ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 15, Number 1, Winter 1985

METRIC TRANSFORMATIONS OF THE REAL LINE

DARYL TINGLEY

1. A metric transformation between two metric (or semi-metric) spaces
M; and M, is defined to be a function f such that for some function
p: Rt = R*, called the scale function associated with f, o(dy(x, y)) =
d(f(x), f(»)), where x, ye M. The set f(M;) is said to be a metric
transform of M;. In this paper all metric transforms from the real line in
Euclidean n-space are characterized.

The notion of a metric transformation was introduced by Wilson [10]
in 1935. In 1938 von-Neumann and Schoenberg [8] characterized all
continuous metric transformations of the real line, R, into Hilbert space.
This powerful result shows that the scale functions p corresponding to
such transformations are those, and only those, functions which satisfy
the condition

0= (J; 50 o)

where a is non-decreasing and j°1° u2da(u) < co. They also showed that,
in order that f(R) be embeddable in E” (finite dimensional Hilbert space),
it is necessary and sufficient that a increase at only a finite number of
points. In this case

ot) = 37 ABsinz kit + 2,
1

and in a suitable coordinate system,
(1) f(t) = (Aycos kit, Aysinkqt, ..., A, cosk,t, A, sink,t, ct)

If f(R) is embeddable in E», but not in E#~1, then, for n odd,2m = n — 1
and ¢ # 0, while 2m = n and ¢ = 0 for n even. As a helix is typical,
von-Neumann and Schoenberg refer to continuous metric transforms of
R as screw curves.

Metric transformations, including the von-Neumann and Schoenberg
result, have appeared in the literature of late in connection with a method
of data analysis known as Multidimensional Scaling. (See [1], [3], [6]
and [7]). Here one takes a semi-metric space M; and some other metric
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or semi-metric space M», such as E”, and attempts to construct a metric
transformation of M; into M, with the scale function p being strictly
monotone. In this case M; is said to be order embeddable into M, and
f'is called an order transformation. Once this has been accomplished one
might ask if the result, in some sense, is unique.

Beals, Krantz and Tversky [1] have given necessary and sufficient condi-
tions for a semimetric space M; to be order embeddable into a convex
metric space. They show the embedding is unique up to a similarity.
Kelly is credited in [6] with the classification of all those semimetric spaces
of n + 2 points which are order embeddable into E”. Erdos and Kelly
[3] have shown that, for m sufficiently large, there are semimetric spaces
of m points not order embeddable into E#. Lew [7] uses (1) to show that
/> and 4} are not order embeddable in E7, for any n, and von-Neuman
and Schoenberg [8] use (1) to show that any continuous metric transfor-
mation of E” into E™ is either a similarity or maps E” to a single point
of E». The characterization (1) would seem to be fundamental in the study
of metric and order transformations, particularly for uniqueness pro-
perties.

In this paper we consider all metric transforms of R into E7, including
those which are discontinuous. To illustrate our result we present the fol-
lowing three examples, the first of which is due to Vogt [9].

ExampLE 1. Let /2 R —» R be a group homomorphism. Then d(f(x),
SO = 1/(x) = fO)l = |fllx = yDI = p(d(x, y)), showing that fis a metric
transformation.

More generally, let M be any normed linear space, and let f: R - M
be a group homomorphism. Then || f(x) — (V)| = | f(Ix — »)I, again
showing that fis a metric transformation.

REMARK. A group homomorphism f: R — M (M a vector space) is
simply a function satisfying f(a + b) = f(a) + f(b). G. Hamel [4] showed
that one method of constructing such functions is to consider R and
M as vector spaces over the rationals. If 4 = R is a basis for R, as a
vector space over the rationals, and f: 4 — M is arbitrarily defined, then
fcan be extended by linearity to R. The resulting function is clearly a group
homomorphism, and hence a metric transformation. Of interest is that if
B = M is a basis for M, as a vector space over the rationals, and if the
cardinality of 4 and B are the same (the cardinality of the continuum)
then there are functions from A4 onto B and hence metric transformations
from R onto M. In particular there are metric transformations of R
onto any separable normed linear space.

Halperin [4] used the above type of construction to show that there
are discontinuous functions f: R — R which satisfy the intermediate value
theorem. In fact he produced a group homomorphism f: R — R such
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that f((a, b)) = R for a < b. It follows that there are metric transfor-
mations of R onto any separable normed linear space M such that f((a, b))
= Mfora < b.

