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PROPERTIES OF SHEPARD’S SURFACES
R.E. BARNHILL, R.P. DUBE AND F.F. LITTLE

ABSTRACT. Shepard’s formula is an interpolation method for
arbitrarily placed bivariate data. In this paper the continuity class
and interpolation properties are proved. This is followed by general-
izations which make the original method more useful. Graphical
illustrations of the various methods conclude the paper.

L. Introduction. In this paper we consider the problem of interpolation
to arbitrarily spaced data. Typically the problem arises when a surface
Model is required to interpolate scattered spatial measurements. This
Problem is encountered in such areas as geology, cartography, earth
Sciences and many others. One example would be to generate a surface
Model for a mineral deposit from data gathered at exploratory drillings.

_ The interpolation problem is given {(x;, y;» F))}"=, find a surface func-
?‘On Gsothat G(x;, y;) = F;, i=1,2,...,n. Different methods for solv-
Ing this problem are the following.

_ (1) Triangulation of the domain followed by the appropriate triangular
Iterpolant [1].

_(2) Preprocess the data so that procedures requiring rectangularly
8ridded data are applicable [7).

(3) Shepard type methods [1, 3, 5, 8.

The Shepard type method is the focal point of this paper. What we propose
are methods that not only interpolate to positional information but allow
the interpolation to specified derivatives at the scattered points (x;, ,).
. methods we propose do not necessarily require higher order deriva-
Uves, but we make the option of supplying more general interpolation
fiata available to a user. Figure 1, 2, 4, and 5 are four surfaces which
'Nterpolate the same (arbitrarily specified) positional information. These
°“f surfaces are quite different because of the preprocessor and the
derivatives used in the interpolation.

In the next section we discuss the mathematics that leads us to the
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general interpolation theorem. How this method may be combined with
other techniques is taken up in §3.

2. Continuity and interpolation properties of Shepard’s method. Shepard’s
surface given in [8] is
F;,  (x,5) = (x; ) for some i.

@n SoF(x, y) = [(12”:1 F,/d:-‘) / <§ 1 /dg>, otherwise.

where 4 > 0 and d; = [(x — x;2 + (y — »,)?]V2. The function SoF is 2
weighted average of the data values where closer points have greater
weight. This function may be rewritten in cardinal form as

@2 SoF(x, y) = g"lFfw.<x, »)

where
8y (x,y) = (x;, y,) for some j.
23 (x, ) = ;
= Wi ) (1/d%) / (Z l/d;f), otherwise.
=1
If (x, ) # (xj, y;) for all j, then []%; d% # 0 and so w(x, y) may b
rewritten as

4 wix, y) = [[ d% / 7 d.
I

If the (x,, y,) are distinct, then the denominator of (2.4) is never zero and
so w,(x, y) is a globally defined continuous function. If . is an even integels
then each w; is the quotient of polynomials with denominators that do
not vanish and so S is in C~.

The exponent 4 has a definite effect on the surface. For 0 < g < L
Shepard’s interpolant has cusps at the point (x,, y;) and, for x4 = 1, it has
corners. For y > 1, the tangent plane at each (x,, y,) is parallel to the
xy-plane, which produces flat spots at the (x;, y,). The cusps and corner
are unsatisfactory. The flat spots, though not as severe a problem, h2%
discouraged the use of this method. One of this paper’s contributions I
to construct extensions of Shepard’s method which do not have thes?
flat spots. The effect of 4 on the surface is illustrated in [4, 6].

The continuity class of Shepard’s Formula depends upon y and, for
u# > 0, is as follows:

(i) if x is an even integer, then S,F e C*,

(ii) if  is an odd integer, then SoF € C#-1; and .
_ (iii) if  is not an integer, then SoFe C¥! where [4] = the larges
integer < .
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We make use of the following notation:

DiiG(x, y) = G(x, »)

ax! ayf

Where G is sufficiently smooth to allow the derivatives to be taken in
any order.

THEOREM 2.1. If 0 < p + q < p, then
(25 Dbaw(x.. v.) = 511’ P q
) wilxi 1) 0, O<p+g<yp.
Theorem 2.1 is proved in the Appendix. The interpolation properties of

Shepard’s method and its generalizations depend upon equation (2.5). Let

26) SF(x, ¥) = 23 wix, NTPF(, )

=1

Where TrF (x, y) is the truncated Taylor expansion of F up to derivatives
of order m about the point (x;, 3,).

THEOREM 2.2. If 0 < p + ¢ < pand

DP"iT}"F(x, y)l(,,,’y’.) = DP-‘IF(X, y)|(,,.,,,,.) ’
then

Dp'quF(X, y)l(x,-,y,') = DP,qF(x, y)l(z,-,yf)
Jorj <19 .

