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ON MODULI OF REAL CURVES 
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Dedicated to the memory of Gus Efroymson 

The space Mg of isomorphism classes of stable complex curves of genus 
g, g ^ 2, is a projective variety. It is usually referred to as the moduli 
variety. It is a compactification of the moduli space Mg of smooth complex 
curves of genus g which is a quasiprojective variety. Mg — Mg is a divisor. 

The real moduli problem is concerned with the real moduli spaces 
M*(R) = {[C] e M*|Ccan be defined over R} and Mg(R) = Mg(R) fl M*9 

which are suprisingly mysterious. 
The obvious thing to do is to observe that the complex conjugation 

induces real structures on Mg and on Mg. More precisely, let C denote 
the complex conjugate of a stable curve C. Then a: Mg -> Mg, [C] -» [C] 
is a well-defined antiholomorphic involution of Mg. Such an involution 
is called a real structure. It maps Mg onto itself and hence defines a real 
structure of Mg as well. 

The set M§ of fixed-points of o\ Mg -> Mg, is the real part of Mg. It 
is immediate that Mg(R) is contained in the real part of Mg. Examples 
show, alas, that Mg(R) # Mg. 

To state a positive result another definition is required. The quasiregular 
real part of (Mg, a) is 

(MgX = {/>eM£|dimR(Mg,/>) = dimc(M*, p)}. 

THEOREM 1 ([1]). Mg(R) is a real analytic subset of Mg. For g ^ 4, 
Mg(R) = (MgYa. For g ^ 3, the irreducible components of Mg(R) corres­
pond to real curves of a given topological type. Consequently, Mg(R) has 
2[g/2] + [(g + l)/2] + 2 irreducible components. 

This can be proved considering the Teichmüller space Tg which is the 
universal covering space of Mg ([1], see also [2]). 

Theorem 1 can be partly extended for stable real curves by the following 
lemma. 

LEMMA ([3]). Mg(R) is the closure ofMg(R) in the strong topology of Mg. 

Then we get the following theorem. 
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THEOREM 2 [3]. For g ^ 4, M*(R) = (M*Ya. 

Examples show [3] that for g = 2 the only statement of theorems 1 
and 2 which survives is that M^(R) is a real analytic set. All other state­
ments are false if g = 2. 

In order to study M*9 Bers invented strong deformation spaces of stable 
Riemann surfaces with nodes. They can be applied also to our purposes 
and we can show [3] the following theorem. 

THEOREM 3. M^(R) is connected in the strong topology of Mg. 
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