X n _i ) H ( M B . ! x R ^ - 1 ) = 0; and 
(4) g{n)\Xn is an embedding with g{n)(Xn) C Mn x Rd". 
Then, g = l i m ^ ) will be a desired approximation; therefore the 

proof will be complete. 

A. DEFINITION OF £ (0). Let ^(°) = / . 

B. DEFINITION OF g^\ First, we modify £(0) as follows to obtain a 
map #(*) : X —• M x R°° with the following properties: 

(a) gW is a2-close to g(°i; 
(b) ^(X1 - X0) H M = 0; and 
(c)ö (1 ) |Xo = ^°)|X0. 
Let 0i : R°° -+ /°° be a homeomorphism with 0i(O) = 0. De­

fine o\ = io.M x 0i and h^ = aig^. Since M is paracompact, by 
imitating the proof of Lemma 3.1 in [16], we can construct a map 
hi approximating h[x' (rei. Xç>) such that if we define h^ to be 
(fto1)>M1)»ft2!.)..) : * — M x 7°°, then 
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(a') h^ is (7i(a2)-close to h^\ where <7i(c*2) is the open cover 
{(Tx{V) :V € a2} of M x /°°; 

(b') ÄW (Xi - X0) H M = 0; and 

(c>)hW\Xo = Ü1l\X0. 
Define ^ = o^ 1 ^ 1 ) . Then, it is straightforward to verify that g^ 

satisfies (a), (b), and (c), since (7i(x, 0) = (x, 0) for all a; G M 
Next, since ^^(XQ) C M , we can assume that g[ ...(Xi/Xo) is a 

compact subset of Rdl for some d\ > 2do + 4 with do = 6 (we will 
use the same notations to denote the "induced" maps defined from 
the quotient spaces into R°°.) Now, since Mi is compact, for each 
z 6 #i*... dl(Xi/Xo), there is an open neighborhood Vz of z in Rdl 

and an open cover WiiZ of Mi such that the family {W xVz\W € 
^1,0} < «2- Then, it follows from Lemma 1.3 that there is a 1-LCC 
embedding gW :X1/X0 -> Rdl that is {VJ-homotopic (rel.{X0}) to 
#i*...dJ(Xi/Xo). Consequently, j^\X± is a;2-homotopic (rel.X0) to 

(ù{o)\g{1),ù{
d

1
1

)
+h...)x1

since tó+i(*i) = {°} c R£+1. 
Finally, by use of a homotopy extension and the paracompactness of 

X, we can show that (j^ is a2-homotopic (rel.Xo) to a map gW that 
we wanted. Moreover, observe that g ^ l X i = (% ^ ^ ^ i + i .-)l-^i 
is an embedding of Xi into Mi x Rdl and g^ and g^1) are St(of2, o^)-
close. 

C. DEFINITION OF g(k\ Similarly, we will construct g^ after a sat­
isfactory g(k~1^ has been defined as follows. Recall that g^k~^\Xk-i 
is an embedding whose image is contained in Mk-i x Rdfc-1. Let 
9k : R<dl_l+i —• ^ _ ! + i be a homeomorphism with 0^(0) = 0. 
Define ak = 1<^Mx"Rd

k_1
 x Ok a n d h^ = a^g^'1^. Again, we 

modify hrd _ + 1 to obtain hrdJ + 1 such that if we define h^ = 

( h w "du .(*) v Jr' 
(a') Ä(ft;) is <7fc(a2/c)-close to /i(fc) where ^(o^fc) = Wk(V) : V G a2/c}; 
(b') Ä(fc)(^fc - * * - i ) H (M x R**-1) = 0; and 
(c ' )ÄW|X f c . 1=ÄW|X f c_ 1 . 
Now, define $W = a^h^l Since ^ ( x , 0 ) = (x,0), for all x G 

M x R 4 " 1 , it follows that 
(a) $W is 02/c-dose to g^"""1); 
(b) ^(fc)(Xfc - Xk-X) n(Mx R ^ - 1 ) = 0; and 
(c) ^«l-X-fc-i = ^ -« l -Yfc- ! . 
Then, as in step B, we can assume that the "induced" map §[}.. : 
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X/XQ - • R°° carries Xk/X0 into Rdk for some dk > 2dk-± + 4. 
Again, from Lemma 1.3, it follows that g[ ... dk\(Xk/Xo) is homotopic 

(rel.X/b_i/Xo) to a 1-LCC embedding ^ : Xk/X0 -+ Rdk such that 
(*) gW{{Xk/X0)-(Xk-1/X0))nRdk-1 = 0 (Recall that dim(Xfc/X0) 

+dk-i < k + dfc-i < 2dfc_i < dk -2 since dim(Xfc/X0) < A: and since 
k < dk-i by induction); 

(**) #(*)|Afc is a2fc-homotopic (rel.Afc_i) to the embedding (§Q \ 
?W ,ft l r .):^-M txRd'. 