ProoF. From equation (2.5)

DraS,F(x;, ) = 33 Drafwx, NTFEG ) |

% yj)

nay ( )( >D‘ (w Db~ TTF

x—l k=0 /=0

(joy))
= Z_:{ 8,;DPaTPF(x;, y;) = DPaF(x;, ;) -
For example, withm = 1and = 2 we have
TUF = F(x;, y) + (x = x)Fyo(x;, ) + (7 = y)Foa(xs, )

Wi
f'th i=1,2, ..., nand D'OF(x, y)|,,) = Fro(*s» »:)- The surface
Unction js ’

SiF= 5wz, )TIF.
=1
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S,F interpolates to function and first derivatives at the points (x;, ),
i=1,2,...,n. See Figures 1, 2 and 3 for examples of SyF and S,F.

Letm;e{0,1,...,m}, i=1,2,..., n. Then S, F may be written in
the following more general form:

@ SuF = 5 wix, NTPF.
=1

Assume y > m, so that S, F takes on the positional and derivative values
of T™iF specified at the data points. For those values not specified, that is,
{m; + 1, ..., m}, the Shepard function has the corresponding derivative
value zero at (x;, y;). See Figure 4 for an example of the more general
S, F given in equation (2.7).

S, is said to be precise for a function Pif S,,P = P. Since 3% ,w(x, y) =
1 and w,(x, y) = 0 for all i, §,,Fis a convex combination of the functions
T F. Hence the function precision set of S,, contains all polynomials
x7yswithr + s £ m* = min{m,}.

3. Shepard’s formula and Boolean sums. In the representation (2.6) 2
truncated Taylor series is used. However, more general linear operators
G, may be used. Let

N
3.1 SF = ) w{x, y)G,;F.

=1
The derivative values that SF recaptures from the G,F at (x;, y;) depelld
on the exponent y. For example, if 4 = 2 and G,F is polynomial intef”
polation, then

SF(x;, y) = Gx‘Fl(x;yw)
D1,°SF(xi, y) = Dl’OGiFI (%4 %)
DVASF(x;, y;) = DY%IG,F | (%53

Higher order derivatives will not be reproduced unless a larger 4 is picked:
The only exception to this occurs if G,F = F for all i; in which ca%
SF = F.

One algorithm that has been successful is to let G,F be a weighted 9‘
constrained quadratic least squares scheme. The operator G, has quadf?"c
precision. With 4 = 2, SFis in C, has quadratic precision and, depending
on the least squares algorithm used, will either smooth the data or inte"”
polate to it.

Barnhill and Gregory [1] have shown that the Boolean sum of t#0
interpolants, P, ® P, = P, + P, — P,P,, has at least the interpol2”
tion properties of P; and the function precision of P, The Shepa”
function SF is normally used with positional and first derivative data 8%
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so has linear precision. In order to gain greater precision without requiring
higher order derivatives we replace P, by S and replace P, with some other
Operator Q that has a high degree of precision. Thus our new formula is
S @ Q. S may be taken to be Sy or S; of (2.6) and Q the least squares
quadratic. Sy @ Q yields interpolation to positional information and has
Quadratic precision, while S; @ Q gives, in addition, interpolation to the
specified first derivatives in S,.

The Boolean sum (S @ Q)F reproduces the derivative data specified in
§if 4 is larger than the order of the derivatives. If these derivative values
are not specified, then the zero properties of the w/x, y) guarantee that
these derivative values come from QF. For example, if S « Sy, Qs a least
Squares quadratic and y = 2, then Sy, @ Q interpolates to positional
values specified in S, but picks up its first derivative from Q. This is easily
verified since Sy @ Q = Sy + Q — SoQ and SyQ has a zero first derivative
at the data points. See Figure 5 for an example of (S, @ Q)F with 4 = 2.

The Boolean sum of two interpolants may be written as

(Py @ Py)F = (P, + P, — P\P))F = (P, + Pi{l — P))F.

Where [ is the identity operator, JF = F. In other words the Boolean sum
of P, and P, acting on Fis P acting on F plus P, acting on the remainder
(F - P,F). Let P, be the interpolant S of (3.1) and Q be an interpolation
Operator such that G,QF = G,F for i € L, where L is a proper subset of
{1,2 .., n). Then

(S® QF = QF + S(I - Q)F = QF + é, w,G{(I — Q)F}

Where 1/ = {t,2...,n} - L.

_ This idea may be used to extend the interpolation set of an existing

Interpolant. For example, let O be a linear Courant interpolant at the

!;%ints {Ce1, y1), (x2, y2), (x3, ¥3)}, and (xy, y4) be interior to this triangle.
en

(So® Q)F = QF + Syl — Q)F
= QF + w4(x, y)(F(X4, yl) - QF(X4, y4)) .

