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AN 0—~APPROXIMATION THEOREM
FOR R*®-MANIFOLDS

Vo Thanh Liem ~

0. Introduction and preliminaries.  Generalizing the CE-
approximation theorem of Armentrout [1,2] and Siebenmann [20)] for
finite-dimensional manifolds, Ferry proved an a-approximation theo-
rem for Q-manifolds in [8] and an a—approximation theorem for man-
ifolds of dimensions > 5 in a joint work with Chapman [6].

Recently, the author proved in [16] an a—approximation theorem for
Q*°—manifolds: “Given an open cover o of a Q®—manifold N, then
there is an open cover 3 of N such that every S—equivalence from a
Q*°-manifold M to N is a—close to a homeomorphism”.

It will be shown in this note that such an a—approximation theorem
also holds true for R®-manifolds. So, the question (NLC 8) in [9] has
an affirmative answer.

As in [16], in the process of proving the main theorem, some results
similar to a few properties of Z-sets in Q and ¢;—manifold theory will
be proved. These include:

(1) relative R°°—deficient embedding approximation theorem (Theo-
rem 2.3);

(2) unknotting theorem for R°°—deficient embeddings (Theorem 3.3);

(3) collar theorem (Theorem 4.2); and

(4) R*°—deficient subsets being strongly negligible (Theorem 5.3).

For standard concepts such as the cone(X) of a topological space X,
the mapping cylinder M (f) of a map f, the infinite mapping cylinder
M(f1, fa,...) of a sequence of maps f;: X;_; — X, the limitation of
a homotopy H : X x I — Y by an open cover o of Y, the nth_star
St™ () of an open cover a, etc., we refer to [8] or [16] for more details.
All topological spaces are separable.

Throughout this note, let R>® be the direct-limit space lim_,{R"}
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endowed with the direct limit topology, where R™ is the n—euclidean
space. It has been proved that R® ~ R* x R*™ [13, p.395] and
that R* is paracompact [11, p.298]. By an R®-manifold, we mean
a separable paracompact space that is locally homeomorphic to R*.
Let us denote [0,1] by either I or J, and lim_,{[0,1]",%,,} by I* or
J®, where i,(z) = (z,0). Then, from the corollary in [14], it fol-
lows that R® =~ I*. A subset X of an R®-manifold M is said to
be R*®- deficient if X is closed in M and there is a homeomorphism
h: M — M xR*-such that A(X) C M x0, where D = (0,0, ---) € R™.
Recall that M is R* stable [12, p.48]. An embedding f: X — M is
said to be R®—deficient if f(X) is R®-deficient in M. A closed sub-
set X of M is said to be collared in M if there is an open embedding
f: X x[0,1) - M such that f(z,0) = z for all z € X. A collar
f: X x[0,1) - M is normal if f(X X [0,s]) is closed in M for each
s € [0,1), and the restriction f|(X x [0, s]) of a normal collar f is called
a closed collar of X in M. QObserve that, if M is a paracompact and
X is a collared subset in M, then there is a normal collar of X in M.
Therefore, throughout this note, we will use normal collars without
further notice if the involved spaces are paracompact.

A map f: X — Y issaid to be a near homeomorphism if f is a—close
to a homeomorphism for any pre—chosen open cover a of Y. Given an
open cover ¢ of Y, amap f: X — Y is said to be an a—equivalence if

there isamap ¢g: Y — X such that go f z( )idx and fog~idy (refer
to [8] or [16]). A map f: X — Y is called a fine homotopy equivalence
if f is an a—equivalence for each open cover a of Y.

Let g be a nonnegative integer and G an open subset of a metric space
(M.d). G is said to be ¢-LC at £ € M (rel. M) (refer to [18, p.45])
provided that, given an open set U = N(z;¢), there is an open set
V = N(z;6)(6 = 6(z,e) > 0) such that every map from the g-sphere
into VNG is null-homotopic in UNG, where N(z;r) denotes{y : y € M
and d(z,y) < r} for r > 0. G is said to be g— LC( rel. M) if it is ¢-LC
at each z € X (rel. M). G is said to be ¢—LC (rel M) if it is ¢-LC at M
(rel. M). If the choice of § is independent to z for all z € M, G is said
to be g-ULC (rel. M). A closed subset X of M is said to be ¢-LCC in
Mif M —Xisq— LC at X(rel. M). A closed embedding f:Z — M
is said to be 1-LCC if f(Z) is 1-LCC in M. Observe that if M is a
finite—dimensional manifold and if f : Z — M is 1-LCC embedding,
then M — f(Z) is 1-LC (rel. M). By LCP (ULC?), we mean ¢-LC
(¢-ULQC) for each ¢ = 0,1, ...,p. The proof of the following lemma is
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straightforward.

LEMMA 0. Let M be a compact manifold and X a compact subset of
its interior. Then M — X is 1-ULC (rel. M) +f and only if X is 1-LCC
m M. Ifdim X < dim M — 2, then M — X 13 0-ULC.

We now state some known results that we will use in the sequel.
From the theorem in [3] restated in §1 below, a closed embedding of
a compact PL-manifold N* into a manifold M™ without boundary,
with 2k + 2 < m and m > 5, is locally flat if and only if it is a 1-LCC
embedding. Hence, the following lemma can be deduced from Theorem
0 in [12] and the proposition in Part C of [14].

LEMMA A. A space M is an R®-manifold if and only of M is
homeomorphic to lim_, M,,, where, for each n, M, is a compact
finite—dimensional manifold and it i1s a 1-LCC subset of the interior
of Mpy1 with 2 dim M, +2 < dim M,4;.

The following is from Lemma 2.4 of [10].

LEMMA B. Let X = lim_,{X,}, where X,, i3 a metric subspace of
Xn+1 for each n. If K is a compact subset of X, then there is an
integer ng such that K is contained in Xy, .

Throughout this note, let Int M and OM denote the interior and
the boundary of a finite-dimensional manifold M respectively. For
convenience, we will use the same notations R™ for R" x 0 ¢ R®, M
for M x 0 C M x R®, M x R¥ for M x R¥ x 0 ¢ M x R, etc.

1. Relative unknotting theorem in R". Bryant [3] has shown
that “if X s a metric compact space and if f,g : X — R" are two
e—homotopic 1-LCC embeddings, with n > 5 and 2dim X + 2 < n,
then there is an e—isotopy Fy of R™, t € I, such that Fy = id and
Fyo f =g”. In this section, we will prove a relative version of Bryant’s
theorem that, according to our knowledge, has not appeared elsewhere.
We need some notations and observations for the proof.

Given a subset Z of a metric space (X,d) and a § > 0, let N(Z;6)
denote the §—neighborhood of Z in X, {z € X|d(z,Z) < é}. It follows
from Lemma 0 that if X is a compact 1-LCC subset of R", then R" — X
is 1-ULC, i.e., given an € > 0, there is a § > 0 such that every §—loop in
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R™ — X is e-null homotopic in R"-X. By use of the PL-approximation
theorem [19], Theorem 5.3 and the 0—-ULC property of R"~! — X from
Lemma 0, we can show that if X is a compact subset of R"~! ¢ R"
with dim X < n — 3, then X is 1-LCC in R™. Observe that if X is a
1-LCC subset of R™ and if h is a homeomorphism of R™, then h(X) is
also 1-LCC in R™.

THEOREM 1.1. Let (X,Xp) be a pair of compact metric spaces
and let H : X x I — R"(n > 5) be a homotopy (rel. Xg) from a
1-LCC embedding f to another g. Let 6 : X — I be a map such that
671(0) = Xo. If 2dim X + 4 < n, then there is an isotopy F; of R,
t € I, such that

(1) Fy =1id,

(2) F,=idon f(Xo)UR" —-U), foreachtel,

where U 1is the union of all members of U = {N(H(z x I);26(z))|z €
X - XO}:
(3) F(z x I) is either constant or limited by U, for each x € R", and
(4) F1f =g

We need a few preliminary lemmas for its proof.

LEMMA 1.2. If X and Y are two 1-LCC compact subsets of M™, a
manifold without boundary, and if dim(XUY) <n—3, then XUY s
1-LCC in M.

