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PROPERTIES OF SHEPARD'S SURFACES 

R.E. BARNHILL, R.P. DUBE AND F.F. LITTLE 

ABSTRACT. Shepard's formula is an interpolation method for 
arbitrarily placed bivariate data. In this paper the continuity class 
and interpolation properties are proved. This is followed by general­
izations which make the original method more useful. Graphical 
illustrations of the various methods conclude the paper. 

1. Introduction. In this paper we consider the problem of interpolation 
to arbitrarily spaced data. Typically the problem arises when a surface 
model is required to interpolate scattered spatial measurements. This 
Problem is encountered in such areas as geology, cartography, earth 
sciences and many others. One example would be to generate a surface 
model for a mineral deposit from data gathered at exploratory drillings. 

The interpolation problem is given {(>,•, j„ Ft)}
n
i=1 find a surface func­

tion G so that G(xi9 yt) = F„ i = 1,2, . . . , n. Different methods for solv-
mg this problem are the following. 

(1) Triangulation of the domain followed by the appropriate triangular 
interpolant [1]. 

(2) Preprocess the data so that procedures requiring rectangularly 
kidded data are applicable [7]. 

0) Shepard type methods [1, 3, 5, 8]. 
The Shepard type method is the focal point of this paper. What we propose 
are methods that not only interpolate to positional information but allow 
J*6 interpolation to specified derivatives at the scattered points (x„ yt). 
*ne methods we propose do not necessarily require higher order deriva-
1Ves, but we make the option of supplying more general interpolation 

~a*a available to a user. Figure 1, 2, 4, and 5 are four surfaces which 
Interpolate the same (arbitrarily specified) positional information. These 
°Ur surfaces are quite different because of the preprocessor and the 
erivatives used in the interpolation. 
*n the next section we discuss the mathematics that leads us to the 
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general interpolation theorem. How this method may be combined with 
other techniques is taken up in §3. 

2. Continuity and interpolation properties of Shepard's method. Shepard's 
surface given in [8] is 

(Fi9 (x, y) = (*,-, yf) for some i. 
(2.1) S0F(x, y) = \f^ 

\(t F<ldt)/(£ 1/rf?) otherwise. 

(2.3) w,{x, y) = 

where p > 0 and d{ = [(x - JC,-)2 + (y - yt)
2]m- The function SQFIS a 

weighted average of the data values where closer points have greater 
weight. This function may be rewritten in cardinal form as 

(2.2) S0F(x,y) = £Fiwt(x,y) 

where 

fa, (*, y) = (xj9 y,) for some;. 

\(Vdf)/(t 1/rf?). otherwise. 

If (x, y) # (xj, y,) for all j , then n?=i ^ ^ 0 and so w,(x, j>) may be 
rewritten as 

(2.4) wfay) = f\d9/±fld9. 

If the (xh yt) are distinct, then the denominator of (2.4) is never zero and 
so w{(x, y) is a globally defined continuous function. If JJL is an even integer* 
then each wf- is the quotient of polynomials with denominators that do 
not vanish and so SQ is in C°°. 

The exponent fi has a definite effect on the surface. For 0 < n < ' 
Shepard's interpolant has cusps at the point (*,-, yf) and, for [i = 1, it ha 
corners. For /* > 1, the tangent plane at each (JC,-, yt) is parallel to tne 

xy-plane, which produces flat spots at the (xi9 yt). The cusps and corned 
are unsatisfactory. The flat spots, though not as severe a problem, hav 

discouraged the use of this method. One of this paper's contributionsJ 

to construct extensions of Shepard's method which do not have the 
flat spots. The effect of n on the surface is illustrated in [4, 6]. 

The continuity class of Shepard's Formula depends upon [i and, 1° 
fi > 0, is as follows: 

(i) if [i is an even integer, then S0Fe C°°, 
(ii) if ju is an odd integer, then S0Fe O - 1 ; and t 

(iii) if fx is not an integer, then S0FeCW where [/i] = the largeS 

integer <; ^. 
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We make use of the following notation: 

where G is sufficiently smooth to allow the derivatives to be taken in 
any order. 

