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METRIC TRANSFORMATIONS OF THE REAL LINE 

DARYL TINGLEY 

1. A metric transformation between two metric (or semi-metric) spaces 
Mi and M2 is defined to be a function / such that for some function 
p: R+ -> R+, called the scale function associated with / , p(di(x, y)) = 
dzifi*)) f(y))> where x, yeM. The set f(M{) is said to be a metric 
transform of Mx. In this paper all metric transforms from the real line in 
Euclidean w-space are characterized. 

The notion of a metric transformation was introduced by Wilson [10] 
in 1935. In 1938 von-Neumann and Schoenberg [8] characterized all 
continuous metric transformations of the real line, R, into Hilbert space. 
This powerful result shows that the scale functions p corresponding to 
such transformations are those, and only those, functions which satisfy 
the condition 

where a is non-decreasing and j ^ u~2da(u) < oo. They also showed that, 
in order that/(R) be embeddable in En (finite dimensional Hilbert space), 
it is necessary and sufficient that a increase at only a finite number of 
points. In this case 

m 
p2(t) = 2]/*2.sjn2ifc.f + C2f2, 

1 

and in a suitable coordinate system, 

(1) f(t) = {Ai cos kit, Ai sin kit, . . . , Am cos kmt, Am sin kmt, ct) 

If f(R) is embeddable in En, but not in En~x, then, for n odd, 2m = n — 1 
and c 7* 0, while 2m = n and c = 0 for n even. As a helix is typical, 
von-Neumann and Schoenberg refer to continuous metric transforms of 
R as screw curves. 

Metric transformations, including the von-Neumann and Schoenberg 
result, have appeared in the literature of late in connection with a method 
of data analysis known as Multidimensional Scaling. (See [1], [3], [6] 
and [7]). Here one takes a semi-metric space Mi and some other metric 
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or semi-metric space M2, such as En, and attempts to construct a metric 
transformation of Mi into M2 with the scale function p being strictly 
monotone. In this case Mx is said to be order embeddable into M2 and 
/ i s called an order transformation. Once this has been accomplished one 
might ask if the result, in some sense, is unique. 

Beals, Krantz and Tversky [1] have given necessary and sufficient condi­
tions for a semimetric space Mi to be order embeddable into a convex 
metric space. They show the embedding is unique up to a similarity. 
Kelly is credited in [6] with the classification of all those semimetric spaces 
of n + 2 points which are order embeddable into En. Erdös and Kelly 
[3] have shown that, for m sufficiently large, there are semimetric spaces 
of m points not order embeddable into En. Lew [7] uses (1) to show that 
/^° and /£ are not order embeddable in En, for any n, and von-Neuman 
and Schoenberg [8] use (1) to show that any continuous metric transfor­
mation of En into Em is either a similarity or maps Em to a single point 
of En. The characterization (1) would seem to be fundamental in the study 
of metric and order transformations, particularly for uniqueness pro­
perties. 

In this paper we consider all metric transforms of R into En, including 
those which are discontinuous. To illustrate our result we present the fol­
lowing three examples, the first of which is due to Vogt [9]. 

EXAMPLE 1. Let / : R -• R be a group homomorphism. Then d(f(x), 
Ay)) = l/(*) -AM = 1/(1*-71)1 = p(rf(x,^)), showing that / i s a metric 
transformation. 

More generally, let M be any normed linear space, and let f:R-+M 
be a group homomorphism. Then ||/(x) — Ay)\\ — 11/(1* — Jl)ll> again 
showing t h a t / i s a metric transformation. 

REMARK. A group homomorphism f:R-+M (M a vector space) is 
simply a function satisfying f(a + b) = f(a) +/(&). G- Hamel [4] showed 
that one method of constructing such functions is to consider R and 
M as vector spaces over the rationals. If A ç R is a basis for R, as a 
vector space over the rationals, and / : A -> M is arbitrarily defined, then 
/ c a n be extended by linearity to R. The resulting function is clearly a group 
homomorphism, and hence a metric transformation. Of interest is that if 
B c M is a basis for M, as a vector space over the rationals, and if the 
cardinality of A and B are the same (the cardinality of the continuum) 
then there are functions from A onto B and hence metric transformations 
from R onto M. In particular there are metric transformations of R 
onto any separable normed linear space. 

Halperin [4] used the above type of construction to show that there 
are discontinuous functions/: R -+ R which satisfy the intermediate value 
theorem. In fact he produced a group homomorphism / : R -> R such 
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that f((a9 b)) = R for a < b. It follows that there are metric transfor­
mations of R onto any separable normed linear space M such that f((a, b)) 
= M for a < b. 