PROOF. Let z € XUY . If z € XNY, the 1-LCC property at z (rel. M)
is easily verified. For z € X NY, given a neighborhood U of z in M",
let V' be a neighborhood of z in U obtained from the 1-LCC property
of X at z. We will show that every map f : A2 — V — (X UY)
is null-homotopic in U — (X UY), where A? denotes the standard
2-simplex.

Let ¢ : A? — U — X be an extension of f over A?. Given an
€ > 0 such that ¢ < min{dist(¢(A?), X),dist(¢(A2?), M™ — U}, there
is a 6(0 < & < €/3) such that every é—loop in M™ — Y is (¢/3)-null
homotopic in M™ — Y. Moreover, since dimY < n -3, M*» —Y is
0-ULC. Hence, there is a positive number 7 such that if z and y are
in M™ — Y with d(z,y) < 7, then there is a (6/2)-path in M - Y
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joining = and y. Now, let K be a PL-subdivision of A? such that
diam¢(o) < n/3 for each 2-simplex o of K. Then, we can construct,
by induction , a map ¢ : K(© U K1) — U — Y such that

(1) ¥|0A? = ¢]oA?,

(2) d(v(v), #(v)) < n/3 for each v € K(©), and

(3) diam¢(7) < n/2 for each 1-simplex 7 of K.

Finally, we extend v over each 2-simplex o of K(2) into M™ —Y such
that diamwy (o) < /3. Then, we can show that d(¥(z), #(z)) < é for
all z € K© |J K™ and it follows that d(¢(z), #(z)) < € for all z € K.
Hence 1(A?%) C U~ (X UY) by the choice of ¢, and the proof of Lemma
1.2 is complete.

Let Z be a closed subset of a PL-manifold M without boundary. If Z
is 1-LCC, then M — Z is 1-LC (rel.M). Therefore, if 2<p<n—k—2
where k = dim Z, it follows from Theorem 4 in [18] that M — Z is
LCP (rel.M) since M — Z is £cP (rel. M) [18, p.45]. So, for k£ > 2 and
2k + 1 < n, by use of the compactness of I*, Lemma 0 and Theorem
6 in [18], it is tedious to show that a closed subset Z of IntM has the
property Z* as in [14] if and only if Z is 1-LCC in M. Therefore, we
can obtain the following lemma which is a special case of the Corollary
5 in [14].

LEMMA 1.3. Let n be an integer > 5 and let (X, Xo) be a pair of
locally compact metric spaces with 2dim X +1<n. Let f : X —- M"™
be a proper map such that f|Xo is a 1-LCC embedding, where M is a
PL-manifold without boundary. Then, given a map € : X — [0,1] such
that €71(0) = Xo, there is a proper 1 — LCC embedding g : X — M™
such that

(1) g(z) = f(z) if z € Xo,

(2) d(f(z),9(z)) < &(z), all z € X — Xo.

PROOF OF THEOREM 1.1. Let X denote the quotient space (X x
I)/ ~, where (z,1) ~ (2/,0) if f(z') = g(z), or (z,t) ~ (z,0) if z € X,.
Then, the given homotopy H : f =~ g induces a map H : X — R".
Observe that dim X < dim X+1 as follows. Let X; = (Xx[0,1/2])/ ~1
and Xo = (X x [1/2,1])/ ~q, where (z,t) ~; (z,0) if z € Xp and 0 <
t < 1/2, and where (z,t) ~2 (z,1) if z € Xp and 1/2 <t < 1. Then,
X; and X» are homeomorphic to the subspace U{z x [0, A\(z)]|z € X}
of X x I for some map A : X — [0,1] with A™1(0) = X,. Hence,
dimX; = dimXy < dim(X x I) = dimX + 1. The latter follows
from the Remark on p. 34 in [15] since X is compact. Now, set A =
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FHf(X)Ng(X)) and B =g '(f(X)Ng(X)) and think of X x {1/2}
as compact subsets of X; and Xz. Then, X = X; |J, X2, where ¢ =
gt fuid : ((Ax{0HU(Xx{1/2}))/ ~1— ((Bx{1})U(X x{1/2}))/ ~2
In other words, X is the union of two compact subspaces whose
intersection is the compact subspace ((A x {0}) U (X x {1/2}))/ ~1=
(Bx{1}) U(Xx{1/2})))/ ~2. Hence, dim X < dim X+1, by Theorem
IIT 2(15]. Let X denote((Xo x I) U (X x {0,1}))/ ~. Then, H|Xj is
a 1-LCC embedding by Lemma 1.2. _

Now, from Lemma 1.3, there is a 1-LCC embedding H: X - R"
such that: (1) d(H(z), H(z)) < 6(z) if z € X — Xg is represented by
a point (z,t) in X x I; and (2) H(z) = H(z) if z € Xp. First, by
considering the homotopy H from Hy to Hy /2, We can assume that
f(X — Xo) Ng(X — Xo) = 0. Observe that if Z is a codimension 3
1-LCC compact subset of R® ™!, then every closed subset of Z x R is
1-LCC in R™. Therefore, ife: X — R""! is a 1-LCC embedding, then
the map € : X — R" defined by &(z) = (e(z),t - A(z)), where (2,t) is a
representative of z € X, is a 1-LCC embedding. Hence, again by [3],
we can assume that f(X) C R"' x {0} and H(z,t) = (f(z),tA(z)).
(Recall that 2dim X +2 <mn.)

As in the proof of Theorem 9.1 in [5], we need only to construct an
isotopy corresponding to such a homotopy H. Let yu,n:R™™ ! — [0,1]
denote the extensions of Af~'and §f! respectively over R™ ™! such
that the set Y = {z|u(z) > 0} = {|n(z) > 0} is contained in the
neighborhood U N R™™! of f(X — Xo) in R®™!. Then, an isotopy
F} : R® — R" such that F} f is equal to H¢/o for each ¢,0 <t < 1,
can be defined as follows:

(z,3) if € (R"™ ! —Y) or(z €Y and s is not in
the open 1nterval (-n(z)u(z), (1 + n(z))pu())),
(st (), ey and
n(@)u(z) < 5 <0,
(m)(l+n(:c)—t)+tu(x), ifz€eY and0 < s <
(1 +n(z))u(z).

Similarly, we can define an isotopy F{ of R"™ such that FZF}f is
equal to Hy/o for each 1 < ¢t < 2. Now, we define F; to be: (1) F3,
if 0 <t <1/2 and (2) F4_,F! if 1/2 < ¢t < 1. Since F} and F¢
are the identity, F; is a well-defined isotopy that we want to establish.
Therefore, the proof is complete.
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ADDENDA TO THEOREM 1.1. (1) For each t, F; is an extension of
Hyf™! if the induced map H : X — R"™ is a 1-LCC embedding.

Such notions as proper homotopy, proper homotopy equivalence, etc.,
are defined in analogy with the corresponding notions from the ordinary
homotopy category. Observe that it is straightforward to show that
every proper map is a closed map.

(2) If X is a locally compact, f and g are proper maps and X 1s a
closed subset of X such that X — Xy 18 compact, then Theorem 1.1 also
holds true.

(3) Theorem 1.1 and the above Addenda (1) and (2) also hold true if
R™ is replaced by a manifold which is homeomorphic to an open subset
of R™.

THEOREM 1.4. Let Xy be a closed subset of a locally compact metric
space X with 2dimX +4 < n(n >5) and H : X Xx I — R" a proper
homotopy (rel. Xo) from a proper 1-LCC embedding f : X — R" to
another g. Then, there is an isotopy F; of R"(t € I) such that:

(1) Fo =id;

(2) Fuf = g;

3) If 6 : X — [0,00) ts a map that 61(0) = Xo, let U =
{N(H(z x1I); 6(z)): z € X — Xo and U the union of all members
of U, then the isotopy F can be chosen such that F(z x I) = {z} +f
z € f(Xo),U(R™ —=U) or F(z x I) is limited by U if x € U; and

(4) If the induced map H is a proper 1-LCC embedding, then F can
be chosen such that Fy is an extension of Hyf1(t € I).