ExaMPLE 2. Let C be the unit circle in E2, and let §: R — R/2x be any
group homomorphism. Then the function ¢ — (cos 0(¢), sin 0(¢)) is a
metric transformation of R to C. The scale function p is given by p(d) =
2 sin(0(d)/2).

ExampLE 3. Let f;: R—> V, i =1, ..., n be a metric transformation
from R to a normed linear space V;,let V=V, @ Vo, ® :+- @ V,, with
norm given by [[(vy, vz, ..., v)IZ = [v1lZ + [[v22 + - - [[v,]% and let
f=(1fe - n) Then f: R - Vis a metric transformation with scale
function p, where p2 = 3 p% Note that Example’s 1 and 2 may be com-
bined in this way.

In Theorem 1 we classify all metric transformations from R into E7,
whether continuous or not. In this respect, then, the result is stronger
than the corresponding result of von-Neumann and Schoenberg [8] which
assumes continuity; however, (general) Hilbert space has been replaced
by E~.

2. Definitions. A set H is said to be an m-flat of E” if it is a translate of
an m-dimensional subspace of E». A set S is said to span E” it if lies in
no (n — 1)-flat.

A (rigid) motion T of a metric space M is defined to be an isometry
from M onto M. For M = E7, it is a standard theorem of linear algebra
that such a function can be written as T(x) = U(x) + T(0) where U is an
orthogonal transformation (that is, a linear norm preserving transfor-
mation of E7). A set of motions {T|s € R} of a metric space M satisfying
T, T, = Ty, is called a one-parameter subgroup of motions of M.

It follows immediately that for any one-parameter subgroup of motions
{T, |seR} and any s, r e Rwe have T,o T, = T, o Ty, (T)* = T, and
(Ts+r)n =Tys0 Ty,

LeMMA 1. If B < E» spans E*,and T : B — E* is an isometry, then there
is a unique motion T: E? — E such that T|B = T.

PROOF. See [2, §38].

ProPOSITION 1. Let f: R — E” be a metric transformation with scale
function p, and assume that f(R) spans E*. Then there is a unique one-
parameter subgroup of motions {Ti|s € R} such that f(s) = T(f(0)).

ProoF. For each s € R define T,: f(R) —» E» by T(f(?)) = f(t + 5). As
fis a metric transformation it follows that |T(f(t;) — T.(f(t)| =
I/t + 5) — f(tz + 5)| = p(lt; — t2]). By hypothesis, f(R) spans E*, hence
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Lemma 1 shows T, can be uniquely extended to a motion T, of E”. Be-
cause of this uniquencess, and because T,;o T,(f(t)) =f(t + s+ 1) =
T+, (f(1)) it follows that T,o T, = T,y,. Thus {T|se R} forms a one-
paramezter subgroup of motions of E#, such that f(s) = T,(f(0)).

If {R,|s € R} is any other one-parameter subgroup of motions such that
S(s) = Ry(f(0)), then

R(f(1)) = RR(f(0)) = Ry1, f(0)) = f(s + 1) = T+ Lf0)) = T(f(?)).
As f(R) spans E#, Lemma 1 shows R, = T,.

The proof of the following result is straightforward. However since
it is crucial to our argument, we include the details.

ProprosITION 2. If {T|s € R} is a one-parameter subgroup of motions of
En, then T, = U, + T(0) where U, is an orthogonal transformation of E",
{U,s € R} form a one parameter subgroup of motions of E*, and for any
s, reR,

PrOOF. As mentioned earlier, T, can be written as Ty(x) = U(x) +
T,(0), where U, is an orthogonal transformation.

As T,oT, = T,,, it follows that (U, — U,U)x = U(T,0)) +
T,(0) — T,.,(0) = constant. As this is true for all x, the constant is 0,
and hence U,U, = U, and T,.,(0) = U(T,(0)) + T,(0).

Similarly U,U, = U,,, and T;,(0) = U,(T,(0)) + T,(0). Thus U«(T,(0))
+ T(0) = U(T(0)) + T,(0) or (I — U)T0) = (I — Uy)TA0), where
I is the identity transformation.

