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Abstract

In this paper, we first introduce and study the notions of strongly φ-flat

modules and strongly nonnil-injective modules. And then, we investigate

the homological dimensions of modules and rings in terms of these two

notions. Finally, we give some new homological characterizations of φ-

Dedekind rings and φ-Prüfer rings.
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Throughout this paper, all rings are commutative with identity and all modules

are unitary. First, we recall some notions on φ-rings, which are good generalizations

of integral domains, originated from [5]. A ringR is called an NP-ring if the nilpotent

radical Nil(R) is a prime ideal; and a ZN-ring if Z(R) = Nil(R) where Z(R) is the

set of all zero-divisors of R. A prime ideal p of R is called divided prime if p ( (x),

for every x ∈ R − p. A ring R is a φ-ring if Nil(R) is a divided prime ideal of

R. Moreover, a ZN φ-ring is said to be a strong φ-ring. Many well-known notions

of integral domains have the corresponding analogues in the class of φ-rings, such

as valuation domains, Dedekind domains, Prüfer domains, Noetherian domains,

coherent domains, Bezout domains and Krull domains (see [1, 2, 4, 6, 7]).

The studies of φ-rings from the moduletic viewpoint started from Yang [21], who

introduced the notion of nonnil-injective modules by replacing the ideals in Baer’s

criterion for injective modules with nonnil ideals. Dually, Zhao et al. [26] defined

the φ-flat modules in terms of nonnil ideals and Tor-functors. They also gave the

conceptions of φ-von Neumann rings over which any module is φ-flat, and then

showed that a φ-ring R is φ-von Neumann if and only if its Krull dimension is 0,

if and only if R/Nil(R) is a von Neumann regular ring. In 2018, Zhao [25] gave a

homological characterization of φ-Prüfer rings: a strong φ-ring R is φ-Prüfer if and

only if each submodule of a φ-flat module is φ-flat, if and only if each nonnil ideal
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of R is φ-flat. Recently, the first author and Qi [22] characterized φ-von Neumann

rings and φ-Dedekind rings in terms of nonnil-injective modules.

Let R be a ring. Recall that a class of R-modules is said to be resolving if it con-

tains all projective R-modules and is closed under direct summands, extensions and

kernels of surjective homomorphisms; and to be coresolving if it contains all injective

modules and is closed under direct summands, extensions and cokernels of injective

homomorphisms. It is well-known that the class of flat (resp., injective) modules

is resolving (resp., coresolving). These properties of a given class of R-modules are

very crucial to study the homology dimensions (see [9]). So it is natural to ask that:

Is the class of φ-flat (resp., nonnil-injective) modules also resolving (resp., coresolv-

ing)? The original motivation of this paper is to investigate this question. Actually,

we deny these for both φ-flat modules and nonnil-injective modules (see Examples

1.1 and 1.2). So we introduce the notions of strongly φ-flat modules and strongly

nonnil-injective modules to fill this gap (see Definition 1.4). The new notions and

the old ones are consistent over a ZN-ring (see Theorem 1.6). It is proved in [24] that

a φ-ring R is an integral domain if and only if every φ-flat module is flat. However,

it does not hold for strongly φ-flat modules (see Example 1.12). We introduce the

φ-flat dimensions and φ-injective dimensions of R-modules, investigate the φ-weak

global dimensions and φ-global dimensions of rings, and characterize φ-rings with

φ-weak global dimensions and φ-global dimensions at most 1, respectively.

1. strongly φ-flat modules and strongly nonnil-injective modules

Let R be an NP-ring. Then the set of all nonnil ideals of R, denoted by NN(R),

is closed under multiplication. From now on, we always suppose R is an NP-ring.

Let M be an R-module. Set

φ-tor(M) = {x ∈M | Ix = 0 for some I ∈ NN(R)}.

An R-module M is said to be φ-torsion (resp., φ-torsion free) provided that φ-

tor(M) = M (resp., φ-tor(M) = 0). Then the classes of φ-torsion modules and

φ-torsion free modules constitute a hereditary torsion theory of finite type.