Now, we can extend the homotopy in (**) to an a2/c-homotopy from 
g(k) to a desired map </(*) which satisfies all properties (l)-(4). 

Finally, the function g = lìmgW will be a desired approximation. In 
fact, g is well-defined by (1). Moreover, since each x G X belongs to 
Xk for some k, it follows that g^(x) = g^k\x) for all p > k by (1). 
Therefore, by use of (2) and the construction of {as\s = 0,1,2, • • •}, 
we can prove by induction that gW is a^^k-j)-close to g^k~J>} for each 
y(0 < j < k). Hence, g(x) = g^k\x) is a-close to g(°(x) = f(x). Also, 
by use of (3) and (4), we can show that g is a closed embedding as in 
Lemma 3.1 [16]. Finally, we can inductively define the sequence {dk} 
subject to (iii) as required. 

Let us introduce some notations used in the following lemma. For 
a finite set A of positive integers, let RA denote the product fli^i : 

i = 1,2, • • •}, where Zi = R if i G A and Z{ = {0} if i £ A. RA is 
a subspace of R°°. If A and B are two disjoint finite sets of positive 
integers, let R^ x R# denote RAUB- Define Rdk = R{i,2,...,dfe} where 
dk is a positive integer. 

LEMMA 2.2. Let <j> : X —+ R°° be a closed embedding such that (use 
the notation in Lemma 2.1 and think of Xn as Xn/Xo in Lemma 2.1): 

( l ) 0 ( X n + 1 - X n ) n R d " = 0 ; 
(2) (j)\Xn : Xn - • Rdnis a 1-LCC embedding; 
(3) 2 dim Xn + 4 < d n_i , and do > 6; and 
(4) 2dn + 4 < d n + i ( n > 0 ) . 

Then, <f> is an R°° -deficient embedding. 

PROOF. Set xRd° = Rd° = R{i,...,do} and 2Rdi-4> = R{do+lf... fd i}. 
For k > 1, define inductively, 
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r i R d f c = i R d f e _ l x R { d f c + i M f c d t i } 

4k+i} 

It follows that, for each fc = 1,2, • • -, 
(A) Rd*+1 = W" x 2Rd*+1-d*, 
(B) t i _ ! : 1R'**-1 C 1Rd*, and dim fc** = dk, 
( C ) ^ . ! : V * - ^ - ' C 2 R d k + 1 _ d t , andd im 2Rd*+i-d* = dk+1-

12T>OO R°° where ^ = lim Ra 
-dk, 

and (D) R°° = l im_R d k 

2 R ° ° = lim2 Rd*+>-<**. 
For convenience, we will identify R°° with iR00 x 2R°°, ÌR00 = 

lim^ xRd* with ^ ^ x 0 C R°°. Then, we have the commutative 
diagram 

Xi 

<t>\ 

Xo 

•t>\ 

xz 

Ui 
lp^o y 2pdi— do -̂ R^1 X 2 R ^ 2 _ ^ ! 1RC^2 X 2p>^3_^2 

Rd R<* Rd3 

Let us consider the composition pcß : X —» 1R°°, where p : R°° —* 
1R°° C R°° is the projection. From the proof of Lemma 2.1 and the 

condition (3), there is an embedding iß : X —• 1R°° approximating p<ß 
such that 

(i) iß\Xk : Xk -+1 R^" 1 is a 1-LCC embedding; 
(ii) iß{Xk^ - Xfc) n1 R ^ - 1 = 0; and 
(iii) there is a homotopy H : <ß ~ iß in R°° such that H(Xk x J) c Rdk 

and H{(Xk+1 - Xk) x / ) n Rdfe = 0. 
To complete the proof, we consider two cases. 
Case 1. <ß{X) n </>(̂ 0 = 0- Again, by Lemma 2.1, we can assume ad­

ditionally that H\Xk x / i s a 1-LCC embedding into Rdk. We will con­
struct inductively a sequence of homeomorphisms hn : Rdn —+ Rdn (n = 
1,2,3, • • •) such that hn(ß\Xn = iß\Xn and hn+i\Rdn = hn. Then, the 
homeomorphism h of ^ ^ x 2 R°° defined by h(x) = hn{x) if x G Rdn 

will satisfy the relation hcß = -0, and the proof of Case 1 will be com­
plete. 
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First, from Addendum (2) to Theorem 1.1, it follows that there is an 
isotopy hi of Rdl such that hi is an extension of H} = Ht^^Xi) 
and hi = id on Rdl — U, where U is a relatively compact neighborhood 
of i / ^ p f i ) x I) = H{X1 x / ) in Rd l . Let us define hx = H{. Then 
hi<ß{x) = H\(j){x) = H^-^ix), 1) = H{x, 1) = ip(x) iîxeXx. 

