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PERTURBATIONS OF A BOUNDARY VALUE PROBLEM
WITH POSITIVE, INCREASING AND CONVEX NONLINEARITY

B. ZWAHLEN

1. Introduction. Let p, be a family of positive functions:
0/(x) = po(x) + tz(x), xe[—1, +1], te[—1, +1].
For a fixed ¢t we consider the boundary value problem (BVP):

—u"(x) = Ap()fu(x)), xe (=1, +1)

(BVPt){u(—I) = u(+1) =0,

where A is a non-negative parameter and f a positive, increasing and
convex function. Under these conditions there is a critical value A¥ > 0
such that (BVP¢) has at least one solution for 1 € (0, A}¥) and no solution
for A > AF.

Thinking of (BVP¢ = 0) as the unperturbed problem, it is the purpose
of this paper to study A} as a function of the perturbation parameter ¢.
Our result is a condition which implies the inequality ¥ < AF for small
positive (or negative) ¢. This condition involves only the perturbation =
and the solutions of (BVP0) at A§ and of its linearization. The method
which leads to this result is to develop (BVP¢) around the unperturbed
problem. Thus we find a bifurcation equation in ¢, which has to be dis-
cussed.

Our paper is organized as follows: §2 hypotheses; §3 here we reproduce
some known results which we use in the next section; §4 statement and
proof of our perturbation lemma.

2. Hypotheses. Let I = {xeR/|x| < 1}, I its closure, R, = {€¢eR/
& = 0}, A € R,.. We make the following hypotheses:
HI1) py; I - R continuous and positive.
z: I — Rcontinuous and |z(x)| < po(x), x € I.
0/x) = po(x), + tn(x),xel, tel
H2) f: R, — Rcontinuously differentiable and

f0) > O,€liin !:%)— = 00, f'(0) = 0, f’ strictly increasing.

Thus f'is positive, strictly increasing and strictly convex. We write
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S©) = f(€o) + /' — &) + 1§, 60, & G0 Ry
with r(§, &) > 0 for & # &,.

SoLutioNs. For a fixed 7 and a given A denote a solution by u,(-, A) €
C(I) N C%(I). The minimal solution (see §3) will be called 7(-, A); for
A = ¥ we write 4,(-, A¥) = uf.

INTEGRAL EQUATIONS. Equivalently to (BVP¢) we may work with the
integral equation
+1
(E?) u(0) = 4 [ G0, oSy
-1
where the Green’s function is continuous in I x I and positive in I x L

3. Some known results. Problems such as (BVPz) have been studied
extensively. From the known results about the solutions we only retain
the following: For a fixed ¢ € I we have

)0 < Af < o0,

2) for all A €[0, A¥] there is a unique minimal solution #,(-, A). This
solution is found by monotone iterations:

= W{”(x, 1) = Ap)f(u"(x, A)), xe I
u(+1,0) =0, n=1,2,3,...
uOx, ) =0, xel

The sequence (u{™(-, 1)) is monotonically increasing and converges to
a,-, A) in C().

3) For A = A}, u} is the unique solution. u} is weakly stable but not
stable, that means the linearized BVP at u}*

—w'(x) = pp(X) " WF)Iw(x), x e I, w(+1) = 0,

has A} as its lowest eigenvalue. The corresponding eigenfunction w, can
be chosen so as to be positive: w,(x) > 0, x € I.
See for instance [1], [2], [3], and [4].

4. Perturbations. In order to study the effect of a perturbation on the
critical value we first establish an estimate for the norm of a solution,
and then we transform the (BVP?) at 1 = A§. Instead of (BVPt) we con-
sider the equivalent integral equation

+1

(E?) u(x) = j G(x, oo(y) + 1IN )y

1

By hypothesis H1) there exists a 3 > 0 such that
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00(x) + tz(x) 2 B, forallxel foralltel

For A > 0 every solution u of (IEz?) is positive, concave and u(+1) = 0.
Therefore

M u() = 5 lul(l = IxD, xe 1
and
@ w2 g Il xe| 5 + 5|

Introducing (1) and (2) into (IE¢) gives

+1/2

+1
u z 28 | 6 0 (5 Il = 13Dy 2 267 (- lul) | Gex, )y

—1/2

and by taking the maximum norm on both sides

1
x “u“ +1/2
) A2 2y [ 6wy,
f(T ||u|]> —172

There is a y > O such that y < A¥, rel

Thus the inequality (3) together with the hypothesis lim,_...(f(£)/&) = o«
tell us that all solutions (4, u) of (IEf) with e [ and 1 = y are bounded
by a constant C > 0:

C)) lul = C.
We consider now (BVP¢) at 1 = Af.