EXAMPLE 2. Let C be the unit circle in E2, and let 6 : R -> R/27Ü be any 
group homomorphism. Then the function t -* (cos 0(t), sin d(t)) is a 
metric transformation of R to C. The scale function p is given by p(d) = 
2 sin(d(d)l2). 

EXAMPLE 3. Let /•: R -* Kf-, / = 1, . . . , « be a metric transformation 
from R to a normed linear space V^ let V = V\ © F2 ® • • • ® Vn, with 
norm given by ||(vb v2, . . . , vn)\\

2 = bill2 + ||v2|P + . . . \\vH\\*9 and let 
f = (/ i , /2 , . . . , /„) . Then/ : R -> Kis a metric transformation with scale 
function p, where |02 = L ;0?. Note that Example's 1 and 2 may be com­
bined in this way. 

In Theorem 1 we classify all metric transformations from R into En, 
whether continuous or not. In this respect, then, the result is stronger 
than the corresponding result of von-Neumann and Schoenberg [8] which 
assumes continuity; however, (general) Hilbert space has been replaced 
by E». 

2. Definitions. A set H is said to be an w-flat of En if it is a translate of 
an w-dimensional subspace of En. A set S is said to span En it if lies in 
no (n - l)-flat. 

A (rigid) motion T of a metric space M is defined to be an isometry 
from M onto M. For M = En, it is a standard theorem of linear algebra 
that such a function can be written as T(x) = U(x) + T(0) where U is an 
orthogonal transformation (that is, a linear norm preserving transfor­
mation of En). A set of motions {Ts\s e R} of a metric space M satisfying 
Tso Tr = Ts+r is called a one-parameter subgroup of motions of M. 

It follows immediately that for any one-parameter subgroup of motions 
{Ts\s e R} and any s, r e R we have Ts ° Tr = Tr o Ts, (Ts)

n = Tn.s and 
(Ts+ry = Tn.s o Tnr. 

LEMMA 1. If B £ En spans En
9 and T : B -+ En is an isometry, then there 

is a unique motion T: En -» En such that T\B = T. 

PROOF. See [2, §38]. 

PROPOSITION 1. Let f: R -> En be a metric transformation with scale 
function p, and assume that f(R) spans En. Then there is a unique one-
parameter subgroup of motions {Ts\s e R} such thatf(s) = Ts(f(0)). 

PROOF. For each s e R define f , : /(R) -> E« by Ts(f(t)) = f(t + s). As 
/ i s a metric transformation it follows that ||fs(/('i)) - ^(/(^))ll = 
WAh + s) - f(t2 + s)\\ = p(\h - r2|). By hypothesis,/(R) spans E», hence 
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Lemma 1 shows Ts can be uniquely extended to a motion Ts of En. Be­
cause of this uniquencess, and because Ts o Tr(f(t)) = fit + s + r) = 
Ts+r{f(0) it follows that TsoTr = Ts+r. Thus { 7 > e R } forms a one-
parameter subgroup of motions of £w, such that/fa) = Ts(/(0)). 

If {Rs\s e R} is any other one-parameter subgroup of motions such that 
M = Rs(f(0)l then 

Rs(f(0) = RsRtUm = Rs+tf(0)) =f(s + 0 = riefle») = rs(/(0). 
As/(R) spans En, Lemma 1 shows Rs = 7V 

The proof of the following result is straightforward. However since 
it is crucial to our argument, we include the details. 

PROPOSITION 2. If {Ts\s e R} is a one-parameter subgroup of motions of 
En, then Ts = Us 4- r5(0) where Us is an orthogonal transformation of En, 
{Us\seR} form a one parameter subgroup of motions of En, and for any 
s, r 6 R, 

(2) ( / - C/r)r5(0) = ( 7 - Us)Tr(0). 

PROOF. As mentioned earlier, Ts can be written as Ts(x) = Us(x) + 
r5(0), where Us is an orthogonal transformation. 

As Tr o Ts = Ts+r9 it follows that (Us+r - UsUr)x = £/5(7V(0)) + 
r/O) — Ts+r(Q) = constant. As this is true for all x, the constant is 0, 
and hence UsUr = Us+r and Ts+r(0) = ^ , ( ^ 0 ) ) + Ts(0). 

Similarly tfrC/s = t/s+r and Ts+r(0) = W 5 ( 0 ) ) + r r(0). Thus Us(Tr(0)) 
-I- Ts(0) = Ur(Ts(0)) + 2V(0) or (/ - Ur)Ts(0) = (I - tf5)rr(0), where 
/ is the identity transformation. 

PROPOSITION 3. If {Us\s e R} is a one parameter subgroup of orthogonal 
transformations of En

9 then En can be written as En = Vi © V2 © • • • © 
Kw © PF, where Vj are two dimensional subspaces of En

9 Vj and W are 
invariant under US9 for all s and j9 Us \ W = Iw for all s and Us \ Vj has in 
any positively oriented orthonomal basis the matrix form 

M = /cos ej(s) - sin Oj(s)\ 
sJ \ sin dj(s) cos dj(s) j . 