Recall from [26, 27] that an R-module M is called φ-flat if TorR1 (T,M) = 0 for

any φ-torsion module T ; and M is called nonnil-injective if Ext1
R(T,M) = 0 for any

φ-torsion module T . It is shown in [26, Theorem 3.2] and [27, Theorem 1.7] that an

R-module M is φ-flat if and only if TorR1 (R/I,M) = 0 for any (finitely generated)

nonnil ideal I of R; and M is nonnil-injective if and only if Ext1
R(R/I,M) = 0 for

any nonnil ideal I of R.
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It is well-known that the class of flat modules is resolving; and the class of injective

modules is coresolving. And so it is ubiquitous to study modules and rings by using

flats and injectives. So it is natural to ask that:

Is the class of all φ-flat (resp., nonnil-injective) modules resolving (resp.,

coresolving)?

Before we give a negative answer for above question, we need to recall the trivial

extension of rings. Let R be a ring and M an R-module. As in [3], let R(+)M be

an R-module isomorphic to R⊕M , and define

(1) (r,m)+(s, n)=(r + s,m+ n),

(2) (r,m)(s, n)=(rs, sm+ rn).

Then R(+)M become a commutative ring with identity (1, 0).

Now, we are ready to give the example to show if 0 → A → B → C → 0 is an

exact sequence with B and C φ-flat, then A is not necessarily φ-flat. Specially, the

class of all φ-flat modules is not resolving.

Example 1.1. Let Z be the ring of all integers with Q its quotients field, and

Z(p∞) := { n
pk

+ Z | n
pk

+ Z ∈ Q/Z} the p-Prüfer group with p a prime in Z. Set

R = Z(+)Z(p∞) the trivial extension of Z with Z(p∞). Since Z(p∞) is a divisible

module, we have R is a φ-ring by [13, Corollary 2.4] where Nil(R) = 0(+)Z(p∞),

and so R/Nil(R) is φ-flat since TorR1 (R/I,R/Nil(R)) = (I ∩ Nil(R))/INil(R) = 0

for any nonnil ideal I of R. However, we claim that Nil(R) is not φ-flat. Indeed,

let I = 〈(p, 0)〉. Then I is nonnil. The claim follows by the following isomorphisms

(see [12, Proposition 1]):

TorR1 (R/I,Nil(R))

∼={(0,m) ∈ 0(+)Z(p∞) | (p, 0)(0,m) = 0}/(0 :R (p, 0)) · 0(+)Z(p∞)

∼=0(+)Z(p1)/0(+)Z(p1) · 0(+)Z(p∞)

∼=0(+)Z(p1) 6= 0,

where Z(p1) := {n
p

+ Z ∈ Z(p∞) | n is an integer} is a subgroup of Z(p∞).

The following example also shows that if 0 → A → B → C → 0 is an exact

sequence with A and B nonnil-injective, then C is not necessarily nonnil-injective.

Specially, the class of all nonnil-injective modules is not coresolving.
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Example 1.2. Consider the above Example 1.1. Let E := HomZ(R/Nil(R),Q/Z).

Then E is nonnil-injective by [22, Proposition 1.4]. However, we claim the quotien-

t HomZ(Nil(R),Q/Z) of the injective module HomZ(R,Q/Z) by E is not nonnil-

injective. Indeed,

Ext1
R(R/I,HomZ(Nil(R),Q/Z)) ∼= HomZ(TorR1 (R/I,Nil(R)),Q/Z) 6= 0

by Example 1.1. Hence, HomZ(Nil(R),Q/Z) is not nonnil-injective.

In view of the above examples, the class of all φ-flat modules is not resolving, and

the class of all nonnil-injective is not coresolving in general. To obtain the resolving

or coresolving property similar to flatness and injectivity in NP-rings, we introduce

the following “strong version” of φ-flat modules and nonnil-injective modules using

higher derived functors.

Definition 1.3. Let R be an NP-ring and M an R-module. Then

(1) M is called strongly φ-flat if TorRn (T,M) = 0 for any φ-torsion module T

and any n ≥ 1.

(2) M is called strongly nonnil-injective if ExtnR(T,M) = 0 for any φ-torsion

module T and any n ≥ 1.

Lemma 1.4. Let R be a φ-ring and M an R-module. Then the following statements

hold.