THEOREM 2.1. If 0 g p + q < /*, then 

Theorem 2.1 is proved in the Appendix. The interpolation properties of 
Shepard's method and its generalizations depend upon equation (2.5). Let 

(2-6) SmF{x, y) = ± uv(x, y)T*F(x, y) 

where Tf F(x, y) is the truncated Taylor expansion of F up to derivatives 
of order m about the point (*,-, yt). 

THEOREM 2.2. If 0 £p + q < fiand 

DP><TrF(x9 y)\{xj,yf) = DP«F(x, y)\(x,yf), 

then 

DP.<SmF(x, y)\{x.yj) = D*«F(x, y)\{x,yf) 

forJ~ 1,2...,ii. 

^OOF. From equation (2.5) 

DttSJFOcj, yj) = £ DP*{wt{x, y)TfF{x,y)}\ 

TfF\ = £ £ £ ({Y5)B^w,D^-M-r? 
i=l*=0/=0 W W 

= f] d,iDP'T?F(Xi, yd = 0».«fX*y, 7/) • 
i= i 

F°rexample, withm = 1 and// = 2 we have 

T)F = F(X(, >>,) + (X- xdFUx,, y.) + (y - ^ o . i f e V.) 

J[ith / * 1, 2, . . . . « and D^F(x, y)\ixj,yj) = FU** *)• The surface 
UIJction is 

SiF-%wtx,y)T)F. 
i=l 



368 R.E. BARNHILL, R.P. DUBE AND F.F. LITTLE 

SiF interpolates to function and first derivatives at the points (*,-, yt), 
i = 1,2, . . . , « . See Figures 1, 2 and 3 for examples of SQF and SiF. 

Let m{ € {0, 1, . . . , m}9 i = 1, 2, . . . , n. Then SmF may be written in 
the following more general form: 

(2.7) SJF=£w£x9y)T7tF. 

Assume /j, > m, so that SmF takes on the positional and derivative values 
of rm«F specified at the data points. For those values not specified, that is, 
{mt- + 1, . . . , m}, the Shepard function has the corresponding derivative 
value zero at (xh yt). See Figure 4 for an example of the more general 
SmF given in equation (2.7). 

Sm is said to be precise for a function P i$SmP = P. Since £*=iwv(*, y) s 

1 and wfa, y) ^ 0 for all /, SmF is SL convex combination of the functions 
Tf* F. Hence the function precision set of Sm contains all polynomials 
xrys with r + s g m* = min,{m,}. 

3. Shepard's formula and Boolean sums. In the representation (2.6) a 
truncated Taylor series is used. However, more general linear operators 
Gt may be used. Let 

(3.1) SF= ZwfayWiF. 

The derivative values that SF recaptures from the G{F at (x,-, yt) depend 
on the exponent ju. For example, if ju = 2 and G{F is polynomial inter­
polation, then 

SF(xi9yt) = G.-Fl^y.) 

WSFfayd^WGtFl^y,) 

Higher order derivatives will not be reproduced unless a larger /u is picked. 
The only exception to this occurs if G{F = F for all /; in which case 
SF= F. 

One algorithm that has been successful is to let G{F be a weighted ot 
constrained quadratic least squares scheme. The operator G{ has quadrate 
precision. With p = 2, SFis in C°°, has quadratic precision and, depending 
on the least squares algorithm used, will either smooth the data or inter­
polate to it. 