For each /, there is an s9 call it Sj9 such that Us | Vj ^ /, and the functions 
dj'. R-> R/2^r are group homomorphisms. 

PROOF. The bulk of the proof consists of applying standard techniques of 
linear algebra to the transformations {Us\s G R}, so we shall omit it. 
That Oj(s + r) = Oj(s) + 0/0) (modulo 2x) follows from the fact that 
MsjMrj = M{s+r)j. 

PROPOSITION 4. Let {Ts\seVL} and {Us\szYL} be as in Proposition 2, 
and Vl9 ...,Vm and Was in Proposition 3. For each s, let Ts(0) = Tsl(0) + 
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. . . + Tsm(0) + TJP), where TSJ(0) e Vh Tsw(0) e W. Then there is a 
v e Vx 0 • • • e Vm such that for all s, Ts(x) = Us(x - v) 4- v + Tsw(0). 

PROOF. Let Usj = Us\ Vj. It follows from Proposition 3 that Us\ W = /. 
Define TSJ{x) and Tsw(x) by 

T,Ax) = U5J(x) + r5/(0) and Tsw(x) = x + 7^(0). 

If x = xx + • • • + xw + xw, Xj e Vj and xw e ^ it follows that 

r,(*) = 2 r,Xxy) + TSW(XW). 

= S r,x*y) + xw + Tjp). 
By Proposition 3, for each y, there is an s = sj with USjj ^ 7. Thus 

(/ - USj})-
1 exists and we define vy = (/ - U.^T^/ß). It'follows that 

r „ / x / ) ' = # , , / * , - vy) + vy. 
Using equation (2) and the fact that USj and t/s commute for all s, 

it can now be shown that Tsj(xj) = UsJ(xj — vy) + vy for all .y, y. Letting 
v = Vi + • • • + vm, it follows that Ts(x) = £/s(x - v) + v + Tsw(0). 

We are now prepared for the main Theorem of this paper. 

THEOREM 1. Let f: R -> En be a metric transformation such that {f(t): 
r e R } span En. Then there are complementary subspaces V and W, with 
orthogonal projections Pv: En -> V and Pw: En -> W respectively, and a 
vector ueEn such that, iff{t) =f(t) -u,fv = Pv of andfw = Pw ° / , then 

fv(t) = (At cos dx(t), At sin dt(t), . . . , Am cos 0m(/), 4 m sin 0m(»), 

wAere /4y è 0 are constants, Oj'- R -• R/2# ßre grow/? homomorphisms, and 
fw(t) is a group homomorphism from R into W. 

Conversely, iff: R -• En and there are complemetary subspaces V and W 
ofEn such that 

Pv of(t) = (A^osOiit), A^inOiit), . . . , Amcosdm(t), Amsin0m(t))9 

where Oji R -> R/2^ are group homomorphisms and fw = Pw°f is a group 
homomorphism form R into W, then f is a metric transformation. 

PROOF OF CONVERSE. Let tx and t2 be in R. Then 

\\f(h) -MW = t^Aj s i n 2 ( M l ) z i ^ + ììfw(h) _ fM\\2 

= g 4 4 sin2(± M ' i - f r l ) ) + || ±fw(\h - /2|)||2 

= g4A*jSin^eA\t2ü)+ \\fw(\h - *2I)II
2. 
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This shows that / is a metric transformation with scale function p(d) 
satisfying 

p2(d)=Z4Ajsm2l4ß- + \\g(dW. 
y=i 2 

PROOF OF THEOREM 1. Construct a one-parameter subgroup of motions 
{ r j s e R } and {£/5 |seR} as in Proposition 1, and let v, Vl9 . . . , Vm9 

W9 Tsj9 TSW9 and USJ9 be as in Proposition 4. Let V = Vx © • • • © Vm9 

fJO) = Pw(/(0))and w = v + A,(0). Consider the translation/(R) of/(R) 
given by f(s) = f(s) - u and let g(s) = Tsw(0). Note that / is a metric 
transformation, and g(s) e W. Then 

/ ( * ) = r s ( / ( 0 ) ) - V - / J 0 ) 

= £/s(/(0) - v) + v + 7 ^ 0 ) - v - fjf)) 

= £U/(0)) + g(s). 

It now follows from Proposition 1 that if Ts(x) = Us(x) + g(s), then 
{f (s) 15 e R} is the unique one-parameter subgroup of motions such that 
A") = Ts(f(0)). 