PROOF. Consider the one-point compactification R™ (J{oo} of R"
as the n-sphere S™. Let Xoo = X UJ{oo} and Xp oo = XolUJ{oo}
denote the one-compactification of X and Xy, respectively. Since
H is proper, we can extend H to H' : X, X I — S™ by defining
H'(co x I) = o0 € S*. If H is a 1-LCC proper embedding, it is
straightforward to show that H' : X, — S™ is 1-LCC at oo € S™;
hence, H' is a 1-LCC embedding. The rest of the proof is the same
as that of Theorem 1.1 for the pair of compact spaces (Xoo,X0,00)
by noting that S™~! is bicollared in S™ as R"~! is in R™ and that
Bryant’s unknotting theorem also holds true for 1-LCC embeddings of
compacta into S™. Moreover, since the isotopy F' of S™ keeps oo fixed,
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F|(S™ — {o0}) is a desired isotopy of R™ and the proof is complete.

THEOREM 1.5. Let M be a manifold of dimension n > 5. Let (X, Xo)
be a pair of compact metric spaces, and let H: X x I — Int M be a
homotopy (rel. Xo) from a 1 — LCC embedding f : X — IntM to
another g. If 2dim X + 4 < n, then there is an isotopy Fy(t € I) of M
such that

(1) Fo = idas;

(2) Fuf =g

(3) If 6 : X — [0,1] is a continuous map such that §71(0) = Xo, let
U={NH(zx1I);6(x)):2€ X —Xo} and U the union of all members
of U, then the isotopy F can be chosen such that F(X x I) = {z} if
z € f(Xo) UM —U) or F(X x I) is limited by U if z € U; and

(4) If H induces a 1-LCC embedding H — IntM, then F can be
chosen such that F(f(z) x [0,s]) C F(f(z) x [0,t]) C H(z x I) for all
z€X and0<s<t <1 and F(f(z) xI)=H(z x I).

PROOF. Consider a PL-triangulation of int M. Since X is com-
pact, without loss of generality, we can assume that M is a compact
PL-manifold and we will work with a handle decomposition of M by
using st(é, K"'), where & is the barycenter of a simplex o of a triangu-
lation K of M and where K” is the second barycentric subdivision of
K[19, p.81]. Let M = ¥y U ¥; U... UX,, where ¥; is the union of the
itN_handles. The proof will be inductive on the indices of handles.

Following the proof of Theorem 1.1, we can assume that f(X) N
9(X) = f(Xo) and H : X — M" is a 1-LCC embedding. Then,
since X is compact, we can break the given homotopy into small pieces
and assume that H is an e-homotopy where € is so small that the
(n + 4)e—neighborhood of each ¥; is the union of a finite family of
pairwise—disjoint open balls.

SUBLEMMA. Let a : X — [0,00) be a map such that o 1(0) = Xp.
Then, there is a map §: X — [0,00) such that

(a) 871(0) = Xo, and

(b) if z,y € X — Xo and d(H(z x I),H(y x I)) < B(z), then
dy(H(z x I), H(y x I)) < a(z)/4, where dy denotes the Hausdorff
metric (7, p.205].

PROOF. The proof is straightforward by use of the fact that H is an
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embedding and that X — Xy is locally compact and o—compact.

Using the sublemma, we can define inductively a decreasing sequence

of functions 7, : X — [0,1), £k =0,1,...,n, such that
(i) 7 (0) = Xos

(ii) for each z € X — Xp, 6(z) = Nn+1(2) > Mn+1(x)/4 > nn(z) >
N (z)/4 >...> n1(z) > n1(z)/4 > no(z); and

(iii) if z,y € X — Xo and d(H(z x I), H(y x I)) < n(z), then
dy(H(z x I),H(y x I)) < nit+1(z)/4 for each 1.

Let By, = Mo U ¥; U... UX,. We will inductively construct isotopies
FO F1 .. F™ of M that have the following properties: for each k =
0,1,....,n:

(A) FE =id

(B) FF fixes f(Xo) U Be1 U (M — N(; (k + 4)e))(t € I),

(C) if Ux = {N(H*(z x I); n},(z)/2)|z € X — X{}, where a homotopy
H¥, a closed subset X§ and a map 7, with 0 < 9} < n, (which will be
defined later). Let Uy denote the union of all members of Uy; then Ff
fixes M — Uy and F*(z x I) is limited by Uy if = € Ux; and

(D) for each t € I, FQf = HY and FFHf~' = HF if k > 1. Then, a
wanted isotopy F' of M will be defined by

i e b i+1
F(z,t)=F'(z,(n+ 1)t — 1) if - <t< i

where 2 =0,...,n.

First let us define FO. Let Zo = H }(N(Ho;¢)), Xo = prx(Zo),
Xox = 7Y (N(¥o; ) and X{ 5 = f~1(N(¥o; X)), for A > 0. Observe
that Xo U X 2¢. Define X9 = (X — Xo,3¢) U Xo and let ¢o : X — [0,1]
be a map such that

(1) 0 (1) = Xp 5, and

(i) 0¢p(0) = X — Xo,3e.

Define ng(x) = @o(z)no(z), for each z € X and H® : X x I — M by
HO%z,t) = H(z,t¢o(z)). Then 0 < n§ < mo, and HO is a 1-LCC
embedding. Now, applying Theorem 1.1 and its addenda to each
component of N(Xp;5¢), we can obtain a desired isotopy F© (rel.
f(X9) U (M — N(¥o;4¢€))) of M such that Ff = H)(tel).

Now, let us define F!. Let Z; = H *(N(XoU¥1;¢€)), X1 =
pry(Z1), X1 = 1N (Ho U ¥1;2)) and X] , = f7H(N(Ho U ¥y1; A)), for
A > 0. Observe that X; C X g.. Defiie X3 = (X — X1 4¢)UXo UX0,2¢-
Let ¢1 : X — [0,1] be a map such that

(i) 1671 (1) = X1 3¢ D Xo,3¢ D 65" ((0,1]) by (ii)o,

(i) 2¢71(0) = X — X1 4e.
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Define n}(z) = ¢1(z)n1(z) for each z € X and H! : X xI - M
by H'(z,t) = H(z,(1 — t)po(z) + té1(z)). Then 0 < 7y < 7y,
and H! is a homotopy (rel. X}) from HY to H} such that H! is a
1-LCC embedding. Again, applying Theorem 1.1 and its addenda to
each component of N (¥1;6¢), we can obtain a desired isotopy F! (rel.
F(X3)UXoU (M — N(¥1;5¢))) of M such that F}H? = H}(t € I).

Similarly, we can obtain inductively the isotopies F'2, F3,..., F™ sat-
isfying (A)-(D) as we wanted (¢,(z) =1 for all z € X.)

Now, we outline the proof to show that F is an e-isotopy. Given a
point yg € M for each 1 = 1,2,...,m, let y; = Fi~1..F1FY(yo). For
each ¢ =0,1,2,...,n, it follows from (C) that

(*) if yo € U, F'(y; x I) C N(H'(z; x I);1/2n;(z;)), for some
7, € X — Xo or Fi(y; x I) = {ys };

(**) if yo € U, then F*(y; x I) = {yo}, for all s =0, ..., m.

Let T; = FO(yo x I) U... UF(y; x I). We will prove by induction that
T, C N(H(z; x I);2/ni+1(%;), ), for some £, € X — X, if yo € U. By
(*), it is clear that the statement holds true for 7 = 0. Now, let us
assume that yo € U and that Ty C N(H(Zx-11); xnk(Xk-1)/2)
for some Zx_; € X — Xo. Then, Ty = Tp_1F*(yx x I) is con-
tained in N(H (k-1 x I);nk(zx-1)/2) U N(H*(z x I);nk(zx)/2) by
(*). Let Zx € {zx_1,2x} such that ne(Zx) = max{nk(ZTx-1), nk(zk)}
Since F¥~!(yx_1,1) = yx = F¥(yi,0) belongs to both N(H(3x_1 X
I)ink(Zk-1)/2) and N(H*(zx x I);nk(zk)/2), we have d(H(Zx—1 X
I),H(zk x I)) < d(H(Zk—1 x I), H*(z < I)), n)k(Zx); 50, dy (H (51 X
IN,H(zx X I)) < nk+1(Zx)/4 by (iii). Therefore, both N(H(Xx-1 X
I); ni(Zx—1)/4) and N (H (2 x I); ni(Lx x 1) /2; 1k (k) /2) are contained
in N(H(zk x I);ne(%k)/2 + nk+1(Zk) /4). Consequently, by (i), Ti C
N(H(zk x I); nk+1(2k)/4 + ne(Zx)/2) C N(H(Zk X I); nk41(7k)/2)-

Therefore, F(yo X I) = T, C N(H(Z, X I);1/21,41(Z%)) for some
Zn € X — Xo. Hence, F(yo x I) is limited by U and F satisfies
(3). Moreover, (1) and (2) follow since F§ = id (by (A)) and
FP...FQf = H? = g, and (4) follows from (D). So the proof is complete.