So @ Q interpolates to the first three points and in addition captures
the fourth value. This idea is considered in more detail and implemented
taphically in Poeppelmeier’s thesis [6].

4. A recursive Shepard formula. The Shepard formula S has the defect
that jf another point of interpolation is added, then all the w/’s must be
feformulated. In this section we seek a Shepard type formula which has

€ property that an additional point may be added to the interpolation
Set by simply adding an extra term to the original formula, i.e., a “per-
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manence principle” [2]. The remainder form of the Boolean sum P; @
P, = P, + Py(I — Py), is used to generate this method. We first motivate
this procedure by considering a univariate example.

Let L, be the Lagrange interpolation operator to n + 1 points {xo,
X1, - -5 X,). Then

LF= g F(x)n A%)

where
- x
$n¥) = ﬂ ;_—x:
j=0,1, ..., n. We define recursively the interpolation operator R,:
LyF, =0
RF=1{" "
(L,®R_)F, n>0

From the remainder form of the Boolean sum we have
(L, ® R,.)F = R, F + L(I — R,)F
= R,1F + ¢, (0O — R,)F)(x,)
This follows from the fact that (I — R,_,)F is zero for x = x;, i = 0, I,

.,n — 1.SinceR,_, is interpolated at the x, up through n — 1, we havé,
by the addition of one term, a new interpolation function which captures
the correct values at all the x,, i = 0, 1, ..., n. Representation (4.1) 1
the Newton form of the interpolating polynomial.

We now return to the bivariate case. As in the previous section W¢
have scattered data (x;, y;) and corresponding F;, i=1,2,..., n. Let
S3F be the Shepard function S,F of (2.1) interpolating at n data points
{(xi» y:)}1=1- Define

S()F n=1
WF =
Q {(So ®0,)F, n>1.

Q,F is a recursive Shepard type function. If Q,_;F interpolates at n — !
points (x;, y), i = 1,2, ...,n — 1, then Q, interpolates at n points by
simply adding one term to Q,_;. To see this, consider
0.F = (St ® Q,F
= Q,F + S - 0, )F
= Qn*lF + W,,(X, y)(Fn - Qn—lF(xm yn)) .
As in the univariate case (I — Q,_))F is zero at (x;, y), i=1,2 "

@1
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n — 1, so the only contribution of S% comes at the point (x,, y,). The
final form Q,F interpolates to all » data.
We now make this formula more explicit. Let

By(x,y) =1

k—1
B = Tldr/ % e

= 1'—

Note that B,(x;, y,) = 0fori < k, as is necessary. The new “expandable”
Shepard formula is defined by

QnF = I;IB‘(X’ ,v)Ck
where

C =
C = Fz — By(x3, y2)Cy

C = F - ZBk(xn yl)ck = F - Qt—l(xﬂ yi) .

This scheme allows data points to be added without recomputing the
basis functions, unlike the regular Shepard formula. For example, if
Q»-xF(x,-, yo=F,i=1,2...,n—1, and we wish to add another
Value F, at (x,, y,) to the interpolation set, then

QnF(xa y) = Qn—lF(xy ,V) + Bn(x7 y)Cn

is the required function.
For computational efficiency, we could define the function

Byx,y) = n d/‘(x,y)/z n d#(xy, vi)
j=1 x—
f’nd‘ combine the (constant) denominator of By(x, y) with C,. This scheme
IS simpler than original Shepard’s formula to evaluate: although each
Contains » terms, the k-th term of the new formula involves k2 operations
and the original formula involves n? operations.

Appendix: Proof of Theorem 2.1. The interpolation properties of

pard’s method and its generalizations follow from the fact that, for
u> 0,

5’,1.’ p:q:O

Di’,qw'.(xjy _Vj) = {0 y>p N 0

Which we now prove.
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«"\&

Figure 1. Shepard’s interpolation function S,F(x, y) to scattered spatial measurements
with no derivative data and z = 2.

Figure 2. Interpolation to position and derivative values with the function S,F(% Y )
and 4 = 2.
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'gure 3, Interpolation to position and derivative values of Figure 2 with the function
Flx,y) and y = 4.



374 R.E. BARNHILL, R.P. DUBE AND E.F. LITTLE

Figure 4. Interpolation function to scattered data with x-partials, y-partials and cross
partials. The interpolation function is S,F(x, y) with # = 3and F,,, = F,,, =0 at the
data points.
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Figure 5. The Boolean sum of the Shepard function S,F(x, y) with # = 2 and weighted
€ast squares quadratic. This function interpolates to the data in Figure 1.
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We start by examining the derivatives of d;, = d,(x, y) = ((x — x,)2 +
(y — y)®1/2. The first partial derivatives of d, are given by

2 dp = E7 M=,
(A1)

0 =YW =
ay dk(x’ )’) dk = Bl:
We note that |4,] < 1and |B,| < 1. The second derivatives of d, are
2
Zrdix, ) = 301 = 4
A. 2 .
( 2) axay dh(x’ y) dk( AkBk)

2
prdx ) = (1~ B

In the following discussion we omit the fixed subscript k.