Second, to construct h2, we observe that, since Ht<t>~1 and hi agree 
on <t>{Xx) C Rdl, they define a homotopy H2 : <ß{X)URdl -+ R°°(t € I) 
such that H2\ : (<t>{X2) U R d l) —» Rd2 fixes the complement of a com­
pact set. So, H2(</>(X2) xl) = H{X2 x /) is 1-LCC in Rd2. Again, from 
Addendum (2) to Theorem 1.1, there is an isotopy h2 of Rd2 such that 
(a) h2 is an extension of fft

2|0(X2); (b) consequently, h2(j)(x) = ip(x) if 
x G X2\ (c) h2 = id on the complement of a compact neighborhood of 
H(X2 x / ) in Rd2; and (d) h2\Rdl = h\. Define h2 = h2. 

Inductively, we can similarly define hn after /in_i has been con­
structed as the last stage / i ^ - 1 of an isotopy h™'1 of Rdn_1 which 
satisfies the similar properties (a)-(d) above. Then the proof of Case 1 
is complete. 

Case 2. (ß(X)nip(X) ^ 0. From the dimension condition (3) and from 
the 1-LCC properties (2) of <j> and (i) of iß, it follows that 4>(Xk)\Jijj(Xk) 
is 1-LCC in Rdfc for each k by Lemma 1.2. Hence, if we follow the 
proof of Lemma 2.1, we can define inductively Ok : Xk —• Rdk such 
that (a) if 0 is defined by 0(x) = Ok{x) for x G Xk, then 0 satis­
fies properties similar to (1) and (2) of 0; (B) 0 is a-close to 0, and 
(7) 0(X) n [4>{X) U rp(X)] = 0. By use of the convex structure of R°°, 
we can assume that 0 is a-homotopic to 0, this general case will follow 
from using Case 1 twice. 

ADDENDUM TO LEMMA 2.2. By use of the relative approximation 
Lemma 1.3 and the relative version of Theorem 1.1, we can choose the 
above homeomorphism h : 1R°° x 2R°° —>2 R°° such that 

(1) ft(0) = 0, and 
(2) h<t>{X) c 1 R°°. 

THEOREM 2.3. Let (X,X0) be a pair of closed subsets of R°° and let 
M be an R°°-manifold. Given a map f : X —• M such that f\X0 is an 
R°° -deficient embedding and given an open cover a of M, there is an 
R°° -deficient embedding g : X —• M such that 

(1) g\X0 = f\X0, 
(2) g is a-close to f. 
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PROOF. We will prove that the closed embedding g constructed in 
Lemma 2.1 is R°°-deficient. We identify M with M x R°° and assume 
g{Xo) C M x 0. Observe that the map pj^^g induces an embedding 
cj) = g : X/XQ -> R°° that satisfies Lemma 2.2 and </>(X0) = {0}. 
Let h be a homeomorphism of R°° from Addendum to Lemma 2.2 
for 0, and define h — idjvf x h. Then, h is a homeomorphism of 
M x R°° = M x 1 R°° x 2 R°° such that %(X) C M x 1 R°° x {0}; 
hence, <? is an R°°-deficient embedding and the proof is complete. 

LEMMA 2.4. Let (X, X0) be a pair of closed subsets of I°°, F : 
X —• N = M x J°° swc/i that f\Xo is an I°° -deficient embedding 
with f{Xo) C M x 0. Gwen an open cover a of N and W an open 
neighborhood of f(X) in N, there is a closed map g such that 

(1) g\X0 = f\X0, 
(2) g is a-close to f, and 
(3) g(X) C W. 

PROOF. The proof is the same as that of Lemma 3.1 in [16] with the 
following modification. Recall that (J°°,0) « (R°°,0). 