COROLLARY 1.6. Let Xy be a closed subset of a locally compact
metric space X with2dim X +4 <n,n > 5, and M a piecewise—linear
n—manitfold without boundary endowed with a complete metric d, Let
H : XxI — M be a proper homotopy (rel,Xo ) from a 1-LCC embedding
f : X — M to another g. Then there is an isotopy Fy(t € I) of M
enjoying the properties similar to (1)-(4) in Theorem 1.5.
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PROOF. The proof is similar to that of Theorem 1.5. We assume
that H is a proper 1-LCC embedding. Fix an zg € M and let
XA : M — [0,00) be a map defined by A(z) = d(z,29). By use of
Theorem 3.5 on p. 298 in [7], it can be shown that X is proper. Let A be
a PL-approximation of X such that, for each r > 0, M, = X71([0,7]) is a
compact PL-submanifold of M whose boundary d M, is PL-bicollared
in M. For 0 < p < q, define M, , = X" ([p,q)), Zp.q = H (M, ) and
Xpq = Prx(Zp,q); all My 4, Zy 4 and X, , are compact.

Choose an increasing sequence 0 < rq < rg <... such that U{M,, |k =
1,2,..} = M and that H(X,, r,,, x I) misses both OM,,_, and
OM,, .. Consequently, if A; = X, r,.0(s = 1,2,...), then {H (A, x
I)|s = 1,2,...} is a pairwise-disjoint family. Let ¢; : X — [0,1]
be a map such that ¢71(1) = U{4dsls = 1,2,..} and ¢71(0) =
X — U{N(As;e5)|ls = 1,2,...}, where €5 > 0 is chosen such that
{N(As;2¢5): s =1,2,- -} is a pairwise—disjoint family. Define H} (z) =
H(z,t$1(z)), a homotopy from f to H}. Since {N(As;¢e):s=1,2,...}
is pairwise—disjoint, from Theorem 1.5, we can obtain an isotopy F! of
M corresponding to the homotopy H! such that Fil f = H}.

As in the proof of Theorem 1.5, define H? : X x I — M by
H%(z,t) = H(z, (1 — t)¢1(z) + t)(¢2(z) = 1 for all z € X). Then H?2
is a homotopy (rel. ¢7'(1) U Xo) from H} = HZ to HZ = H; = g
and H2((X — ¢;1(1)) x I) is a family of relative compact sets of
pairwise—disjoint closures. Therefore, from Theorem 1.5 again, we can
obtain an isotopy F? of such m that FZH} = H? = g.

Finally, define Fy = Fj§,_;,, if {52 <t < i ¢ =1,2. Then F is
a desired isotopy of M if we choose ; and 72 carefully to control the
tracks of the isotopies F'! and F? as in the proof of Theorem 1.5. Also,
it should be pointed out that the property (4) in Theorem 1.5 is strong
enough to carry out a similar property in Corollary 1.6.

2. Approximation theorem. In this section, B™ denotes the PL
n-cell ];—,[-n,n};. By Lemma A, we can think of R* as lim_, B".
If (X, Xo) is a pair of closed subsets of R™, let us set X = (X N
B¥)U Xo(k > 0). Let Pz : Y x Z — Z denote the projection. For
convenience, we also use M to denote the subspace M x 0 of M x R*,
etc.

LEMMA 2.1. Let (X, Xo) be a pair of closed subsets of R, and let M
be an R*-manifold. Given a map f : (X, Xo) — (M x R®,M) such
that f|Xo i3 a closed embedding and given an open cover a of M x R,
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there i3 a closed embedding g : X — M x R such that
(i) 91Xo = f|Xo,
(ii) g s a-close to f,
(iii) pReeg tnduces an embedding g : X/Xo — R such that
71(Xx/Xo) is a 1— LCC embedding into R%* , with dy.’s subject to the re-
lations 2dy_1+4 < di, do = 6; consequently, 2dim(Xx/Xo)+4 < dg—1.

PROOF. Let M = lim_, M,, as in Lemma A. By Lemma B, we
can take a subsequence of {M,} and assume that f(X N B*) C
M x R%*. For amap ¢ : X — M x R®, we set ¢g = Prpo,¢1 =
PR,#.62 = PR,6, " 6m.n = (PR, x..xR,)® a0d $k .. = (PR=)d,
where R = lim_,{0 xRty — 0 X Rg X Rk41 — - -} C R™; and we will
use similar notations for a map ¢ : X - M x RF x I3

The proof will be similar to that of Lemma 3.1 in [16]. We will only
outline it. Let {as|s = 0,1,2,---} be a sequence of open covers of
M x R® such that

(l) Qg = Q,

(ii) St(as, o) < =y, (2 2 1).

We will construct inductively a sequence of maps {g(") ln=0,1,2,---},
where g(®) : X — M x R®, such that

(1) 9| Xpo1 = gV | Xy

(2) ¢ and g(" 1) are St(azn, aon J -close;

(3 )g<">(X — Xn_1) N (My_; x R%-1) = §; and

(4) g™ |X,, is an embedding with ¢(™ (X,) C M,, x R%".

Then, g = limg(™ will be a desired approximation; therefore the
proof will be complete.

A. DEFINITION OF ¢(®). Let ¢(© = f.

B. DEFINITION OF g{1). First, we modify ¢(®) as follows to obtain a
map §V) : X — M x R® with the following properties:

(a) gV is ag-close to g(0);

(b) §M(X; — Xo) N M = @; and

() 3| Xo = ¢'9| Xo.

Let §; : R® — I° be a homeomorphism with 6;(0) = 0. De-
fine o1 = ida x 6; and h() = 6,¢(®). Since M is paracompact, by
imitating the proof of Lemma 3.1 in [16], we can construct a map
A" approximating h{") (rel. Xo) such that if we define h(!) to be

(ASV, A R Y1 X — M x I, then
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(@) A is o;(ag)-close to A1), where o,(a) is the open cover
{61(V):V € ag} of M x I*®;

() AV(X; — Xo) N M = 0; and

(©) AV |Xo = AV |X,.

Define §(!) = o7'A(1). Then, it is straightforward to verify that ()
satisfies (a), (b), and (c), since o1(z,0) = (z,0) for all z € M

Next, since §)(Xp) C M, we can assume that gg’l,),,(Xl/Xg) is a
compact subset of R% for some d; > 2dg + 4 with dg = 6 (we will
use the same notations to denote the “induced” maps defined from
the quotient spaces into R*°.) Now, since M; is compact, for each
z € (Jil,)..,dl (X1/Xo), there is an open neighborhood V, of z in R%
and an open cover W; , of M; such that the family {W x V,|W €
W1,2} < ag. Then, it follows from Lemma 1.3 that there is a 1-LCC
embedding gV : X;/Xo — R% that is {V,}-homotopic (rel.{Xo}) to
_(}(1) 4,1(X1/Xo). Consequently, §1)|X; is ap-homotopic (rel.Xp) to
(@V,70, g0, ,..) Xy since g, (X1) = {0} € RS-

Fmally, by use of a homotopy extension and the paracompactness of
X, we can show that §(1) is as-homotopic (rel.Xp) to a map g(!) that
we wanted. Moreover, observe that ¢(1)|X; = (g(()l),'g‘(l),géﬂ_l )Xy
is an embedding of X; into M; x R%' and ¢(® and ¢(!) are St(as, a2)-
close.