Barnhill and Gregory [1] have shown that the Boolean sum of W° 
interpolants, Px ® P2 = Px + p2 _ pxp2t has at least the interpo1*' 
tion properties of Px and the function precision of P2. The Shepa^ 
function SFis normally used with positional and first derivative data and 
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so has linear precision. In order to gain greater precision without requiring 
higher order derivatives we replace Pi by S and replace P2 with some other 
operator Q that has a high degree of precision. Thus our new formula is 
S © Q. S may be taken to be So or Si of (2.6) and Q the least squares 
quadratic. S0 ® Q yields interpolation to positional information and has 
quadratic precision, while Si® Q gives, in addition, interpolation to the 
specified first derivatives in Sv 

The Boolean sum (S ® Q)F reproduces the derivative data specified in 
S if fx is larger than the order of the derivatives. If these derivative values 
are not specified, then the zero properties of the wt(x, y) guarantee that 
these derivative values come from QF. For example, if S <- S0, Q is a least 
squares quadratic and JJ, = 2, then S0® Q interpolates to positional 
values specified in S0 but picks up its first derivative from Q. This is easily 
verified since S0 ® Q = S0 + Q - S0Q and S0Q has a zero first derivative 
at the data points. See Figure 5 for an example of (So © g)Fwith p, = 2. 

The Boolean sum of two interpolants may be written as 

(Pi ® P2)F = (Pi + P2 - PiP2)F = (P2 + PX{I - P2})F. 

where / is the identity operator, IF = F. In other words the Boolean sum 
°fPi and P2 acting on Fis P2 acting on Fplus Px acting on the remainder 
(F - P2F). Let Pi be the interpolant S of (3.1) and Q be an interpolation 
°Perator such that G{QF = G{F for i e L, where L is a proper subset of 
0 .2 . . . , / ! } . Then 

(^ © Q)F = gF + 5(/ -Q)F=QF+ £ w,G,{(/ - fi)F} 
/e l ' 

where 1/ = {1, 2 . . . ,«} - L. 
This idea may be used to extend the interpolation set of an existing 

^terpolant. For example, let g be a linear Courant interpolant at the 
Points {(xh yi\ (x2, y2\ (x3, y3)}, and (x4, >>4) be interior to this triangle. 
Then 

(So © Q)F = QF + soV - Q)F 
= QF+ wA(x, y)(F(x„ yd - QF(xA, y4)). 

0̂ © g interpolates to the first three points and in addition captures 
*he fourth value. This idea is considered in more detail and implemented 
^aphically in Poeppelmeier's thesis [6]. 

4- A recursive Shepard formula. The Shepard formula S0 has the defect 
tnat if another point of interpolation is added, then all the w/s must be 
formulated. In this section we seek a Shepard type formula which has 
the property that an additional point may be added to the interpolation 
^ by simply adding an extra term to the original formula, i.e., a "per-
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manence principle" [2]. The remainder form of the Boolean sum Px © 
p2 = p2 + Pj(/ - p2), is used to generate this method. We first motivate 
this procedure by considering a univariate example. 

Let Ln be the Lagrange interpolation operator to n + 1 points {x0, 
xh . . . , * , } . Then 

where 

j = 0, 1, . . . , « . We define recursively the interpolation operator i?n: 

fL0P, » = 0 
RnF i(Lne^-i)F, * > o 

From the remainder form of the Boolean sum we have 

( I , 0 Rn.x)F = / ^ F + Ln(/ - R^F 

= Rn^F + <j>ntn(x)[(I - Rn.x)F](xn) 

This follows from the fact that (/ - Rtt-i)F is zero for x = xit / = 0, h 
. . . , « - 1. Since J?,,^ is interpolated at the x, up through n - 1, we have, 
by the addition of one term, a new interpolation function which captures 
the correct values at all the xi9 i = 0, 1, . . . , n. Representation (4.1)lS 

the Newton form of the interpolating polynomial. 
We now return to the bivariate case. As in the previous section we 

have scattered data (xi9 yt) and corresponding Fi9 i = 1, 2, . . . , n. l& 
SgFbe the Shepard function SQF of (2.1) interpolating at n data points 
{ f e yt)}U- Define 

QJPmm « = i 
\(Sg ® Q„-i)F, « > 1 • 

QnF is a recursive Shepard type function. If Q„-iF interpolates at n -
points (xf, y{), i = 1, 2, . . . , n - 1, then Qn interpolates at n points by 
simply adding one term to Qn_v To see this, consider 

Q^ = (So" 0 Qn-l)F 

= Q^F + S0»(7 - Q^)F 

= Qn-iF + wjx, y)(Fn - Qn-!F(xn, >>„)). 