Lemma A. 1. If p + g 2 0, then Dbad(x, y) = d'=#=9P, (A, B) where
P, (A, B)is a polynomial of degree p in A and degree q in B.

Proor. Let m = p + ¢. The conclusion is trivially true for m = 0 and
is true for m = 1, 2 from equations (A.1) and (A.2), respectively. We
Proceed by induction on m. Without loss of generality, assume that m > 2
and p > 1. Then

D?ad(x, y) = D1OD*1ad(x, y)
= D'0(d?~#-ep p—-l.q(As B))

=P, 144, B2 — p — q)di=+94
_, [0P (A B) 94 , 0Py, (A4, B) 9B
2 p-l 4 p-lg el
+d H[ ox 2B ax}

Since 04/ox = (1 — A?)/d and 0B/ox = (— AB)/d, we have
Drad(x, y) = Ppy (4, B)2 — p — q)Ad'~+

—p—d 0Pp-1,(4, B) 1 0Py 144, B) .1
e R T R !

= Py, B2 = p = ) + DD
Py (4, B)

L% 2 (- AB)} = di-+1P, (4, B).

Lemma A2, Let p>1 and p+q=m<p Then DbPadr =
de-p- *P, (A, B) where P, (A, B) is a polynomial in A and B.
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Proor. We use induction on m. For m = 1, we have D1.0dr = pdr—14
and D%1g¢ = yde—1B. Consider

Dbade = Dp—l.a(#d#-lDLOd(x, »)

) (” - )(J)Dwdﬂ—l D-1-ia=j DL0(x, ).

=0 ;=0

By the induction hypothesis we have Di.ide-1 = de=1-~iP, (A, B) and,
by Lemma A.1,

Dr-1-ia=iDLO(x, y) = di-=D=G=DP, , (A, B).
Hence

Dt.ade

§ é)(P - )(‘]l)[d#—l—i—jpi'l(A, B) dl—(p—i)—(q—j)PP_i.q_J(A’ B))

= drt4P, (4, B).

We observe that Lemma A.2. implies that D?ad¥(x;, y;) = 0 for
O<p+g<op

Let B be the set of all positive functions G(x, y) defined on some domain
Q whose derivatives of order less than y are bounded. That is, G € B
means that there exist numbers az > 0and Mg < oo so that G(x, y) Z %
and [D?4G(x, y)| < Mgforall pand gsuchthat0 < p + ¢ < p.

LemMMA A 3. If G(x, y) € B, then [G(x, y)]? € B.

PrOOF. Since G(x, y) e B there exists a; > 0 so that G(x, y) Z 46’
hence [G(x, y)]? = a%. Now consider

|D24[G(x, Y| = |DPIG(x, y) G(x, |

|G (0)0)prscts nor-iects

< L

LeMMA A 4. If G € B, then D?9[G(x, y)]™! is bounded.
PROOF. We proceed by induction on m = p + ¢q. Withp 2 1,

(D906, 1] = | 1 206 )

1
< (ac) M-

Next,
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|DP4[G(x, y)]-| = | DP-14[(D1OG) (~ G|
(£ Ygpsomri-om|

i=0 j=0

ﬁ i: <P 7 l)(‘;) |D+1.iG|| DP-1-i0-i(GB) )

=0 j=0

I\

By Lemma A.3 and the induction hypothesis each term of the above is
bounded and so the result follows.

COROLLARY A.5. Let

6(x,») = B 11 ditx, »

k#4

in any bounded region Q. Then G(x, y) € B and so |D»9[G(x, Y)I"| S M <
©for0<p+gq< pand(x,y)el.

PROOF OF THEOREM 2.1. The case p = g = 0 was shown earlier in this
Section. Consider 0 < p + g < p.

Draw(x;, y;) = ﬁ: i (5)(;) [D""'f:[l dy(x;, .Vi):{
k#1

¢=0 m=0
” n _,1
{prorn(Z T it )|
r=1 k=1
k#r

The general term in the sum contains the product of two factors involving
derivatives. The second factor is bounded from Corollary A.S, whereas
the first factor is

”n
Dom ’L[l di(xj, y;)

k¥

= i <i)<':)Dmdl;(x,-, yD ;,[31 4 33)

s
r=0 s=0 P

]
o

Since Drsdi(x;, y;) = Oforall jand 0 < p + ¢ < y, as we observed after
Mma A.2.
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