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PERTURBATIONS OF A BOUNDARY VALUE PROBLEM 
WITH POSITIVE, INCREASING AND CONVEX NONLINEARITY 

B. ZWAHLEN 

1. Introduction. Let pt be a family of positive functions : 

pt(x) = po(x) + tn(x)9 xe[-l, +1], t e [ - 1 , +1]. 

For a fixed / we consider the boundary value problem (BVP): 

1 " U"(X) = XP&W<x)\ * e (-1, +1) 
U( - i ) =w(+i) = o, 

where A is a non-negative parameter and / a positive, increasing and 
convex function. Under these conditions there is a critical value Af > 0 
such that (BVPO has at least one solution for A e (0, Af) and no solution 
for A > Af. 

Thinking of (BVP/ = 0) as the unperturbed problem, it is the purpose 
of this paper to study A* as a function of the perturbation parameter t. 
Our result is a condition which implies the inequality Af < Aft for small 
positive (or negative) /. This condition involves only the perturbation % 
and the solutions of (BVPO) at <̂f and of its linearization. The method 
which leads to this result is to develop (BVP/) around the unperturbed 
problem. Thus we find a bifurcation equation in t, which has to be dis­
cussed. 

Our paper is organized as follows: §2 hypotheses; §3 here we reproduce 
some known results which we use in the next section; §4 statement and 
proof of our perturbation lemma. 

2. Hypotheses. Let / = {jteR/|x| < 1}, / its closure, R+ = {£eR/ 
| ^ 0}, A e R+. We make the following hypotheses: 

HI) p0; I -> R continuous and positive. 
7c: I -> R continuous and \7t(x)\ < p0(x), xel. 
Pt(x) = Po(x), + tn{x), xel, tel, 

H2) / : R+ -• R continuously differentiate and 

/(0) > 0, lim &P- = oo,/'(0) ^ 0 , / ' strictly increasing. 

Thus/ is positive, strictly increasing and strictly convex. We write 
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f(0 = fiïo) + /'(€(,)(£ - fo) + Kï, ÇQ), Ç, £ o e R+ 

with r(£, &) > 0 for f ^ f0. 

SOLUTIONS. For a fixed t and a given A denote a solution by ut{ •, A) e 
C(7) fi C2(7). The minimal solution (see §3) will be called ût(-, À); for 
/I = /If we write «,(•> /If) = uf. 

INTEGRAL EQUATIONS. Equivalently to (BVPf) we may work with the 
integral equation 

+i 

(IE*) u(x) = X J" G(x, y)pt(y)f(u(y))dy 
- 1 

where the Green's function is continuous in / x / and positive in I x I. 

3. Some known results. Problems such as (BVPf) have been studied 
extensively. From the known results about the solutions we only retain 
the following : For a fixed t el we have 

1) 0 < X* < oo, 
2) for all À G [0, Af] there is a unique minimal solution ut(-, /I)- This 

solution is found by monotone iterations : 

- ( K W * , /))" = WM ( M - 1 } (* , A)), x E / 
W(«)(+1,A) = 0 , « = 1,2, 3, . . . 
w(0)(x, ;o = 0, x e /. 

The sequence (w,(w)(*, X)) is monotonically increasing and converges to 
u,(-, « in C(/). 

3) For /I = /If, w* is the unique solution, uf is weakly stable but not 
stable, that means the linearized BVP at uf 

-w"(x) = Wt(x)f'(uT(x)Mx),xeI9 w(±l) = 0, 

has Àf as its lowest eigenvalue. The corresponding eigenfunction wt can 
be chosen so as to be positive : wtix) > 0, x e I. 

See for instance [1], [2], [3], and [4]. 

4. Perturbations. In order to study the effect of a perturbation on the 
critical value we first establish an estimate for the norm of a solution, 
and then we transform the (BVPr) at X = A*. Instead of (BVP/) we con­
sider the equivalent integral equation 

+i 

(IE/) u(x) = I j G(x, y)(p0{y) + tx(y))f(u(y))dy. 
- 1 

By hypothesis HI) there exists a ß > 0 such that 
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p0(x) + t%(x) ^ ß, for all x e l , for all / e / . 

For X > 0 every solution u of (IEf) is positive, concave and u{± 1) = 0. 
Therefore 

(1) « W ^ y N I O - \x\)yx el 

2 ' ^ 2 

and 

(2) w(x) â -J-NI , xe 

Introducing (1) and (2) into (IE/) gives 

+1 +1/2 

u(x) â ^ f G(*, >>)/(-! Nl(i - W)£fy ^ Xßf(±- Nl) J G(*> ^ 
- 1 -1/2 

and by taking the maximum norm on both sides 

— IMI 3/Q +1/2 

(3) - * - ^ f || J G(*. «Vfyll. 
/ ^ N l j 4/2 

There is a 7- > 0 such that 7- ̂  X*9 tel. 
Thus the inequality (3) together with the hypothesis lim^^ffâ/Ç) = 00 

tell us that all solutions (X, u) of (IE?) with tel and >i ^ ^ are bounded 
by a constant C > 0: 

(4) NI S C. 