(1). Being an open subset of the /°°-manifold M x 0,W D (M x 0) 
is paracompact. Therefore, the proof of Lemma 2.7 in [16] shows that 
there is a nbd-finite [7] open cover {Va\a G A} of W fi (M x 0) and a 
sequence of maps en : W fl (M x 0) —> (0,1), n = 1,2, • • -, such that 
{{Va;£

1{x),£2{x), • • *)la £ A,x € V^} is a refinement of {u;nW|u; G a} , 
where (Va;e

1(x),s2(x), • • •) denotes (Va x [O,^1^)) x [0,^2(x)) x •••)n 
{Va X /«>). 

(2). We only need the property (ii) of / im on p. 297 in [16] to show 
that g(m\Xm - X m _i ) D (M x J771-1 x 0) = 0 since /xm is positive on 
Wn{M x I171'1 x 0) (refer to the proof of Case 2 of (i) on p. 295 in 
[16].) 

3. Unknotting theorem in R°°-manifolds. 

LEMMA 3.1. Let X be a closed subset of an R°° -manifold M and let 
f : X —• M be a closed embedding. If f is homotopic to the inclusion 
X C M, say by H, then, given an open neighborhood W of H(X x I) in 
MxR°°{H = jH where j : M -> M x R°° is defined by j(x) = {x, 0)), 
there is a homeomorphism F of M x R°° such that 

(i) F = id on the complement ofW: 
(ii) F(x,0) = (/(x),0) for all x G X; and 
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(iii) if H is limited by an open cover a of M x R°°, then F can be 
chosen to be St4 (a)-close to id. 

PROOF. Case l . X n f(X) = 0. By Lemma 2.4 and Theorem 2.3, we 
can assume that H is an R°°-deficient embedding into M x R°° and 
it is St(a)-limited since H\X x {0,1} is an R°°-deficient embedding. 
Thus, without loss of generality, we can assume H(X x I) c M x 0. 
Let M = l im- M™k as in Lemma A. Set Zn = # _ 1 ( ^ n x 0). Then 
Zn is a compact subset of X x I. Hence, Xn = px(Zn) is compact and 
we can assume by Lemma B that H(Xn x I) C Mn+\ x 0. Let {dn} 
be an increasing sequence of positive integers such that 

(*) ran+i < mn + dn, and 
(**) 4(ran + dn) + 5 < m n + i + dn + 1 . 
We will construct a tower of compact-manifold subsets {Nn : n — 

1,2,---} of M x R ° ° suchthat 
(1) IntiVn is homeomorphic to an open subset of R2(mn+d„)+2. 
(2) H(Xn x I) is a 1-LCC subset of Int yVn and H(X x I) n Nn = 

H(Xn x / ) ; 
(3) Nn-i is a 1-LCC subset of Int/Vn; and 
(4) U{Nn : n = 1, 2, • • •} = M x R°°. 
Let Bf. denote n ^ i M ^ l * - To fix ideas let n = 1 and let Y = 

H(Xi x / )U(Mi xBf1). Then F is a 1-LCC subset of Int(M2 xB%2) by 
Lemma 1.2. Since Int(M2 x B22) is an absolute neighborhood retract, 
there is a compact PL-manifold neighborhood U of a 1-LCC copy of Y 
in R2(™i+di)+2[3, p.49] and a map g : U — Int(M2 x Bd

2
2) such that 

g(x) = x for each X G F . Moreover, since H{XxI)nlnt{M2xB%2)c 
M2 x 0 is 1-LCC in Int(M2 x B%2) and since 

m2 + 2(171! H- di) + 3 < 3(mi + di) + 3 by (*) 

< 2 ( 2 ( m i + d i ) + 2) + l 

< m2 -hd2 by (**), 

We can assume by Lemma 1.3 that g is a 1-LCC embedding such that 
g{U)DH{{X - Xx) x I) = 0. Define Nx = g(U). Then, Nx satisfies 
the properties (l)-(4). 

Similarly, to define AT
n, we use Y = H(Xn x I) U (Mn x Bfr) which 

contains iVn_i. Then, we can verify that the sequence {7Vn : n = 
1,2, • • •} enjoys the properties (l)-(4). Infact, iVn_i is a 1-LCC subset 
of IntiVn since Nn-x C Y and dim y < dim Nn - 3. 
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For each integer n > 1, let an denote the open cover {Vf)Nn\V G a} 
of iVn. Now, since IntTVi is homeomorphic to an open subset of 
R 2 ( m i + d l ) + 2 , it follows from Addendum (3) to Theorem 1.1 that there 
is a St(ai)-isotopy h\ : N\ —• N\ which is the identity on N\ — W and 
extends Ht\Xi for each t e l . Then, by (2), (3) and Lemma 1.2, it 
follows that NiUH(X2 x J) is a 1-LCC subset of Int7V2. On the other 
hand, the map 

h1 U {H\X2 x /) : (Nx U I 2 ) x I-+N2 

is a well defined St(a2)-homotopy, and 

2 dim(iVi U X2) + 4 = 2 max{dim iVi, dim X2 } + 4 

< 2max{2(mi + dx) -h 2,ra2} + 4 

< 4 ( m i + d i ) + 8 by (*) 