(1) M is strongly φ-flat if and only if TorRn (R/I,M) = 0 for any (finitely

generated) nonnil ideal I of R and any n ≥ 1.

(2) M is strongly nonnil-injective if and only if ExtnR(R/I,M) = 0 for any nonnil

ideal I of R and any n ≥ 1.

Proof. One can easily verify that an R-module M is strongly φ-flat (resp., strongly

nonnil-injective) if and only if each syzygies Ωn(M) (resp., co-syzygies Ω−n(M)) of

M is φ-flat (resp., nonnil-injective) and that each Ωn(M) (resp., Ω−n(M)) is φ-flat

(resp., nonnil-injective) if and only if TorR1 (R/I,Ωn(M)) = 0 for any nonnil ideal I

of R. (resp., Ext1
R(R/I,Ω−n(M)) = 0 for any (finitely generated) nonnil ideal I of

R.) �

Proposition 1.5. Let R be a φ-ring and 0 → A → B → C → 0 a short exact

sequence of R-modules. Then the following statements hold.

(1) The class of strongly φ-flat modules (resp., strongly nonnil-injective modules)

is closed under direct limits (resp., direct products), direct summands, and

extensions.

(2) If B and C are strongly φ-flat modules, so is A.
4
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(3) If A and B are strongly nonnil-injective modules, so is C.

Proof. We only prove (2), since the proof of (1) is easy and the proof of (3) is similar

to that of (2). Let T be a φ-torsion module. Then we have an exact sequence · · · →
TorRn+1(T,C) → TorRn (T,A) → TorRn (T,B) → · · · → TorR2 (T,C) → TorR1 (T,A) →
TorR1 (T,B)→ TorR1 (T,C). Since B and C are strongly φ-flat modules, TorRn (T,B) =

TorRn (T,C) = 0 for any n ≥ 1. Hence TorRn (T,A) = 0 for any n ≥ 1, whence A is

strongly φ-flat. �

Obviously, every strongly φ-flat module is φ-flat, and every strongly nonnil-

injective module is nonnil-injective. By Lemma 1.5, Example 1.1 and 1.2, φ-flat

modules are not necessarily strongly φ-flat, and nonnil-injective modules are also

not necessarily strongly nonnil-injective. But the following result gives that over ZN

rings, φ-flat modules are exactly strongly φ-flat and nonnil-injective modules are

exactly strongly nonnil-injective.

Theorem 1.6. Let R be a ZN ring. Then the following statements hold.

(1) An R-module M is φ-flat if and only if it is strongly φ-flat.

(2) An R-module M is nonnil-injective if and only if it is strongly nonnil-injective.

Proof. (1) Suppose M is a φ-flat R-module. Let J be a nonnil ideal of R. Then

there exists a nonnilpotent element a ∈ J . Since a is a non-zero-divisor of R,

TorRn (R/〈a〉,M) = 0 for any positive integer n. It follows by [8, Proposition 4.1.1]

that

Tor
R/〈a〉
1 (R/J,M/aM) ∼= Tor

R/〈a〉
1 (R/J,M ⊗R R/〈a〉) ∼= TorR1 (R/J,M) = 0.

Hence M/Ma is a flat R/〈a〉-module. Consequently, for any n ≥ 1 we have

TorRn (R/J,M) ∼= TorR/〈a〉
n (R/J,M ⊗R R/〈a〉) ∼= TorR/〈a〉

n (R/J,M/aM) = 0.

It follows that M is a strongly φ-flat R-module.

(2) Now suppose M is a nonnil-injective R-module. Let J be a nonnil ideal of R.

Then there exists a nonnilpotent element a ∈ J . Since a is a non-zero-divisor of R,

ExtnR(R/〈a〉,M) = 0 for any positive integer n. It follows by [8, Proposition 4.1.4]

that

Ext1
R/〈a〉(R/J,HomR(R/〈a〉,M)) ∼= Ext1

R(R/J,M) = 0.

Hence HomR(R/〈a〉,M) is an injective R/〈a〉-module by Baer criterion. Conse-

quently, for any n ≥ 1 we have

ExtnR(R/J,M) ∼= ExtnR/〈a〉(R/J,HomR(R/〈a〉,M)) = 0.