Choose a positively oriented orthonormal basis in Jj, j = 1, . . . , m 
such that the projection of/(0) into Vj has co-ordinates (Aj, 0). Proposition 
2 now shows that the matrix of Usj in this basis is 

cos Qj(s) — sin 6j(s) \ 

Sin Oj(s) COS ôy(5") / 

for some d7-(s)9 such that ôy: R -> R/2^ is a group homomorphism. Thus, 
fv(0 = (i4iCos0i(O, i4isindi(0, - • -, >4mcosÖ(05 ^4wsinöm(0) and fw(t) 
= g(0- Using the fact that {Ts\s G R} form a one parameter subgroup of 
motions such that fs(x) = x + g(^), for x e W9 it follows immediately 
that g(.s) + g{r) = g(^ + r), and hence that g: R -> ^ is a group homo­
morphism. 

REMARKS. The assumption in Theorem 1 that {f(t)\teR} spans2sw can 
easily be eliminated. For, otherwise, we need only consider the smallest 
flat in En containing{f(t)\t e R} and perform the above analysis in that 
flat. 

The von-Neumann-Schoenberg result in En
9 where f(t) is continuous, 

follows easily from this. For, i f / i s continuous, then dj9j= 1, . . . , m and 
g must be continuous, in which case it is not difficult to conclude that 
Oj(s) = ks (modulo In) and g(s) = su9 u a fixed vector in W. This then 
gives the characterization of a metric transformation of R into En given 
in the von-Neumann-Schoenberg paper. 

3. As mentioned earlier, this problem has arisen in connection with 
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Multidimensional Scaling. Specifically, if / : Mx -> En is a metric trans­
formation, is/(Afi) unique in some sense? For this type of question, a copy 
of R may not be available in M l9 hence Theorem 1 is not applicable. 
However, often Mi contains an interval, that is a set isometric to an 
interval of R. Thus it is natural to ask if Theorem 1 characterizes all metric 
transforms of intervals. Theorem 2 shows that indeed it does. 

LEMMA 2. Let Em be an m-flat ofEn. Let T: En -» En be an isometry which 
maps a spanning set of Em into Em. Then T{Em) = Em. 

PROOF. See [2, §40]. 

PROPOSITION 5. Let {Ts\ \s\ < 5} be a set of motions of En satisfying 
Ts o Tr = Ts+r whenever s, r and s + r are in (—<?, d). Then there is a 
unique one-parameter subgroup of motions, called {Ts \ s e R} such that 
Ts = rs, \s\ < 5. 

PROOF. For s e R pick an integer m such that s/m e (—ö, d), and define 
Ts by Ts = (Ts/m)m. It is not hard to show that Ts is independent of the 
choice of m, and then that {Ts} is the unique set of motions extending 
{Ts} to a one parameter subgroup. 

THEOREM 2. Let f be a metric transformation of ( — a, a) into En. Then f 
can be uniquely extended to a metric transformation f of R into En. If 
Em c E», andf((-a, a)) s Em, then /(R) s Em. 

PROOF. Case I. Assume/((—a, a)) spans En. The case that it does not 
will be covered in II. Let — a < t0 g ti ^ • • • ^ tn < a be such that 
{/(O} spans En, and let ö = min {a - tn, t0 + a}. 

For each s, \s\ < 5, the function given by/(f) -+ f(t + s) is an isometry 
off([—a + 5, a — 5]) into ü>, hence can be uniquely extended to motion 
Ts of En (Lemma 1). For s and r such that s, r, and s + r are in (— d, d), 

TS o rr(/(0) =/(' + s + r) = r5+r(/(0), 

and hence Ts<>Tr = Ts+r. Thus {r s | | j | < 5} satisfies the hypotheses of 
Proposition 5, so there is a unique one parameter subgroup of motions 
{ r > e R } which extends {Ts\ \s\ < ö}. 

Define /(.y)by/Cy) = Ts(/(0)). Then it is easy to show that / is the 
unique extension o f / t o a metric transformation of R to En. 

Case II. Consider now the case f((—a, a)) does not span En. Let En 

be the m-flat of En which contains, and is spanned by f((—a, a)). L e t / 
be any extension of / to a metric transformation of R and assume /(R) 
spans the flat E/. (Case I shows there is at least one such extension.) As 
above, let ö be such that f([-a + 5, a - 5)] spans Em. As in Proposition 
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1, let {Ts} be a one-parameter subgroup of motions of is'such that 
T,Wt)) = fit+ s). For \s\<0, 

Ts(f([-a + Ö, a - <?])) =/([-<* + Ö + j , a - 5 + s)] s £"». 

Thus, by Lemma 2, r ,(£w) = £w . 
Since /(s) = r5(/(0)) and /(0) G £>» it follows that £ ' = J£«, and the 

uniqueness of the extension follows from Case I. 
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