< m2 + d2 + 3 by (**) 

< 2(m2 + d2) 4- 2 by (1) 

= dimiV2. 

Hence, from Addendum (3) to Theorem 1.1, there is a St(a2)-isotopy 
hi : N2 —* N2 which is the identity on N2 — W and which extends 
H\(X2 x / ) such that hl\Ni = h{. And so, we can obtain inductively 
a sequence of St(an)-isotopies h™ : Nn —* iVn such that 

(l)ft?|(JVn-WO = id; 
( 2 ) / i n | ( X n x / ) = ^ | ( X n x / ) ; a n d 

Finally, we define F(x) = ^(x) ìì x E Nn. Then, F is a well-defined 
homeomorphism and it has all three desired properties. (F is St (en­
close to the identity of M x R°°.) 

Case 2. (General case). We think of R°° as I°° x J°°. It follows 
from Theorem 2.3 and local convexity of M x I°° as an open subset 
of R°° [12] that there is a closed embedding g : X —• M x I°° such 
that (i) g{X) 0 (M x 0) = 0 and (ii) g is a-homotopic to the inclusion; 
hence, (iii) g is St(a;)-homotopic to / . Then, observing the definition of 
F in Case 1, we can construct homeomorphisms F\ and F2 of M x R°° 
fixing (M x R°°) - W such that 

(*) F\ is St(a)-close to the identity and JFi(x,0) = (g(x),0) for all 
xeX, 

(**) F2 is St2(a)-close to the identity and F2(g{x),0) = (/(a;),0) for 
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all x G X. 
Define F = F2Fi. T then F is a homeomorphism of M x R°° 

satisfying (i), (ii) and (iii) as we desired; therefore, the lemma follows 

Let XQ be a closed subset of X and assume that H is stationary on 
XQ. By Lemma 2.1, we can assume that H(X-X0) x J) D (X0 x 0) = 0. 
If we choose the isotopies h1, ti2, • • • in the proof of Case 1 with further 
restriction by use of Addendum (3) to Theorem 1.1 corresponding 
to open sets WQ D NI, WO D A 2̂, • • -, where Wo is a prechosen open 
neighborhood of H({X - X0) x I) in (M x R°°) - (X0 x 0), then we 
obtain the following addendum. 

ADDENDUM TO LEMMA 3.1. If X0 is a closed subset of X and if the 
homotopy H is stationary on XQ, then the homeomorphism F can be 
additionally chosen to be the identity on (M x R°°) —Wo, especially on 
X0. 

LEMMA 3.2. If X is an R°° -deficient subset of an R°°-manifold 
M, then there is a homeomorphism 0 : M —• M x R°° such that 
<t>{x) = (x,o) ifxex. 

PROOF. Let h : M —• M x R°° = M x I°° x R°° be a homeomorphism 
such that h(x) C M x 0. Let À : I°° —• Ioo x R°° be a homeomorphism 
with A(0) = (0,0). Now, define 0 to be (h~x x idĵ oo) o (idM x A x 
idRoc) o h. Then, <j>{x) = (x,0) iîxeX. 

THEOREM 3.3. (UNKNOTTING THEOREM). Let X be an R°°-deficient 
subset of an R°° -manifold M, and let f : X —• M be an R°°-deficient 
embedding. If f is homotopic to the inclusion X C M, say by H, then 
there is a homeomorphism F of M such that F(x) = f(x) for all x G X. 

PROOF. Let 0, ip : M —• M x R°° be homeomorphisms from Lemma 
3.2 such that 

(i) (j>(x) = (x,0) if xeX 
(n) tl>(y) = (y,0) i f y € / ( X ) . 