It follows that M is a strongly nonnil-injective R-module. �

5

31 Mar 2024 17:27:31 PDT
230903-Zhang Version 2 - Submitted to Rocky Mountain J. Math.



Remark 1.7. Recall from [16, 20] that an R-module M is called to be regular flat

(resp., regular injective) if TorR1 (R/I,M) = 0 (resp., Ext1
R(R/I,M) = 0) for any

regular ideal (i.e., an ideal that contains a non-zero-divisor) I of R. Similar with

the proof of Theorem 1.6, one can show that an R-module M is regular flat (resp.,

regular injective) if and only if TorRn (R/I,M) = 0 (resp., ExtnR(R/I,M) = 0) for

any regular ideal I of R and any n ≥ 1.

It is known that a ZN φ-ring is exactly a strong φ-ring. The following result is

devoted to the converse of Theorem 1.6 under some assumptions.

Theorem 1.8. Let R be a φ-ring such that either Nil(R) is nilpotent or (0 :R a) is

finitely generated for any non-nilpotent element a (e.g. R is a nonnil-coherent ring).

If one of the following two statements holds:

(1) every φ-flat R-module is strongly φ-flat;

(2) every nonnil-injective R-module is strongly nonnil-injective,

then R is a strong φ-ring.

Proof. (1) Let R be a φ-ring and a a non-nilpotent element in R. Suppose every

φ-flat R-module is strongly φ-flat. It follows by the proof of [24, Proposition 1] that

R/Nil(R) is a φ-flat R-module, and so is strongly φ-flat. Hence,

TorR2 (R/Ra,R/Nil(R)) ∼= TorR1 (R/(0 :R a), R/Nil(R)) ∼=
(0 :R a) ∩ Nil(R)

(0 :R a)Nil(R)
= 0.

Since R is a φ-ring, (0 :R a) ⊆ Nil(R), and so (0 :R a) ∩ Nil(R) = (0 :R a). So

TorR2 (R/Ra,R/Nil(R)) ∼= (0:Ra)
(0:Ra)Nil(R)

= 0. And hence (0 :R a) = (0 :R a)Nil(R).

(a) Suppose (0 :R a) is finitely generated. By Nakayama’s lemma, we have (0 :R
a) = 0, that is, a is a nonzero-divisor. So R is a strong φ-ring.

(b) Suppose Nil(R) is nilpotent. Assume Nil(R)m = 0. Then (0 :R a) = (0 :R
a)Nil(R) = · · · = (0 :R a)Nil(R)m = 0. So R is a strong φ-ring.

(2) Let R be a φ-ring and a a non-nilpotent element in R. Suppose every nonnil-

injective R-module is strongly nonnil-injective. It follows by the proof of [22, Theo-

rem 1.6] that (R/Nil(R))+ := HomZ(R/Nil(R),Q/Z) is a nonnil-injective R-module,

and so is strongly nonnil-injective. Hence,

Ext2
R(R/Ra, (R/Nil(R))+) ∼= TorR2 (R/Ra,R/Nil(R))+ = 0.

So TorR2 (R/Ra,R/Nil(R)) = 0, and hence (0 :R a) = (0 :R a)Nil(R). The rest is the

same with that of (1). �

Proposition 1.9. Let R be an NP-ring. Then the following statements are equiva-

lent.
6
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(1) M is strongly φ-flat.

(2) HomR(M,E) is strongly nonnil-injective for any injective module E.

(3) If E is an injective cogenerator, then HomR(M,E) is strongly nonnil-injective.

Proof. (1) ⇒ (2): Let T be a φ-torsion R-module and E an injective R-module.

Since M is strongly φ-flat,

ExtnR(T,HomR(M,E)) ∼= HomR(TorRn (T,M), E) = 0

for any positive integer n. Thus HomR(M,E) is strongly nonnil-injective.

(2)⇒ (3): Trivial.

(3) ⇒ (1): Let I be a nonnil ideal of R and E an injective cogenerator. Since

HomR(M,E) is strongly nonnil-injective,

HomR(TorRn (R/I,M), E) ∼= ExtnR(R/I,HomR(M,E)) = 0

for any positive integer n. Since E is an injective cogenerator, TorRn (R/I,M) = 0

for any positive integer n. Thus M is strongly φ-flat by Lemma 1.4. �

Remark 1.10. By linking Proposition 1.9 and [17, Proposition 1.8], one can deduce

that every nonnil-injective R-module is strongly nonnil-injective implies that every

φ-flat R-module is strongly φ-flat.