As in the univariate case (/ - Q„^)F is zero at (*,., yt), i= 1, 2, • • •' 
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« — 1, so the only contribution of Sg comes at the point (xn, yn). The 
final form QnF interpolates to all n data. 

We now make this formula more explicit. Let 

Bfa y) = 1 

Bk{x,y)=f[d?/£f\d?. 

Note that Bk{xh yt) = 0 for i < k, as is necessary. The new "expandable" 
Shepard formula is defined by 

QtF=XBJix,y)Ck 

where 

C1 = Fl 

C2 = F2 — #i(*2> J'2)Q 

t ' - l 

c, = F, - 2 5*fe r,)ct = F,- - &-i(*<. JV) • 
k=\ 

This scheme allows data points to be added without recomputing the 
basis functions, unlike the regular Shepard formula. For example, if 
Qn~\F(x{, yt) = Ft, i = 1, 2, . . . , n - 1, and we wish to add another 
value Fn at (xn, yn) to the interpolation set, then 

Q*F(x, y) = Qn-fix, y) + BJLx, y)Cn 

Is the required function. 
For computational efficiency, we could define the function 

Ux,y) = UWx>y)l£ UWxk,y*) 
y=ig} 

a nd combine the (constant) denominator of Bk(x, y) with Ck. This scheme 
ls simpler than original Shepard's formula to evaluate: although each 
c°ntains n terms, the k-th term of the new formula involves k2 operations 
a nd the original formula involves n2 operations. 

Appendix: Proof of Theorem 2.1. The interpolation properties of 
tapard's method and its generalizations follow from the fact that, for 

f > 0, 

«-.<-Hor ;::::>« 
*hich we now prove. 
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Figure 1. Shepard's interpolation function S0F(x, y) to scattered spatial measurements 
with no derivative data and fi = 2. 

Figure 2. Interpolation to position and derivative values with the function SiF(x, 
and fi = 2. 



SHEPARD'S SURFACES 373 

sure 3. Interpolation to position and derivative values of Figure 2 with the function 
°x/^> y) and y. = 4. 
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Figure 4. Interpolation function to scattered data with *-partials, y-partials and cross 
partials. The interpolation function is «S2F(*, y) with fi = 3 and F0,2 = F2>0 = 0 at tn« 
data points. 
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%ure 5. The Boolean sum of the Shepard function S0F(x, y) with y. = 2 and weighted 
e*st squares quadratic. This function interpolates to the data in Figure 1. 



376 R.E. BARNHILL, R.P. DUBE AND F.F. LITTLE 

Figure 6. Contours of Figure 2. 
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'igure 7. Contours of Figure 3. 
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Figure 8. Contours of Figure 4. 
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We start by examining the derivatives of dk = dk(x, y) = {{x — xk)
2 + 

(y - yk)
2)1/2. The first partial derivatives of dk are given by 

**_ = Ak 

(A.1) 
P****-^ 
P^-l^.B. 

We note that \Ak\ ^ 1 and \Bk\ S 1. The second derivatives of dk are 

(A.2) 

d2 

'n the following discussion we omit the fixed subscript k. 

LEMMA A.\.Ifp + qZ0, then D*«d(x, y) = dl-P-"PM(A, B) where 
Pp,q(A, B) is a polynomial of degreep in A and degree q in B. 