ProPOSITION 3. If {U|s € R} is a one parameter subgroup of orthogonal
transformations of E», then E* canbe written as E» = Vi@ Vo @ --- @
V. ® W, where V; are two dimensional subspaces of E*, V; and W are
invariant under Uy, for all s and j, U|W = Iy for all s and U|V; has in
any positively oriented orthonomal basis the matrix form

_ [ cos B(s) —sin § ,»(s))
- <sin 0;(s) cos 0,(s) /.

For each j, there is an s, call it s;, such that Ug|V; # I, and the functions
0;: R— R/2% are group homomorphisms.

sj

PRrROOF. The bulk of the proof consists of applying standard techniques of
linear algebra to the transformations {U|s € R}, so we shall omit it.
That §,(s + r) = 0,(s) + 04(r) (modulo 27z) follows from the fact that
MM, ; = My,

PrOPOSITION 4. Let {T|s € R} and {U|s € R} be as in Proposition 2,
and Vy, ..., V, and W as in Proposition 3. For each s, let T,(0) = T,(0) +
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. + T,,0) + T,,0), where T,;0)eV;, T,(0)c W. Then there is a
veV,; @ --- @V, such that for all s, T(x) = U(x — v) + v + T,,(0).

ProOF. Let U;; = U|V;. It follows from Proposition 3 that U|W = L
Define T;(x) and T,(x) by
T,;(x) = U,i(x) + T,40) and T,,(x) = x + T,,(0).
Ifx=x + -+ + X, + X,, X; € V; and x,, € Wit follows that
Ty(x) = 2 Toj(x;) + Toulx,).
= 2 Tii(x;) + x, + Ty, (0).

By Proposition 3, for each j, there is an s = s; with U, ; # I Thus
(I = U,,;,) 1 exists and we define v; = (I — U, )T /0). It follows that
Ts,.,-(xf) = s,,(x, - Vj) + Vj.

Using equation (2) and the fact that U, and U, commute for all s,
it can now be shown that T;i(x;) = Ui(x; — v;) + v; for all s, j. Letting
v=yv + -+ + v, it follows that Ty(x) = Uy(x — v) + v + T,,(0).

We are now prepared for the main Theorem of this paper.

THEOREM 1. Let f: R — E” be a metric transformation such that {f(t):
t€ R} span E*. Then there are complementary subspaces V and W, with
orthogonal projections P,: E* — V and P,: E* —> W respectively, and a
vector u € E* such that, if f(t) =f(t) — u, f, = P,o f and f,, = P, o f, then

fu(t) = (Al Cos 01(t)’ Al sin 01(t)’ RS} Am Cos 0m(t)’ Am sin 0m(t)),
‘yhere A; = 0 are constants, 0;: R — R/2x% are group homomorphisms, and
fu(t) is a group homomorphism from R into W.

Conversely, if f: R —» E" and there are complemetary subspaces V and W
of E* such that

P, f(t) = (Aycos 0,(2), Aysiny(2), ..., A, cos0,(t), A,sinf,(2)),

where 0;: R — R/2% are group homomorphisms and f,, = P, o f is a group
homomorphism form R into W, then f is a metric transformation.

PrOOF OF CONVERSE. Let #; and 7, be in R. Then
1t6) = flle = 55 a3 sind( PO 0D ) 1y o) - e
= Frasssion( P2 4 - e
= 5 adgsine( ("1 008 = D) 1y 4 £ty — e

=

= 5 aazsine 0= ’2'))+||fw(|t1— e

=
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This shows that f is a metric transformation with scale function p(d)
satisfying

o) = B 4azsin2 24D 1 g
=1

Proor oF THEOREM 1. Construct a one-parameter subgroup of motions
{T,|se R} and {Uyse R} as in Proposition 1, and let v, V3, ..., V,,
W, Ty, T,,, and U, be as in Proposition 4. Let V=V ® - @ V,,
f(0) = P,(f(0))and u = v + £,(0). Consider the translation f(R) of f(R)
given by f(s) = f(s) — u and let g(s) = T,,0). Note that fis a metric
transformation, and g(s) € W. Then

f(s) = T(f(0) — v — £,(0)
= U,(f(0) — v) + v + Ty, (0) — v — £,(0)
Uf(0) + g(s).

It now follows from Proposition 1 that if T(x) = U,(x) + g(s), then
{j’(s)ls € R~} is the unique one-parameter subgroup of motions such that
S(s) = T(f(0)).