Let R be an NP-ring. Then every flat R-module is strongly φ-flat, and every

injective R-module is strongly nonnil-injective. The converses are trivially true for

integral domains, but not in general.

Example 1.11. It is obvious that all flat (resp., injective) modules are strongly

φ-flat (resp., strongly nonnil-injective). However, the converse does not hold in

general. Indeed, let R be a strong φ-ring which is not an integral domain (e.g.

R = D(+)Q with D a domain and Q its quotient field). Then every strongly

φ-flat (resp., strongly nonnil-injective) module is φ-flat (resp., nonnil-injective) by

Theorem 1.6. However, there exist φ-flat (resp., nonnil-injective) modules which are

not flat (resp., injective), (see [24, Proposition 1] and [22, Theorem 1.6]).

It is proved in [24, Proposition 1] and [22, Theorem 1.6] that a φ-ring R is an

integral domain if and only if every φ-flat R-module is flat, if and only if every nonnil-

injective R-module is injective. The following example shows that all strongly φ-flat

(resp., strongly nonnil-injective φ-torision-free) modules can be flat (resp., injective)

over φ-rings which are not domains.

Example 1.12. Let R = Z(+)Z(p∞) be the ring in Example 1.1. Then the following

statements hold.
7
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(1) Every strongly φ-flat R-module is flat.

(2) Every strongly nonnil-injective φ-torision-free R-module is injective.

Proof. Let I be an ideal of R. Then, by [3, Corollary 3.4], I is of the following two

forms:

(a) I := 〈(n, 0)〉 = 〈n〉(+)Z(p∞) where 0 6= n ∈ Z;

(b) I := 0(+)N , where N is a subgroup of Z(p∞).

The ideal I in case (a) is a nonnil ideal of R. Now we consider the ideal in case

(b). Then N is of the form Z(pk) := { n
pk

+ Z ∈ Z(p∞) | n is an integer} with k

a non-negative integer or Z(p∞). Set Ik := 〈(0, 1
pk

)〉 = 0(+)Z(pk) for each positive

integer k. Note that there is a short exact sequence 0 → Ik → R → (pk, 0)R → 0

for each non-negative integer k. Note that Z(p∞) =
⋃
Z(pk) = lim

−→
Z(pk). Set

I∞ = 0(+)Z(p∞), then I∞ = lim
−→

Ik.

(1) Suppose that M is a strongly φ-flat R-module. It follows that

TorR1 (R/Ik,M) ∼= TorR1 (〈(pk, 0)〉,M) ∼= TorR2 (R/〈(pk, 0)〉,M) = 0

for each positive integer k. And so each natural homomorphism fk : Ik ⊗R M →
R ⊗R M is a monomorphism. Now consider the case I∞. Then the natural map

f∞ : I∞ ⊗R M → R ⊗R M , which can be seen as the direct limits of fk, is also a

monomorphism. So TorR1 (R/I∞,M) = 0. In conclusion, TorR1 (R/I,M) = 0 for any

ideal I of R. It follows that M is a flat R-module.

(2) Suppose that M is a strongly nonnil-injective φ-torision-free R-module. Then

Ext1
R(R/Ik,M) ∼= Ext1

R((pk, 0)R,M) ∼= Ext2
R(R/(pk, 0)R,M) = 0

for each non-negative integer k. Now, consider the the case I∞. Let

0→ HomR(R/Ik,M)→ HomR(R,M)→ HomR(Ik,M)→ 0

be the natural exact sequence. Taking inverse limits, we have the following exact

sequence:

0→ lim
←−

HomR(R/Ik,M)→ lim
←−

HomR(R,M)→ lim
←−

HomR(Ik,M)→ lim
←−

1HomR(R/Ik,M)→ 0

by [18, 1.2.2]. Considering the R-exact sequence 0→ Ik+1/Ik → R/Ik → R/Ik+1 →
0, we have an exact sequence

0→ HomR(R/Ik+1,M)→ HomR(R/Ik,M)→ HomR(Ik+1/Ik,M)→ 0.