C. DEFINITION OF ¢(*). Similarly, we will construct g(¥) after a sat-
isfactory g(*=1) has been defined as follows. Recall that g(*=1)|X,_,
is an embedding whose image is contained in My_; x R%*-1. Let

0k : Rg, 41 — I$°_ 4, be a homeomorphism with 6x(0) = 0.

Define ox = id,  pe, , X 0k and R®) = ggk=1 . Again, we

modify h( ) +1 toO obtam h( ) _,+1 such that if we define A(¥) =
k k k

(hé’.)..,dk_l,hfik) 10 ht(ik)-1+2,)’ then:

(a’) h(¥) is oy (agk)-close to h(K) where ok (agr) = {ox(V) : V € agk};

(") A*) (Xg = Xg—1) N (M x R%*-1) = @; and

(C’) h(k) ‘Xk—l = h(k)|Xk_1.

Now, define §(*) = o3 *h(*). Since oy (z,0) = (z,0), for all z €
M x R%*-1_ it follows that

(a) §%) is ogx-close to g(k=1);

(b) §® (Xy, — Xk—1) N (M x Ré*- 1) = 0; and

() 691Xy = g+~ X s.

Then, as in step B, we can assume that the “induced” map g(") :
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X/Xo — R*® carries Xix/Xo into R%* for some dp > 2dp_; + 4.
Again, from Lemma 1.3, it follows that g§’°) .4, |(Xx/Xo) is homotopic
(rel. Xk_1/Xo) to a 1-LCC embedding g*) : X} /X, — R such that

(*) %) ((Xx/Xo)=(Xk—1/X0))NR%*-* = @ (Recall that dim(X}/Xo)
+dk—1 < k+dk_1 < 2dig_1 < di — 2 since dim(Xx/Xp) < k and since
k < di—1 by induction);

(**) §®)| Xy is agk-homotopic (rel.Xj—;) to the embedding (_(')((,k),
§(k)7§¢(1’:)+1,.,.) : Xx — My x R%.

Now, we can extend the homotopy in (**) to an agx-homotopy from
3¥) to a desired map g(¥) which satisfies all properties (1)-(4).

Finally, the function g = lim g(¥) will be a desired approximation. In
fact, g is well-defined by (1). Moreover, since each z € X belongs to
X}, for some k, it follows that g(P)(z) = ¢g(¥)(z) for all p > k by (1).
Therefore, by use of (2) and the construction of {as|s = 0,1,2,---},
we can prove by induction that g(¥) is ag(k—j)-close to g*=9) for each
7(0 < j < k). Hence, g(z) = ¢(¥)(z) is a-close to g°(z) = f(z). Also,
by use of (3) and (4), we can show that g is a closed embedding as in
Lemma 3.1 [16]. Finally, we can inductively define the sequence {dj}
subject to (iii) as required.

Let us introduce some notations used in the following lemma. For
a finite set A of positive integers, let R4 denote the product [[{Z; :
t=1,2,---}, where Z; =R ifi € Aand Z; = {0} if i € A. Ra is
a subspace of R®. If A and B are two disjoint finite sets of positive
integers, let R4 x Rp denote R4yp. Define R4 = R{1,2,..,d;)} Where
dy is a positive integer.

LEMMA 2.2. Let ¢ : X — R™ be a closed embedding such that (use
the notation in Lemma 2.1 and think of X,, as X,/ X, in Lemma 2.1):

(1) ¢(Xny1 — Xn) NRI = ;

(2) 8| X, : X — R"i4s a 1-LCC embedding;

3) 2dim X,, + 4 < dp—1, and dg > 6; and

(4) 2dp +4 < dny1(n 2 0).

Then, ¢ ts an R -deficient embedding.

PROOF. Set leO = Rdo = R{l,-~-,do} and 2Rd1_do = R{do+l,~'-,d1}-
For k > 1, define inductively,
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Ipde _1pdk—1
{ Rd = dR ) >;R<Eidk+1,--',2dk—dk—1}
2R k+1 k =2 R4 k=1 5 R{2dk—dk_1+1,”'1dk+1}

It follows that, for each £k =1,2,- -,
(A) Ro+1 = IRk x 2de+1"dk’
(B) il_, : R%-1 ¢ R%, and dim R% = dj,
(C)d2_, : RU%~d-1 ¢ R%+1=d and dim R¥W+1 7% = dp ) —dy,
(D) R® = lim_ R* ~ 2R*™ where 'R® = lim —! R% and
2R = lim? R%+1 %,

For convenience, we will identify R® with 1R x 2R, IR* =
lim_, 'R%* with 'R® x 0 C R®. Then, we have the commutative
diagram

‘X1 e — X2 e X3 ey .l

| K |

leo X 2Rd1-do Rdr o 2Rd2—d1 IRd2 « 2Rd3—d2
I I |

i1y 2 i1y .2 12
d igXig d 11 X143 d ia X135
R4 X2 R L, R 22

Let us consider the composition pp : X — R®, where p : R® —
1R®  R* is the projection. From the proof of Lemma 2.1 and the
condition (3), there is an embedding 1 : X — 'R approximating p¢
such that

(i) ¥| Xk : Xx —! R%*-1 is a 1-LCC embedding;

(i) ¥(Xg41 — Xg) NP R%-1 = @; and

(iii) there is a homotopy H : ¢ ~ % in R*® such that H (X xI) c R%
and H((Xx41 — Xx) x I) NR%* = 0.

To complete the proof, we consider two cases.

Case 1. ¢(X)N¢(X) = ¢. Again, by Lemma 2.1, we can assume ad-
ditionally that H|Xj x I is a 1-LCC embedding into R4 . We will con-
struct inductively a sequence of homeomorphisms h,, : R4 — Ré» (n=
1,2,3,---) such that h,¢|X, = 9¥|X, and h,41|R%* = h,. Then, the
homeomorphism h of 1R® x2 R*® defined by h(z) = hy(z) if z € R%"
will satisfy the relation h¢ = 1, and the proof of Case 1 will be com-
plete.
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First, from Addendum (2) to Theorem 1.1, it follows that there is an
isotopy hl of R** such that A} is an extension of H} = H;¢ (X))
and A} =id on R% — U, where U is a relatively compact neighborhood
of H(¢(X;) x I) = H(X; x I) in R%. Let us define h; = H}. Then
hi¢(z) = Hig(z) = H(¢p  ¢(z),1) = H(z,1) = ¢(z) if T € X;.

Second, to construct hy, we observe that, since H;¢™ ! and h} agree
on ¢(X;) C R%, they define a homotopy H? : ¢(X)UR* — R®(t € I)
such that H?| : (¢(X2) UR%) — R% fixes the complement of a com-
pact set. So, H2(¢(X2)xI) = H(X, xI) is 1-LCC in R%2. Again, from
Addendum (2) to Theorem 1.1, there is an isotopy h? of R% such that
(a) h? is an extension of H2|¢(X3); (b) consequently, h2¢(z) = (z) if
T € X2; (c) h? = id on the complement of a compact neighborhood of
H(X2 x I) in R%; and (d) h}|R% = hl. Define hy = h3.

Inductively, we can similarly define h,, after h,_; has been con-
structed as the last stage A7~! of an isotopy h?~! of R%"-1 which
satisfies the similar properties (a)-(d) above. Then the proof of Case 1
is complete.

Case 2. ¢(X)Np(X) # 0. From the dimension condition (3) and from
the 1-LCC properties (2) of ¢ and (i) of 9, it follows that ¢(X) U (Xk)
is 1-LCC in R% for each k by Lemma 1.2. Hence, if we follow the
proof of Lemma 2.1, we can define inductively 6, : Xx — R* such
that (o) if 0 is defined by 6(z) = 6(z) for z € X, then 6§ satis-
fies properties similar to (1) and (2) of ¢; (B) 6 is a-close to ¢, and
(7) 6(X) N [¢p(X) Uy(X)] = 0. By use of the convex structure of R*,
we can assume that 6 is a-homotopic to ¢, this general case will follow
from using Case 1 twice.

ADDENDUM TO LEMMA 2.2. By use of the relative approzximation
Lemma 1.3 and the relative version of Theorem 1.1, we can choose the
above homeomorphism h : 'R x 2R* —?2 R such that

(1) h(0) =0, and

(2) h¢(X) ct R*™.