Let j : M —̂  M x R°° be a map defined by j(x) = (x,0). Then 
I : I x / ^ M x R ° ° defined by Ht(x) = jH{x,t) = (H_(x,t),0) 
is a homotopy from ji to jf. Moreover, if x € XQ, then H{x,t) = 
jH(x,t) = (x,o). Therefore, from Lemma 3.1, there is a homeomor­
phism F of M x R°° such that (1) F(z,0) = (x,0) if x G X0 and (2) 
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F(x,0) = {Fji){x) = jf(x) = (/(x),0) for each x G X. Now, define 
F = il)~lF(j). Then, for each x € X,F(x) = ^'lF(j){x) = ^_1F(a:,0) = 
^ _ 1 ( / (x) ,0) = f{x). So, F is a homeomorphism that we desired and 
the proof is complete. 

REMARK. The unknotting theorem for Z-embeddings in R°°-manifolds 
does not hold true (see [16]). 

4. Collar theorem. We begin the section with a lemma that is 
essential in the proof of the collar theorem for R°°-deficient embeddings. 
Recall that J = I = [0,1]. 

LEMMA 4.1. There is a homeomorphism h : (J°° x [0,1],I°° x 0) —• 
(J°° x J 0 0 , / 0 0 x 0) such that h{x,0) = (x,0) for all x € J°°. 

PROOF. Let us denote J n = JiX- • x / n x { 0 } and Jm = J i X - - x J m x 
{0}, We will construct a sequence of embeddings {hk\k = 0,1,2, • • •} 
with the following properties: 

(1) hk : Ink x [0,1] - • Jn*+i x Jm*+i, 
(2)hk+1\I

n" x[0 , l ] = Äfc, 
(3) hfc+i(/n*+1 x [0,1]) D Ink x Jmfc for k > 0, and 
(4) Äfc(aj, 0) = (x, 0) for all x G IUk. 
Define ft by ft(x) = hk(x) if x G 7nfe x [0,1]. Then it will be a well-

defined homeomorphism that we desired. 
1. Construction of ho {no = l,mo = 0, rt\ = 6, mi = 9). Let 

/ I O : / 1 X [ 0 , 1 ] ^ > / 1 X J 1 M / 6 X J 9 be the composition of the trivial 
PL-homeomorphism and the inclusion. 

2. Construction of hi(n\ — 6,mi = 9,n<i — 32,rri2 — 35). Let 
Ax = (J6 x {0}) U {I1 x J 1 ) be a subpolyhedron of I6 x J 9 , and let 
gi : Ai —> d(Ie x [0,1]) be the extension of ftö1!^1 x J1 defined by 
gi (x,0) = (x,0) for each x G J6. It is clear that gi is a PL-embedding. 

Let Ni be a regular neighborhood gi(Ai) in 9 ( / 6 x [0,1]). Since Ai 
is collapsible, Ni is PL-homeomorphic to the PL 6-ball by Corollary 
3.27 [19]. Hence, there is a PL-homeomorphism 

0i : J6 x [0,1] -> JVi x [0,1] 

that carries x to (x,0) for x E Ni. Similarly, if N[ is a regular 
neighborhood of Ai in d(I6 x J 9 ) , there is a PL-homeomorphism 

02 : / 6 x J 9 -> iV{ x [0,1] 
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that carries x to (z,0), for x 6 N[. Now, from the embedding theorem 
5.4 in [19], we can extend gj1 to a PL-embedding hi : Ni —• N[. Then, 
define hi to be the composition iO^ihi x id)#i 

hi : 76 x [0,1] -+*1 TVi x [0,1] ^ x i d iV{ x [0,1] 

It is easy to show that hi satisfies the properties (l)-(4). 

3. Construction of /i2- (^3 = 69, ms = 72). Let A2 denote 
(732 x 0) U (76 x J 9 ) c d(732 x J 3 5) C / ° ° x J°°. Observe that A2 is 
collapsible and that hi (x, 0) = (x, 0) for all x € 76 since #i (a:, 0) = (x, 0) 
for all x € 76; hence, (J32 x 0) fl (Im(Ai)) = 76 x 0 and we can define 
a PL-embedding 

g2:B = (I32 x O ^ M J 6 x [0,1]) - <9(732 x [0,1]) 

by 
~ / x _ J * if 2 € 732 x 0 
g 2 i* j~ tfti1^) if*eM76x[o,i]) . 