PROOF. Let m = p + q. The conclusion is trivially true for m = 0 and 
>s true for m = 1, 2 from equations (A.l) and (A.2), respectively. We 
Proceed by induction on m. Without loss of generality, assume that m ^ 2 
andp ^ l.Then 

DPid(x, y) = Dl»D*-l-<d(x, y) 

= D^-P-tP^A, B)) 

= P^U(A, B)(2 - p - qW-*iA 

A2_^dP^u(A,B) d± , dPp-UA> W M.1 
I U &c 35 dx] 

s'nce dAjdx = (1 - A2)/d and dBjdx = {-AB)jd, we have 

D>*d(x, y) = Pp-U(A> BX2 -P- iW1-*-* 

+ d2~H 
dPp-U(A, B) 

dA (1 A2)} + **** IA, B) 
dB 

(-AB)} 

. 9^ 

V i , , ( ^ fi)(2 -p-q)A+ dPP-u(A'®{l _ ^2) 

t i J4, B) 
dB 

(-AB) 

dA 

= tP-P-iP^A, B). 

LEMMA A.2. Let /z > 1 and p + q = m < fi. Then DP-ide = 
d^P~ippq(A, B) where Pp„(A, B) is a polynomial in A and 3. 



380 R.E. BARNHILL, R.P. DUBE AND F.F. LITTLE 

PROOF. We use induction on m. For m = 1, we have D1*0^ = fide1 A 
and D^df = fid^B. Consider 

DP«dP = DP-^ifid^D^dix, y)) 

= V % t (P 7 l)(§D<Jdv-i DP-^«-> DW(x9 y). 

By the induction hypothesis we have LMdr1 = dr-l-*-iPitJ{A, B) and, 
by Lemma A. 1, 

D*-l-t-*-J'DWd(x9 y) = dt-w-wp^^jfA, B). 

Hence 

DP'idf 

= S t(P 7 ^g)^-1-'-^,;^, 5) rfl-^-^P^^.^, B)] 

= dt*-P-4Pp>q(A9B). 

We observe that Lemma A.2. implies that DP^df(xi9 yt) = 0 for 
0 < p + q < fi. 

Let B be the set of all positive functions G(x9 y) defined on some domain 
Q whose derivatives of order less than fi are bounded. That is, G e B 
means that there exist numbers aE > 0 and ME < oo so that G(x9 y) ^ <*£ 
and |Z)^G(x, >>)| < M £ for all/? and q such that 0 ^ p + q < p. 

LEMMA A.3. 7/G(JC, J ) 6 B, then [G(x9 y)]2 e B. 

PROOF. Since G(x9 y)eB there exists aG > 0 so that G(x, >>) g ^ 
hence [G(*, j>)]2 ^ a%. Now consider 

|/>M<K*. J)]2| = \DW<Xx, y) G(x, y)]\ 

= 11 t(Pi)(j)&Mx, y)DP-^G(xt y) 

LEMMA A.4. IfGeB, then DP>«[G(x9 yjjr1 is bounded. 

PROOF. We proceed by induction on m = p + q. With/? ^ 1, 

- 1 
[G(x,yW 

2 

\Di.»[G(x, y)]-i\ = 

Next, 

/>10G(*, J') 
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\DHG(x9 y)]-1] = \DP-U[(D^G) (-G2)-1]] 

l,-=oy=o\ l /\J / I 

By Lemma A.3 and the induction hypothesis each term of the above is 
bounded and so the result follows. 

COROLLARY A.5. Let 

G(x,y) = Endi(x,y) 
1=1 k=i 

ln any bounded region Q. Then G(x, y)eB and so \DPi[G(x, y)]^ ^ M < 
Wfor0^p + q<ju and(x, y) e Q. 

PROOF OF THEOREM 2.1. The case p = q = 0 was shown earlier in this 

section. Consider 0 < p + q < ju. 

DP><wt(Xj, y}) = £ j ^ ) ( * ) [ * ' * f t dfrj, yj) 

•^•'--"(Ijn/fc^))-1] 
The general term in the sum contains the product of two factors involving 
derivatives. The second factor is bounded from Corollary A.5, whereas 
*e first factor is 

= it tffj^-'^r y,)v-*"-> n d#x„ yD 
r=Qs=0\r/\*/ *=1. 

k±t,J 

= 0 

^nce Dr>sd/j(Xj, yj) = 0 for ally and 0 g p 4- q < /u, as we observed after 
Lenima A.2. 
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