—u"(x) = AF(oo(x) + tx(x)f(u(x)), -1 < x < +1

u(+1) =0

withu = uf + vandf(u) = f(u§ + v) = f(Wd) + ' w§)v + r(ud, v) (BVPr)

becomes

—v"(x) — ABpo(x)f" (ug (x))v(x)

(3 = (o) + tm(Nr(ug(x), v(x)) + AT WF() + f@§Hv(x)]

v(+1) = 0.

(BVPt)

By 3.3. we have a) for ¢ = 0 the only solution of (5) is v(x) = 0, and b)
Ly = —v"(x) — AFpo()f ' (ug(x))v(x) is a selfadjoint operator L: D <
LX(I) — LA(I) with N(L) = {ve D/Lv = 0} the one dimensional linear
subspace spanned by w.

By multiplying (5) with w; and integrating we get
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+1
0= j' (00(x) + ta(E)r(uECx), v())wo(x)dx
©) =1

+1

+ ¢ j 2 UE ) + £/ @ W)wo(x)dx.
—1
Let
+1
= j 2w () wo(x)dx.

We are now able to state the following result.

PERTURBATION LEMMA. Suppose Il > 0. Then there exists a 0 > 0 such
that for all t with 0 < t < § we have A} < A§. Similarly for Il < O there
exists a 6 > 0 such that A} < A§ for —0 <t < 0.

PrOOF. A) Suppose to the contrary that there is a sequence (f,),x1,
1 21, > 1,41 >0, lim,_.t, =0 with 2% = A§. (BVPt,) has at least one
solution at A = A and to simplify the notation call the minimal solution
4,,(+, A¥) = u, = u§ + v;. Equation (6) now reads
+1
0 = [ + 1im(NIs ), COmox)dx
™ E
+1

+ 0] + 1, jz(x) P WRWo(x)dx.
—1

As t,I] # 0 we have v,(x) # 0, for all k. Therefore

+1
j (00(x) + tm(FUFE), v,()wo(x)dx > 0,
1

for all k. With this we get from (7)

+1
®) I+ jn(x)f'(u;f(x))vk(x)wo(x)dx < 0, for all k.

1
From (8) we get immediately
() I £ Cllvl, for all k.

C is independent of k. The inequalities (4) and (9) together tell us ¢ <
vl = C,C >0,C >0.

B) Using po(y) + tim(y) £ 2p0(), the continuity of G(x, y) and in-
equality (4) it follows from (IE¢,) that
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+1
u(x) < 20(0) 3¢ jG(x, Moc)dy, € > 0,

-1
hence the sequences (#;);=; and (v,),z; are bounded and equicontinuous
in C(I).
Let (v,,),z; be a convergent subsequence, lim,_, v,, = #(x). Evidently
I7]l = €. Taking the limit in (7) as /- oo we get
+1
0 = [[ouCar@s o, sCopmxdx

-1
or

+1

fctortus @, 3w = 0

is in contradiction with the facts that py(x) > 0, xe I, wy(x) > 0, xel
and r(ud(x), #(x)) > 0 for ||#(x)| = €. Thus the lemma is proved by
contradiction.

REMARK. Now let f be an asymptotically linear function, which satisfies
all the other hypotheses, that is f/: R, — R continuously differentiably
f(0) >0, f'(0) = O, f strictly increasing and lim._(f(§)/§) = 7,0 < /<
co. Let 4 be the principal characteristic value of the linearized equation
“‘at infinity”” (for ¢ = 0):

+1

W) = [ GO, oWy

-1
If 4 < Af then the perturbation lemma remains true. In fact, writing
f&) = 7& + g(&), lime_(g(§)/&) = 0, it can easily be shown, that there
exist §; > 0 and d, > 0 such that all solutions of (IEt) with |¢| < §; and
A Z p® + 0, stay bounded (inequality (4)). Therefore the proof of the
perturbation lemma remains unchanged.

EXAMPLES. pg(x) = po = cst > 0. u*(x) and wy(x) are concave and
symmetric. Therefore /I is positive in the examples: 0 < # < po.
a) w(x) = # cos(wx), b) n(x) = (1 — 2|x), c) z(x) = #(1 — 2x?).
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