Then, let g2 : A2 —• d(I32 x [0,1]) be an extension of g2- Since 
732 x 0 is a codimension-zero PL-ball in d(732 x [0,1]), first we can 
assume that g2(A2 - (732 x 0)) does not contain the center (c, 0) of 
732 x 0. Then, by use of a radial structure of 732 - {c} « d732 x [0,1), 
we can push g2A2 - (732 x 0)) off Int732 x 0. Finally, by use of a collar 
of di32 x 0 in d(732 x [0,1]) - (Int 732 x 0) we push g2{A2 - {I32 x 0)) 
off di32 x 0. Therefore, without loss of generality, we can assume that 
^ ( 7 3 2 x 0) = 732 x 0. Now, since 2dim(A2 - (Int 732 x 0)) + 2 = 
32 = dimd(732 x [0,1]), it follows from Theorem 5.4 [19] that there is 
a PL-embedding g2 : A2 -+ d(I32 x [0,1]) such that Ç2(x) = g2(

x) f° r 

x G B. Consequently, 02 is an extension of £2- Finally, similar to the 
construction of hi, we can define a PL-embedding 

h2 : 732 x [0,1] - 732 x J 3 5 —• 769 x J72 

which is an extension of g2
x. Observe that A2 is an extension of 

{hi1)'1 = Ai, that A2(7
m* x [0,1]) D I6 x J9 = 7 n i x J m i , and that 

A2(z,0) = (x,0) if x G 732. So, h2 satisfies all inductive hypotheses. 
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Inductively, we can construct a desired sequence of embeddings {/i/c}, 
with rik = 2(rifc_i 4- rrtk-i) + 2 and mk=rik + 3. Finally, let us define 
g by g(y) = gk+i(y)\ if y € 7nfc x Jmfc, then we can show that g is the 
inverse of h. Therefore, the proof is complete. 

ADDENDUM TO LEMMA 4.1. There is a homeomorphism h : (J°° x 
[0,1),J°° x 0) -> (J°° x J 0 0 , / 0 0 x 0) such that h(x,0) = (z,0) /or a// 
a r e / 0 0 . 

PROOF. Along the line of the proof of Lemma 4.1, we first start 
with h0 : I1 x [0, \] -+ J6 x J 9 , next ÖI : Ai -+ d ( / 6 x [0, f]) and 
hi : / 6 x [0, |] -> J32 x J 3 5 , then g2 : A2 -+ a ( / 3 2 x [0, {]) and 
/i2 : Z32 x [0, | ] —»• J69 x J 7 2 , and so on. We will obtain a sequence 
of embeddings {hk\k = 0,1,2, • • •} with similar properties (l)-(4): and 
the result follows. 

THEOREM 4.2. (COLLAR THEOREM). Let M c N be a pair of R°°~ 
manifolds. If M is an R°° -deficient subset of N, then M is collared in 
N. 

PROOF. Similar to the proof of Theorem 2.3 in [16], it suffices to 
show this for the case N = R°° = J°° x J°°. By the triangulation 
theorem [12], there is a locally finite simplicial complex K such that 

We first prove that cone (K) x R°° « R°°. Let K = \J™ Kn , where 
Kn is a finite complex contained in the interior of Zfn+i. Then, cone 
(K) = lim_* cone(Än) endowed with the direct limit topology. Let us 
consider the direct sequence 

(*) cone (üCi) x R1 -+ cone (K2) x R2 -> • • • 

From Theorem 1.9 [7, p. 425], the natural bijection 

lim(cone (Kn) x Rn) -> cone (K) x R°° 

is continuous; furthermore, by local compactness, it is straightforward 
to verify that it is an open map; hence a homeomorphism. Moreover, 
lim_+(cone (Kn)xRn) is a contractible R°°-manifold since the sequence 
(*) satisfies the Proposition in [14]. Hence, cone(iC) x R°° is homeo-
morphic to R°°. 
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Next, we assume that M is the subset K x 0 x I°° of cone(K) x J°° x 
J°° « R°°. Then we observe that (i) M is R°°-deficient in R°°, and (ii) 
M is collared in R°°. To see (ii), from Lemma 4.1, there is a homeo-
morphism h : [0, \] x I°° -* [0, \) x J°° x /°° such that ft(0, *) = (0,0, z) 
for each z G 7°°. Therefore, the composition 

/ : X x [0, i ) x J°° -+ i d x A if x [0, J] x I°° -+idxh 

tf X [0, - ] X J ° ° X 7°° ^ i d x M x i d K x j 0 ) 1 ) x j o o x joo 
z z 

<^ cone (if) x J°° x J°° « R°°, 

where À : [0, | ) x /°° —• [0, | x /°° is a homeomorphism such that 
A(0,0) = (0,0) and fi = A-1 : [0, \] x J°° -+ [0, | ) x J°° where J°° is 
a copy of J°°, defines a collar of K x 0 x 0 x I°° in R°°. 