Since (0 :R Ik+1/Ik) = (0 :R I1) = 〈(p, 0)〉, we have

HomR(Ik+1/Ik,M) ∼= HomR(R/〈(p, 0)〉,M) = 0
8
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because M is φ-torsion-free. So we have a natural isomorphism HomR(R/Ik+1,M) ∼=
HomR(R/Ik,M) for each non-negative integer k, and hence the inverse system

{HomR(R/Ik,M) | k ≥ 0} is Mittag-Leffler. It follows by [18, 1.2.3] that

lim
←−

1HomR(R/Ik,M) = 0.

Consequently, the natural map

lim
←−

HomR(R,M) ∼= HomR(R,M) � lim
←−

HomR(Ik,M) ∼= HomR(I∞,M)

is an epimorphism and so Ext1
R(R/I∞,M) = 0. In conclusion, Ext1

R(R/I,M) = 0

for any ideal I of R. It follows that M is an injective R-module. �

2. on φ-flat dimensions of modules and φ-weak global dimensions of

rings

It is well known that the flat dimension of an R-module M is defined as the

length of the shortest flat resolutions of M and the weak global dimension of R is

the supremum of the flat dimensions of all R-modules. We now introduce the notion

of φ-flat dimension of an R-module as follows.

Definition 2.1. Let R be a ring and M an R-module. We write φ-fdR(M) ≤ n

(φ-fd abbreviates φ-flat dimension) if there is an exact sequence of R-modules

0→ Fn → · · · → F1 → F0 →M → 0 (♦)

where each Fi is strongly φ-flat for i = 0, . . . , n. The exact sequence (♦) is said to

be a φ-flat resolution of length n of M . If such finite resolution does not exist, then

we say φ-fdR(M) = ∞; otherwise, define φ-fdR(M) = n if n is the length of the

shortest φ-flat resolution of M .

It is obvious that an R-module M is strongly φ-flat if and only if φ-fdR(M) = 0.

Certainly, φ-fdR(M) ≤fdR(M). If R is an integral domain, then φ-fdR(M) =fdR(M).

Proposition 2.2. Let R be an NP-ring. Then the following statements are equiva-

lent for an R-module M .

(1) φ-fdR(M) ≤ n.

(2) TorRn+k(T,M) = 0 for all φ-torsion R-modules T and all positive integers k.

(3) TorRn+k(R/I,M) = 0 for all nonnil ideals I and all positive integers k.

(4) TorRn+k(R/I,M) = 0 for all finitely generated nonnil ideals I and all positive

integers k.

(5) If 0 → Fn → · · · → F1 → F0 → M → 0 is an exact sequence, where

F0, F1, . . . , Fn−1 are strongly φ-flat R-modules, then Fn is strongly φ-flat.
9
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(6) If 0 → Fn → · · · → F1 → F0 → M → 0 is an exact sequence, where

F0, F1, . . . , Fn−1 are flat R-modules, then Fn is strongly φ-flat.

(7) There exists an exact sequence 0→ Fn → · · · → F1 → F0 → M → 0, where

F0, F1, . . . , Fn−1 are flat R-modules and Fn is a strongly φ-flat R-module.

Proof. (1)⇒ (2): We prove (2) by induction on n. For the case n = 0, (2) trivially

holds because M is strongly φ-flat. If n > 0, then there is an exact sequence

0 → Fn → · · · → F1 → F0 → M → 0, where each Fi is strongly φ-flat for

i = 0, . . . , n. Set K0 = ker(F0 → M). Then both 0 → K0 → F0 → M → 0

and 0 → Fn → Fn−1 → · · · → F1 → K0 → 0 are exact. So φ-fdR(K0) ≤ n − 1.

By induction, TorRn−1+k(T,K0) = 0 for all φ-torsion R-modules T and all positive

integers k. Thus, it follows from the exact sequence

0 = TorRn+k(T, F0)→ TorRn+k(T,M)→ TorRn−1+k(T,K0)→ TorRn−1+k(T, F0) = 0

that TorRn+k(T,M) ∼= TorRn−1+k(T,K0) = 0.

(2)⇒ (3)⇒ (4) and (5)⇒ (6): Trivial.