We consider now (BVPO at X = Xg. 

, D ^ N ~ W "W = ^*(poW + tx(x))f(u(x)l -1 < x < +1 

«(±i) = o 

with u = wo* + v and/fa) = /(itf + v) = /(w*) + f'(ug)v + r(w0*, v) (BVPr) 
becomes 

-v f f W-«^MW)v(x) 
(5) = XUpo(x) + /tf(*))r(itf(x), v(*)) + tXgic(x)[f{uì!(x)) + / W M * ) ] 

v(±l) = 0. 

By 3.3. we have a) for t = 0 the only solution of (5) is v(x) = 0, and b) 
Lv = — v"(x) — X*po(x)f'(u$(x))v(x) is a selfadjoint operator L: D a 
L2(I) -> L2(/) with iV(L) = {v e D/Lv = 0} the one dimensional linear 
subspace spanned by w0. 

By multiplying (5) with w0 and integrating we get 
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+1 

0 = 1 (po(x) + tic(x))r(u$(x), v(x))w0(x)dx 
l 
+i 

J *(*)(/W(x)) + f'(u$(x))v(x))w0(x)dx. 

(6) -1 
+1 

+ t 
-1 

Let 

n = \iu(x)f(v$(x))w0(x)dx. 

We are now able to state the following result. 

PERTURBATION LEMMA. Suppose II > 0. Then there exists a ô > 0 such 
that for all t with 0 < t < d we have Xf < X*. Similarly for II < 0 there 
exists a ö > 0 such that Xf < X* for —5<t<0. 

PROOF. A) Suppose to the contrary that there is a sequence (^)^i> 
1 ^ tk > tk+i > 0, lim^oo^ = 0 with Xfk ^ }$. (BVP^) has at least one 
solution at X = X* and to simplify the notation call the minimal solution 
^*('» ^o) = uk = u* + vk- Equation (6) now reads 

+i 

0 = j(po(*) + tkK(x))r(u$(x\ vk(x))w0(x)dx 

(7) 
+i 

+ tkn + rÄ J TZT(X)/ ,(4W)^W^OW^-
- 1 

As ^/7 7e 0 we have vk(x) ^ 0, for all k. Therefore 

+i 

J (po(*) + ^(x))r(w0*(x), vÄ(jf))w0(x)rfx > 0, 
- l 

for all A:. With this we get from (7) 

+i 

(8) n + f 7ü(x)f'(u$(x))vk(x)w0(x)dx < 0, for all k. 
- l 

From (8) we get immediately 

(9) n^ C | M , forali/;. 

C is independent of k. The inequalities (4) and (9) together tell us C ^ 
|| vJ ^ C, C > 0, C > 0. 

B) Using p0(j/) 4- tk7z{y) ^ 2p0(>'), the continuity of G(x, y) and in­
equality (4) it follows from (IE^) that 
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+1 

uk{x) S 2f(C) A0* JG(X, y)p0(y)dy, C > 0, 
- l 

hence the sequences (uk)k^1 and (v^)^ are bounded and equicontinuous 
in C(/). 

Let (vA/) /è l be a convergent subsequence, lim/_>00 vk/ = v(x). Evidently 
||v|| ^ C. Taking the limit in (7) as /-> oo we get 

+i 

0 = J po(x)r(u*(x), v(x))w0(x)dx 
- l 

or 

+i 

J po(x)r(u$(x)9 v(x))w0(x)dx = 0 
- i 

is in contradiction with the facts that p0(x) > 0, x el, w0(x) > 0, x e I 
and r(u$(x), v(x)) > 0 for ||v(x)|| ^ C. Thus the lemma is proved by 
contradiction. 

REMARK. NOW l e t /be an asymptotically linear function, which satisfies 
all the other hypotheses, that is / : R+ -> R continuously differentiably 
/(0) > 0,/ '(0) ä 0 , / ' strictly increasing and lim^Uf^W = / , 0 < / < 
oo. Let ju°° be the principal characteristic value of the linearized equation 
"at infinity" (for / = 0): 

+i 

w(x) = fjt/^G(x, y)po(y)w(y)dy. 
- l 

If /f° < À* then the perturbation lemma remains true. In fact, writing 
fié = ' £ + g(0> lime_oo(g(£)/£) = 0, it can easily be shown, that there 
exist di > 0 and d2 > 0 such that all solutions of (IE/) with \t\ < 5i and 
À ^ JLL™ + d2 stay bounded (inequality (4)). Therefore the proof of the 
perturbation lemma remains unchanged. 

EXAMPLES. p0(x) = p0 = est > 0. w*(x) and w0(x) are concave and 
symmetric. Therefore U is positive in the examples : 0 < jf7 < pQ. 
a) TC(X) = tf COS(TTX), b) %(x) = jf(l - 2\x\), c) %{x) = tf(\ - 2x2). 
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