Finally, the existence of a collar on an arbitrary R°°-deficient subset 
M of R°° will follow from the above special case and the unknotting 
theorem 3.3 for R°°-deficient embeddings in R°°. 

COROLLARY 4.3. Let fi : Mi-i —• Mi be an R°°-deficient embedding 
of R°°-manifolds, for each i = 1,2, • • n. Then the composition cn o 
• • • o c2 o ci : M( / i , /2 , • • •, fn) -^ Mn of collapsing maps c l5 c2, • • •, cn 

is a near homeomorphism. 

LEMMA 4.4. Let (N,M) be a pair of R°° -manifolds. If M is collared 
in N, then M x I is R°° -deficient in N x I. 

PROOF. Similar to the proof of Lemma 2.6 in [16], there is a homeo­
morphism iß : N xl ^ N x I such that t/>(M x I) C N x 0. So,Lemma 
4.4 follows because we can show that N x 0 is R°°-deficient in TV x / 
by use of Lemma 4.1 and the stability theorem for R°°-manifolds [12]. 

Since R°°-manifolds are paracompact, the proofs of Lemma 3.4 and 
3.5 in [16] are also applicable for R°°-manifolds by use of the approxi­
mation Theorem 2.3 above. We can state similar lemmas as follows. 

LEMMA 4.5. Let X be an R°° -deficient subset of an R°°-manifold M, 
a and open cover of M. Then there is an open cover ß of M such that 
if a closed map f : X —> M is ß-close to the inclusion, then there is an 
R00 -deficient embedding g : X —• M such that 



AN a APPROXIMATION THEOREM 417 

(l)g(X)n(XUf(X)) = cß, 
(2) g is a-close to both f and the inclusion. 

LEMMA 4.6. Let X be an R°° -deficient subset of an R°°-manifold 
M,f:X—>Ma map and an open cover a of M. Then there is 
an a-close to f and R°° -deficient embedding g : X —> M such that 
g(X)nx = d>. 

Then, by use of Theorem 4.2, Lemmas 4.4, 4.5 and 4.6 and Theorem 
2.3, we can prove similarly the following lemma, the R°°-manifold 
version of Lemma 3.6 in [16]. 

LEMMA 4.7. Suppose that M is an R°° -deficient submanifold of an 
R°° -manifold N, let a be an open cover N, and let f : M —> N is 
an R°° -deficient embedding. If f is a-homotopic to the inclusion, then 
there is an isotopy Ht : N x J —• N x / such that 

(1) H0 = idATxj, 
(2) # i | M x / = / x id / , and 
(3) H is limited by St6 (a x 7) for any prechosen open cover 7 of I. 

THEOREM 4.8. Given an open cover a of an R°° -manifold N and 
f,g : X —• N two a-homotopic, R°°-deficient embeddings, then for any 
prechosen open cover 7 of I there is a St8(a x ^-isotopy Ht : N x J —• 
N x I such that H\ o ( / x idi) = 9 x «d/-

PROOF. Similar to the proof of Theorem 3.7 in [16], we may assume 
that X is an R°°-manifold. Then the isotopy that we desired will follow 
from Lemma 4.7. 

5. Main theorem and consequences. Now, we are ready to prove 
the a-approximation theorem. 

THEOREM 5.1. Let N be an R°° -manifold and a an open cover of N. 
There is an open cover ß of N such that if M is an R°° -manifold and 
f : M —> N is a ß-equivalence, then f is a-close to 'a homeomorphism. 

PROOF. It is similar to the proof of Thm. 4.1 in [16]. The ingredients 
of the proof consist of 

(1) the unknotting theorem for R°°-deficient embeddings (weak ver­
sion, Theorem 4.8), 
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(2) the relative R°°-deficient embedding approximation theorem 
(Theorem 2.3), 

(3) the collar theorem (Theorem 4.2), and 
(4) the projection map pn : Nxl —• N being a near homeomorphism, 

which can be derived from the stability theorem for R°°-manifolds [12] 

COROLLARY 5.2. Every fine homotopy equivalence between R°°-
manifolds is a near homeomorphism. 

THEOREM 5.3. Every R°° -deficient subset X of an R°° -manifold M 
is strongly negligible; i.e., the inclusion map M — X C M is a near 
homeomorphism. 

REMARK. Recently, Sakai has distributed much shorter proofs for 
Corollary 5.2 and 5.3, Theorem 5.3; e.g., Theorem 2.3 and 2.5 in [21]. 
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