(4)⇒ (5): Let K0 = ker(F0 →M) and Ki = ker(Fi → Fi−1), where i = 1, . . . , n−
1. Then Kn−1

∼= Fn. Since all F0, F1, . . . , Fn−1 are strongly φ-flat, TorRk (R/I, Fn) ∼=
TorR1+k(R/I,Kn−2) ∼= · · · ∼= TorRn+k(R/I,M) = 0 for all finitely generated nonnil

ideal I and any positive integer k by dimensional shift. Hence Fn is strongly φ-flat

by Lemma 1.4.

(6)⇒ (7): Since the class of flat modules is covering, we can construct an exact se-

quence · · · → Fn−1
dn−1−−−→ Fn−2 → · · · → F1 → F0 → M → 0, where F0, F1, . . . , Fn−1

are flat R-modules, then Fn := Ker(dn−1) is strongly φ-flat by (6).

(7)⇒ (1): Trivial. �

The proofs of the following two results are similar with the classical ones, and so

we omit their proofs.

Corollary 2.3. Let R be an NP-ring and 0 → A → B → C → 0 be an exact

sequence of R-modules. Then the following statements hold.

(1) φ-fdR(C) ≤ 1 + max{φ-fdR(A), φ-fdR(B)}.
(2) If φ-fdR(B) < φ-fdR(C), then φ-fdR(A) = φ-fdR(C)− 1 ≥ φ-fdR(B).

Corollary 2.4. Let R be an NP-ring and {Mi | i ∈ Γ} be a direct system of R-

modules. Then

φ-fdR(lim
−→

Mi) = sup{φ-fdR(Mi)}.

Now, we are ready to introduce the φ-weak global dimension of a ring in terms of

φ-flat dimensions.
10
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Definition 2.5. The φ-weak global dimension of a ring R is defined by

φ-w.gl.dim(R) = sup{φ-fdR(M) |M is an R-module}.

Obviously, by definition, φ-w.gl.dim(R) ≤w.gl.dim(R). Notice that if R is an

integral domain, then φ-w.gl.dim(R) =w.gl.dim(R). The following result can easily

be deduced by Proposition 2.2 and so we omit its proof.

Theorem 2.6. Let R be an NP-ring. Then the following statements are equivalent

for R.

(1) φ-w.gl.dim(R) ≤ n.

(2) φ-fdR(M) ≤ n for all R-modules M .

(3) TorRn+k(T,M) = 0 for all R-modules M , all φ-torsion modules T and all

positive integers k.

(4) TorRn+k(R/I,M) = 0 for all R-modules M , all nonnil ideals I of R and all

positive integers k.

(5) TorRn+k(R/I,M) = 0 for all R-modules M , all finitely generated nonnil ideals

I of R and all positive integers k.

(6) TorRn+1(T,M) = 0 for all R-modules M and all φ-torsion modules T .

(7) TorRn+1(R/I,M) = 0 for all R-modules M and all nonnil ideals I of R.

(8) TorRn+1(R/I,M) = 0 for all R-modules M and all finitely generated nonnil

ideals I of R.

(9) fdR(R/I) ≤ n for all nonnil ideals I of R.

(10) fdR(R/I) ≤ n for all finitely generated nonnil ideals I of R.

Consequently, the φ-weak global dimension of R is determined by the formulas:

φ-w.gl.dim(R) = sup{fdR(R/I) | I is a nonnil ideal of R}

= sup{fdR(R/I) | I is a finitely generated nonnil ideal of R}.

Theorem 2.7. Let R be a strong φ-ring. Then the following statements hold.

(1) w.gl.dim(R/Nil(R)) ≤ φ-w.gl.dim(R).

(2) φ-w.gl.dim(R)− fdR(R/Nil(R)) ≤ w.gl.dim(R/Nil(R)).

Proof. (1) Suppose w.gl.dim(R/Nil(R)) = n. Then there exists a nonnil ideal I of

R and an R/Nil(R)-module M such that

TorR/Nil(R)
n (R/I ⊗R R/Nil(R),M) ∼= TorR/Nil(R)

n (R/I,M) 6= 0.