Choose a positively oriented orthonormal basis in J;, j=1, ..., m
such that the projection of £(0) into V; has co-ordinates (4, 0). Proposition
2 now shows that the matrix of Ug; in this basis is

cos 0,(s) —sin @ ,-(s))
<sin 0,(s) cos 0,(s)

for some 6;(s), such that ,: R - R/2z is a group homomorphism. Thus,
VO (Ajcos 04(2), A1sindy(t), ..., A,cosd(), 4,,sind,(t)) and Fu@®
= g(t). Using the fact that {T|s € R} form a one parameter subgroup of
motions such that 7(x) = x + g(s), for x € W, it follows immediately
that g(s) + g(r) = g(s + r), and hence that g: R - W is a group homo-
morphism.

REMARKS. The assumption in Theorem 1 that {f(¢)|z € R} spans E* can
easily be eliminated. For, otherwise, we need only consider the smallest
flat in E~ containing {f(¢)|? € R} and perform the above analysis in that
flat.

The von-Neumann-Schoenberg result in E7, where f(¢) is continuous,
follows easily from this. For, if f is continuous, then 6, j = 1, ..., mand
g must be continuous, in which case it is not difficult to conclude that
0;(s) = ks (modulo 2z) and g(s) = su, u a fixed vector in W. This then
gives the characterization of a metric transformation of R into E” given
in the von-Neumann-Schoenberg paper.

3. As mentioned earlier, this problem has arisen in connection with
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Multidimensional Scaling. Specifically, if f: M; — E* is a metric trans-
formation, is f(M;) unique in some sense? For this type of question, a copy
of R may not be available in M;, hence Theorem 1 is not applicable.
However, often M, contains an interval, that is a set isometric to an
interval of R. Thus it is natural to ask if Theorem 1 characterizes all metric
transforms of intervals. Theorem 2 shows that indeed it does.

LEMMA 2. Let E™ be an m-flat of E*. Let T: E» — E* be an isometry which
maps a spanning set of Em into E». Then T(E™) = Em™.

ProoF. See [2, §40].

ProPOSITION 5. Let {T,| |s| < 6} be a set of motions of E* satisfying
T,oT, = T,,, whenever s, r and s + r are in (—0d, 0). Then there is a
unique one-parameter subgroup of motions, called {T;|s€ R} such that
T.=T,|s| <.

Proor. For s € R pick an integer m such that s/m € (— 9, ), and define
T, by T, = (T,,»)". It is not hard to show that T, is independent of the
choice of m, and then that {T,} is the unique set of motions extending
{T,} to a one parameter subgroup.

THEOREM 2. Let f be a metric transformation of (— a, a) into E*. Then f
can be uniquely extended to a metric transformation f of R into E». If
Em= < E», and f((—a, a)) < E™, then f(R) < E™,

ProOF. Case 1. Assume f((— a, a)) spans E”. The case that it does not
will be covered inIl. Let —a <t £t £ --+- £t, < a be such that
{f(¢,)} spans En, and let § = min {a — t,, t;, + a}.

For each s, |s| < g, the function given by f(t) — f(t + s)is an isometry
of f([—a + d, a — d])into E*, hence can be uniquely extended to motion
T, of E* (Lemma 1). For s and r such that s, », and s + r are in (- §, 9),

Tso T,(f(t)) = f(t + 5 + 1) = T, (f2)),

and hence T o T, = Ty,. Thus {T||s| < 8} satisfies the hypotheses of
Proposition 5, so there is a unique one parameter subgroup of motions
{T,|s € R} which extends {T,| |s| < d}.

Define f(s) by f(s) = T.(f(0)). Then it is easy to show that f is the
unique extension of fto a metric transformation of R to E”.

Case II. Consider now the case f((—a, a)) does not span E». Let E»
be the m-flat of E» which contains, and is spanned by f((—a, a)). Let f
be any extension of f to a metric transformation of R and assume f(R)
spans the flat E“. (Case I shows there is at least one such extension.) As
above, let ¢ be such that f([—a + J, a — §)] spans Em. As in Proposition
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1, let {T,} be a one-parameter subgroup of motions of E“such that
T (f(2)) = f(t + s). For |s| < 4,

T(f{—a+6,a-0)) =f(—a+0+s,a—0+s) € Em

Thus, by Lemma 2, T(E™) = E™.
Since f(s) = T,(f(0)) and f(0) € Em it follows that E< = E™, and the
uniqueness of the extension follows from Case I.
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