THEOREM 2.3. Let (X, Xg) be a pair of closed subsets of R and let
M be an R -manifold. Given a map f : X — M such that f| Xy s an
R -deficient embedding and given an open cover o of M, there is an
R -deficient embedding g : X — M such that

(1) g Xo = f|Xo,

(2) g 13 a-close to f.
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PROOF. We will prove that the closed embedding ¢ constructed in
Lemma 2.1 is R®-deficient. We identify M with M x R* and assume
9(Xo) C M x 0. Observe that the map pgp~g induces an embedding
¢ =7 : X/Xo — R™ that satisfies Lemma 2.2 and ¢(Xp) = {0}.
Let h be a homeomorphism of R* from Addendum to Lemma 2.2
for ¢, and define A = idps x h. Then, h is a homeomorphism of
M x R® = M x! R® x2 R* such that hg(X) C M x! R*® x {0};
hence, g is an R*°-deficient embedding and the proof is complete.

LEMMA 2.4. Let (X,Xo) be a pair of closed subsets of I, F :
X — N = M x I® such that f|Xo is an I*°-deficient embedding
with f(Xo) € M x 0. Given an open cover o of N and W an open
neighborhood of f(X) in N, there is a closed map g such that

(1) g|Xo = f|Xo,

(2) g is a-close to f, and

(3) 9(X) cWw.

PROOF. The proof is the same as that of Lemma 3.1 in [16] with the
following modification. Recall that (I°°,0) ~ (R*,0).

(1). Being an open subset of the I°°-manifold M x 0,W N (M x 0)
is paracompact. Therefore, the proof of Lemma 2.7 in [16] shows that
there is a nbd-finite [7] open cover {V,|a € A} of W N (M x 0) and a
sequence of maps " : W N (M x 0) — (0,1),n = 1,2,---, such that
{(Va; e(z),€%(2), - )|a € A,z € V, } is a refinement of {wNW|w € a},
where (V,;€!(z),e%(z), - -) denotes (V, x [0,€1(z)) x [0,2(z)) x ---)N
(Vo X I®).

(2). We only need the property (ii) of py, on p. 297 in [16] to show
that g™ (X, — X;m—1) N (M x I"™~1 x 0) = @ since ,, is positive on
W N (M x I™ 1 x0) (refer to the proof of Case 2 of (i) on p. 295 in
(16].)

3. Unknotting theorem in R°°-manifolds.

LEMMA 3.1. Let X be a closed subset of an R™-manifold M and let
f:X — M be a_closed embedding. If f is homotopic to the inclusion
X C M, say by H, then, given an open neighborhood W of H(X x I) in
M x R®(H = jH where j : M — M x R is defined by j(z) = (x,0)),
there is a homeomorphism F of M x R™ such that

(i) F =id on the complement of W:
(i) F(z,0) = (f(),0) for all z € X; and
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(iil) ¢f H s limited by an open cover o of M X R, then F can be
chosen to be St*(a)-close to id.

PROOF. Case 1. X N f(X) = 0. By Lemma 2.4 and Theorem 2.3, we
can assume that H is an R*-deficient embedding into M x R*® and
it is St(a)-limited since H|X x {0,1} is an R*®-deficient embedding.
Thus, without loss of generality, we can assume H(X x I) C M x 0.
Let M = lim_, M{** as in Lemma A. Set Z, = H '(M, x 0). Then
Zy is a compact subset of X x I. Hence, X,, = px(Z,) is compact and
we can assume by Lemma B that H(X, x I) C Mp4; x 0. Let {d,}
be an increasing sequence of positive integers such that

(*) Mpy1 <My + dn, and

(**) 4(mn + d-n) +5 < mMpy1+ dn+1.

We will construct a tower of compact-manifold subsets {N, : n =

2,--+} of M x R® such that
(1) IntN,, is homeomorphic to an open subset of R2(mn+dn)+2,
(2) H(X, x I) is a 1-LCC subset of Int N,, and H(X x I) N N,
H(X, xI);

(3) Np—1 is a 1-LCC subset of IntN,,; and

(4) U{Nn n=12,---} =M xR*®.

Let B¢ denote ]_L =k, k];. To fix ideas let n = 1 and let ¥ =
H(X, XI)U(M1 x B?1). Then Y is a 1-LCC subset of Int(M; x B3?) by
Lemma 1.2. Since Int(Mg X Bg2) is an absolute neighborhood retract,
there is a compact PL-manifold neighborhood U of a 1-LCC copy of Y
in R2(m1+41)+2(3 1, 49] and a map g : U — Int(M; x B%2) such that
9(z) = z for each z € Y. Moreover, since H(X x I) NInt(M, x B$2) c
M3 x 0 is 1-LCC in Int(M3 x de) and since

mo+2(my+d;)+3<3(my+di)+3 by (%)
<2(2(my+di)+2)+1
<mg+dy by (%),

We can assume by Lemma 1.3 that ¢ is a 1-LCC embedding such that
glU)NH((X — X;) x I) = 0. Define N; = g(U). Then, N; satisfies
the properties (1)-(4).
Similarly, to define Ny, we use Y = H(X, x I) U (M, x B%») which
contains Np—1. Then, we can verify that the sequence {N, : n =
- -} enjoys the properties (1)-(4). Infact, Np_; is a 1-LCC subset
of IntN since Np_; CY and dimY < dim N,, — 3.
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For each integer n > 1, let o, denote the open cover {VNN,|V € o}
of N,. Now, since Int/N; is homeomorphic to an open subset of
R2(m1+d1)+2 it follows from Addendum (3) to Theorem 1.1 that there
is a St(ay)-isotopy h} : Ny — Nj which is the identity on N; — W and
extends H;|X; for each t € I. Then, by (2), (3) and Lemma 1.2, it
follows that Ny U H(X2 x I) is a 1-LCC subset of Int/N2. On the other
hand, the map

R U (H|Xy x I): (NyUX3) x I — N
is a well defined St(azg)-homotopy, and

2dim(N; U X2) + 4 = 2max{dim N;,dim X} + 4
< 2max{2(m; +dy) +2,me} +4
<4(mi+di)+8 by ()
<mg+da+3 by (xx)
<2(mg+d2)+2 Dby (1)
= dimNz.

Hence, from Addendum (3) to Theorem 1.1, there is a St(az)-isotopy
h? : N — N, which is the identity on N — W and which extends
H|(X5 x I) such that h?|N; = h}. And so, we can obtain inductively
a sequence of St(ay,)-isotopies A} : N, — N, such that

(1) hZ|(Nn — W) = id;

(2) A®|(Xp x I) = H|(X, x I); and

(3) | Np—y = A7~ 1.

Finally, we define F(z) = h%(z) if z € N,. Then, F is a well-defined
homeomorphism and it has all three desired properties. (F is St(a)-
close to the identity of M x R*.)

Case 2. (General case). We think of R as I x J°°. It follows
from Theorem 2.3 and local convexity of M X I* as an open subset
of R® [12] that there is a closed embedding g : X — M x I*® such
that (i) g(X)N (M x 0) = 0@ and (ii) g is a-homotopic to the inclusion;
hence, (iii) ¢ is St(a)-homotopic to f. Then, observing the definition of
F in Case 1, we can construct homeomorphisms F; and F, of M x R®
fixing (M x R*°) — W such that

(*) Fy is St(a)-close to the identity and Fi(z,0) = (g(z),0) for all
zeX,

(**) Fy is St2(o)-close to the identity and F;(g(z),0) = (f(z),0) for
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all z € X.
Define F = FoF,. T then F is a homeomorphism of M x R*®
satisfying (i), (ii) and (iii) as we desired; therefore, the lemma follows

Let Xy be a closed subset of X and assume that H is stationary on
Xo. By Lemma 2.1, we can assume that H(X — Xg) x I)N (X x0) = 0.
If we choose the isotopies h!, A2, --- in the proof of Case 1 with further
restriction by use of Addendum (3) to Theorem 1.1 corresponding
to open sets Wy N N1,Wp N Ng,---, where Wy is a prechosen open
neighborhood of H((X — Xp) x I) in (M x R*®) — (Xo x 0), then we
obtain the following addendum.

ADDENDUM TO LEMMA 3.1. If Xo is a closed subset of X and if the
homotopy H 1s stationary on Xg, then the homeomorphism F can be
additionally chosen to be the identity on (M x R®) —W,, especially on
Xo.

LEMMA 3.2. If X is an R®-deficient subset of an R™-manifold
M, then there is a homeomorphism ¢ : M — M x R*™ such that
¢(z) = (,0) if z € X.

PROOF. Let h: M — M xR® = M x I*® x R be a homeomorphism
such that h(z) C M x0. Let A : I*® — JToo x R® be a homeomorphism
with A(0) = (0,0). Now, define ¢ to be (A7 x idg=) o (idp x A X
idgpe) o h. Then, ¢(z) = (z,0) if z € X.

THEOREM 3.3. (UNKNOTTING THEOREM). Let X be an R™ -deficient
subset of an R®-manifold M, and let f : X — M be an R -deficient
embedding. If f is homotopic to the inclusion X C M, say by H, then
there is a homeomorphism F of M such that F(z) = f(z) for allz € X.

PROOF. Let ¢,9 : M — M X R® be homeomorphisms from Lemma

3.2 such that
(i) ¢(z) = (z,0) ifz e X

(ii) ¥(y) = (y,0) if y € f(X).

Let j : M — M x R*™ be a map defined by j(z) = (z,0). Then
H: X xI — M xR™ defined by Hy(z) = jH(z,t) = (H(z,1),0)
is a homotopy from ji to jf. Moreover, if z € Xy, then H (:li t) =
jH(z,t) = (z,0). Therefore, from Lemma 3.1, there is a homeomor-
phism F of M x R® such that (1) F(z,0) = (z,0) if z € X, and (2)
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F(z,0) = (Fji)(z) = jf(z) = (f(z),0) for each z € X. Now, define
F =47 1F¢. Then, for each z € X, F(z) = ¢ ' F¢(z) = v 1 F(z,0) =
¥ 1(f(z),0) = f(z). So, F is a homeomorphism that we desired and

the proof is complete.

REMARK. The unknotting theorem for Z-embeddings in R°°-manifolds
does not hold true (see [16]).

4. Collar theorem. We begin the section with a lemma that is
essential in the proof of the collar theorem for R°°-deficient embeddings.
Recall that J =1 = [0, 1].

LEMMA 4.1. There is a homeomorphism h : (I*° x [0,1],I*® x 0) —
(I%® x J°°, I x 0) such that h(z,0) = (z,0) for all x € I®°.

PROOF. Let us denote I™ = I x- - -x I, x{0} and J™ = Jy X+ - - X Jp X
{0}. We will construct a sequence of embeddings {hx|k = 0,1,2,---}
with the following properties:

(1) hg : I™ x [0,1] — [™k+1 x JME+1]

(2) hgg1|I™ x [0,1] = hg,

(3) hk41(I™+1 x [0,1]) D I™ x J™*k for k > 0, and

(4) hg(z,0) = (z,0) for all z € I™*.

Define h by h(z) = hi(z) if £ € I™* x [0,1]. Then it will be a well-
defined homeomorphism that we desired.

1. Construction of ho(ng = 1,mg = 0,n;y = 6,m; = 9). Let
ho : I' x[0,1]5 > I x J! < I8 x J9 be the composition of the trivial
PL-homeomorphism and the inclusion.

2. Construction of hi(ny = 6,m; = 9,ne = 32,mgy = 35). Let
Ay = (I® x {0}) U (I* x J!) be a subpolyhedron of I% x J°, and let
g1 : A1 — O(I% x [0,1]) be the extension of hg'|I! x J' defined by
g1(z,0) = (z,0) for each z € I®. 1t is clear that g; is a PL-embedding.

Let N; be a regular neighborhood g;(A;) in (I8 x [0,1]). Since A;
is collapsible, N; is PL-homeomorphic to the PL 6-ball by Corollary
3.27 [19]. Hence, there is a PL-homeomorphism

01 :IGX[O,I]—-)NI X [0,1]

that carries z to (z,0) for £ € N;. Similarly, if N{ is a regular
neighborhood of A; in 8(I® x J®), there is a PL-homeomorphism

0y : 18 x J® — N x [0,1]
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that carries z to (z,0), for z € Ni. Now, from the embedding theorem
5.4 in [19], we can extend g7! to a PL-embedding h; : Ny — Nj. Then,
define h; to be the composition 765 (h; x id)6;

hy 18 x [0,1] =% Ny x [0,1] —»A>1d N7 x [0,1]

627 16« J9 7 32 5 J35.
It is easy to show that h; satisfies the properties (1)-(4).

3. Construction of hy. (nzg = 69,mg = 72). Let A denote
(I3 x 0) U (I® x J9) C 8(I3? x J35) C I*® x J*®. Observe that A4, is
collapsible and that h;(z,0) = (z,0) for all z € I since g; (z,0) = (z,0)
for all z € I®; hence, (I°2 x 0) N (Im(h;)) = I8 x 0 and we can define
a PL-embedding

g2 : B = (I’ x 0) | Jh:(I® x [0,1]) — (I x [0,1])
by

N if z€ 13?2 x0
G2(2) = {h;l(z) if z € hy (I8 x [0,1]).

Then, let g, : A2 — 9(I3? x [0,1]) be an extension of . Since
I3? x 0 is a codimension-zero PL-ball in 8(I3? x [0,1]), first we can
assume that g,(A2 — (I32 x 0)) does not contain the center (c,0) of
I32 x 0. Then, by use of a radial structure of 32 — {c¢} ~ 0I%? x [0, 1),
we can push g, A2 — (132 x 0)) off IntI32 x 0. Finally, by use of a collar
of 3132 x 0 in 9(I3? x [0,1]) — (Int I32 x 0) we push g, (A4 — (132 x 0))
off 8132 x 0. Therefore, without loss of generality, we can assume that
721 (132 x 0) = I®% x 0. Now, since 2dim(A4; — (Int I32 x 0)) + 2 =
32 = dim (132 x [0,1]), it follows from Theorem 5.4 [19] that there is
a PL-embedding g2 : A3 — 8(I%2 x [0, 1]) such that go(z) = g,(z) for
z € B. Consequently, g2 is an extension of go. Finally, similar to the
construction of h;, we can define a PL-embedding

hy : I3% x [0,1] — 132 x J35 <1 [69 x J72
which is an extension of g;1. Observe that hs is an extension of

(k1) = hy, that hy(I™2 x [0,1]) D I8 x J® = I x J™, and that
ha(z,0) = (z,0) if z € I32. So, hs satisfies all inductive hypotheses.
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Inductively, we can construct a desired sequence of embeddings {A},
with ng = 2(ng—1 + mk—1) + 2 and my = ny + 3. Finally, let us define
g by 9(y) = gk+1(y); if y € I x J™k then we can show that g is the
inverse of h. Therefore, the proof is complete.

ADDENDUM TO LEMMA 4.1. There is a homeomorphism h : (I x
[0,1),1%° x 0) — (I® x J*®,I® x 0) such that h(z,0) = (z,0) for all
z €I,

PROOF. Along the line of the proof of Lemma 4.1, we first start
with hg : I' X [0,4] — I8 x J9, next g, : A; — 9(I® x [0, 2]) and
hy : 18 x [0,3] — I3% x J35, then g : Ay — 9(I3% x [0, %]) and
hy : 132 x [0,%] — I% x J™, and so on. We will obtain a sequence
of embeddings {hg|k =0,1,2,---} with similar properties (1)-(4): and
the result follows.

THEOREM 4.2. (COLLAR THEOREM). Let M C N be a pair of R®-
manifolds. If M is an R™ -deficient subset of N, then M 1is collared in
N.

PROOF. Similar to the proof of Theorem 2.3 in [16], it suffices to
show this for the case N = R*® = [ x J%°. By the triangulation
theorem [12], there is a locally finite simplicial complex K such that
M =~ K x R*®.

We first prove that cone (K) x R™® ~ R®. Let K = |J{° K,, where
K, is a finite complex contained in the interior of K,+;. Then, cone
(K) = lim_, cone(K,) endowed with the direct limit topology. Let us
consider the direct sequence

(*) cone (K;) x R — cone (K3) x R? — - -
From Theorem 1.9 [7, p. 425], the natural bijection

lim(cone (K,) X R™®) — cone (K) x R®

is continuous; furthermore, by local compactness, it is straightforward
to verify that it is an open map; hence a homeomorphism. Moreover,
lim_, (cone (K,)xR"™) is a contractible R°-manifold since the sequence
(*) satisfies the Proposition in [14]. Hence, cone(K) x R* is homeo-
morphic to R*.
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Next, we assume that M is the subset K x 0 x I of cone(K) x J* x
I°° ~ R®. Then we observe that (i) M is R®-deficient in R*°, and (ii)
M is collared in R*®. To see (ii), from Lemma 4.1, there is a homeo-
morphism  : [0, 1] xI* — [0, 3] x J*° x I*® such that k(0, z) = (0,0, )
for each z € I*°. Therefore, the composition

f: K x|[0, %) x 1%° =1 gy o, %] x [ idxh
K x [0, %] X J® x I® —)idx“Xid K % [0, %) x J® x [®
— cone (K) X J® x [*® ~R*,

where A : [0,1) x I® — [0,3 x I is a homeomorphism such that
A(0,0) = (0,0) and p = A" :[0,3] X J® — [0, 3) x J where J*™ is
a copy of I, defines a collar of K x 0 x 0 X I* in R*.

Finally, the existence of a collar on an arbitrary R>°-deficient subset
M of R* will follow from the above special case and the unknotting

theorem 3.3 for R>°-deficient embeddings in R™.

COROLLARY 4.3. Let f; : M;_; — M; be an R*-deficient embedding
of R®-manifolds, for each i = 1,2,---n. Then the composition c, o
-wvocgoey : M(f1,f2, -+, fn) = My of collapsing maps cy,¢a,- -, ¢n
ts a near homeomorphism.

LEMMA 4.4. Let (N, M) be a pair of R -manifolds. If M is collared
in N, then M x I is R™®-deficient in N x I.

PROOF. Similar to the proof of Lemma 2.6 in [16], there is a homeo-
morphism ¢ : N X I — N X I such that (M x I) C N x 0. So,Lemma
4.4 follows because we can show that N x 0 is R*®-deficient in N x I
by use of Lemma 4.1 and the stability theorem for R>°-manifolds [12].

Since R*™°-manifolds are paracompact, the proofs of Lemma 3.4 and
3.5 in [16] are also applicable for R°°-manifolds by use of the approxi-
mation Theorem 2.3 above. We can state similar lemmas as follows.

LEMMA 4.5. Let X be an R™-deficient subset of an R* -manifold M,
a and open cover of M. Then there is an open cover 3 of M such that

if a closed map f: X — M 1s B-close to the inclusion, then there is an
R -deficient embedding g : X — M such that
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(1) g(X) N(X U f(X)) = ¢,
(2) g @s a-close to both f and the inclusion.

LEMMA 4.6. Let X be an R*-deficient subset of an R°°-manifold
M,f: X — M a map and an open cover o of M. Then there is
an a-close to f and R*®°-deficient embedding g : X — M such that
gX)NnX =¢.

Then, by use of Theorem 4.2, Lemmas 4.4, 4.5 and 4.6 and Theorem
2.3, we can prove similarly the following lemma, the R®-manifold
version of Lemma 3.6 in [16].

LEMMA 4.7. Suppose that M is an R -deficient submanifold of an
R -manifold N, let o be an open cover N, and let f : M — N s
an R -deficient embedding. If f is a-homotopic to the inclusion, then
there is an tsotopy Hy : N X I — N X I such that

(1) Ho = idnx1,

(2) H1|M x I = f xidy, and

(3) H 1is limited by St®(a x ) for any prechosen open cover v of I.

THEOREM 4.8. Given an open cover o of an R™-manifold N and
f,9: X — N two a-homotopic, R -deficient embeddings, then for any
prechosen open cover ~ of I there is a St®(a x )-isotopy H; : N x I —
N x I such that Hy o (f X idf) = g X id;.

PROOF. Similar to the proof of Theorem 3.7 in [16], we may assume
that X is an R°°-manifold. Then the isotopy that we desired will follow
from Lemma 4.7.

5. Main theorem and consequences. Now, we are ready to prove
the a-approximation theorem.

THEOREM 5.1. Let N be an R -manifold and o an open cover of N.
There is an open cover 8 of N such that if M is an R*™-manifold and
f: M — N is a B-equivalence, then f is o-close to & homeomorphism.

PROOF. It is similar to the proof of Thm. 4.1 in [16]. The ingredients
of the proof consist of

(1) the unknotting theorem for R°°-deficient embeddings (weak ver-
sion, Theorem 4.8),
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(2) the relative R®°-deficient embedding approximation theorem
(Theorem 2.3),

(3) the collar theorem (Theorem 4.2), and

(4) the projection map py : N xI — N being a near homeomorphism,
which can be derived from the stability theorem for R*°-manifolds [12]

COROLLARY 5.2. Every fine homotopy equivalence between R™-
manifolds 1s a near homeomorphism.

THEOREM 5.3. Every R* -deficient subset X of an R*-manifold M
1s strongly negligible; i.e., the inclusion map M — X C M 1is a near
homeomorphism.

REMARK. Recently, Sakai has distributed much shorter proofs for
Corollary 5.2 and 5.3, Theorem 5.3; e.g., Theorem 2.3 and 2.5 in [21].

REFERENCES

1. S. Armentrout, Concerning cellular decompositions of 8-manifolds with boundary,
Trans. Amer. Math. Soc. 137 (1969), 231-236.

2. , Cellular decompositions of 8-manifolds that yield $-manifolds, Memoir 107,
Amer. Math. Soc., 1971.

3. J.L. Bryant, On embeddings of compacta in Euclidean spaces, Proc. Amer. Math.
Soc. 23 (1969), 46-51.

4. , On embeddings of 1-dir jonal compacta in E5, Duke Math. J. 38 (1971),
265-270.

5. T.A. Chapman, Lectures on Hubert cube manifolds, C.B.M.S. Regional Conference
Series in Math., No. 28, 1976. )

6. and S. Ferry, Approzimating homotopy equivalences by homeomorphisms,
Amer. J. Math. 101 (1979), 583-607.

7. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1973.

8. S. Ferry, The homeomorphism group of a compact Hilbert cube manifold, Ann. of
Math. 106 (1977), 101-109.

9. R. Geoghegan, Open problems in infinite dimensional topology, edited in 1979.

10. V.L. Hansen, Some theorems on direct limit expanding sequences of manifolds, Math.
Scand. (1971), 5-36.

11. R.E. Heisey, Manifolds modelled on R*° or bounded weak* -topologies, Trans. Amer.
Math. Soc. 206 (1975), 295-312.

12. , Manifolds modelled on the direct imit of lines, Pac. J. Math. 102 (1982),
47-54.
13. , Contracting spaces of maps on the countable limit of a space, Trans. Amer.

Math. Soc. 193 (1974), 389-411.
14. and H. Torunczyk, On the topology of direct imits of ANR’s, Pac. J.
Math. 93 (1981), 307-312.




AN o APPROXIMATION THEOREM 419

15. W. Hurewicz and H. Wallman, Dimension Theorey, Princeton University Press,
1948.

16. V.T. Liem, An a-approzimation for Q°° -manifolds, General Topology 12 (1981),
289-304.

17. , An unknotting theorem in Q°° -manifolds, Proc. Amer. Math. Soc. 82
(1981), 125-132.

18. M.H.A. Newman, Local connection in locally compact spaces, Proc. Amer. Math.
Soc. 1 (1950), 44-53.

19. C.P. Rourke and B.J. Sanderson, Introduction to Piecewise-Linear Topology,
Springer-Verlag, 1972.

20. L.C. Siebenmann, Approzimating cellular maps by homeomorphisms, Topology 11
(1972), 271-294.

21. K. Sakai, On R -manifolds and Q° -manifolds, preprint.

UNIVERSITY OF ALABAMA, TUSCALOOSA, AL 35487