Note thatR/Nil(R) is φ-flat, and then, by Theorem 1.6, we have TorRn (R/I,R/Nil(R)) =

0 for all n ≥ 1. So

TorRn (R/I,M) ∼= TorR/Nil(R)
n (R/I ⊗R R/Nil(R),M) 6= 0,

11
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and hence fdR(R/I) ≥ n. It follows by Theorem 2.6 that φ-w.gl.dim(R) ≥ n.

(2) It immediately follows by [19, Theorem 3.8.5] and Theorem 2.6. �

It is natural to ask the question:

Question 2.8. Let R be a strong φ-ring. Does the following equation hold?

w.gl.dim(R/Nil(R)) = φ-w.gl.dim(R).

We can verify it in the following case.

Proposition 2.9. Let D be an integral domain, Q its quotient field and V a Q-linear

space. Then φ-w.gl.dim(D(+)V ) =w.gl.dim(D).

Proof. Set R = D(+)V . Assume w.gl.dim(D) ≤ n. Let M be an R-module, Then

M is naturally a D-module. Let J be a nonnil ideal of R. Then by [3, Corollary3.4],

we have J = I(+)V with I a nonzero ideal of D. Note that R is a flat D-module.

By [8, Proposition 4.1.2] we have

TorRn+1(R/J,M) ∼= TorRn+1(D/I ⊗D R,M) ∼= TorDn+1(D/I,M) = 0.

So φ-w.gl.dim(D(+)V ) ≤w.gl.dim(D). The result follows by Theorem 2.7. �

It is well known that a ring R with weak global dimension 0 is exactly a von

Neumann regular ring, equivalently a ∈ (a2) for any a ∈ R. Recall from [26] that

a φ-ring R is said to be φ-von Neumann regular provided that every R-module is

φ-flat. A φ-ring R is φ-von Neumann regular, if and only if for any non-nilpotent

element a ∈ R there is an element x ∈ R such that a = xa2, if and only if R/Nil(R) is

a von Neumann regular φ-ring, i.e., R/Nil(R) is a field (see [26, Theorem 4.1]). Now,

we characterize φ-von Neumann regular rings in terms of strongly φ-flat modules

and φ-weak global dimensions.

Theorem 2.10. Let R be a φ-ring. Then the following statements are equivalent

for R.

(1) φ-w.gl.dim(R) = 0.

(2) Every R-module is strongly φ-flat.

(3) R is a φ-von Neumann regular ring.

Proof. (1)⇔ (2): By definition.

(2)⇒ (3): It follows by [26, Theorem 4.1] and [14, Corollary 4.5].

(3)⇒ (2): Suppose R is a φ-von Neumann regular ring. Then we claim that R is

a ZN-ring. Indeed, let a be a non-nilpotent element in R. Since R/Nil(R) is a field

by [26, Theorem 4.1], we have (1 − ab)n = 0 for some b ∈ R and positive integer
12
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n. So a is a unit, and thus a non-zero-divisor. Now (2) follows by Theorem 1.6 and

[26, Theorem 4.1]. �

For a φ-ring R, there is a ring homomorphism φ : T(R) → RNil(R) such that

φ(a/b) = a/b where a ∈ R and b is a regular element. Denote by the ring φ(R) the

image of φ restricted to R. Then φ(R) is a strong φ-ring. Recall that a regular ideal

I of R is called invertible if II−1 = R where I−1 = {x ∈ T(R) | Ix ⊆ R}. Recall

from [1] that a nonnil ideal I of a φ-ring R is said to be φ-invertible provided that

φ(I) is an invertible ideal of φ(R).

Following [1], a φ-ring R is said to be a φ-Prüfer ring if every finitely generated

nonnil ideal I is φ-invertible, i.e., φ(I)φ(I−1) = φ(R). A φ-ring R is said to be a

φ-chain ring (φ-CR for short) if for any a, b ∈ R−Nil(R), either a|b or b|a in R. It

follows from [1, Corollary 2.10] that a φ-ring R is φ-Prüfer, if and only if Rm is a

φ-CR for any maximal ideal m of R, if and only if R/Nil(R) is a Prüfer domain, if

and only if φ(R) is Prüfer. For a strong φ-ring R, Zhao [25, Theorem 4.3] showed

that R is a φ-Prüfer ring if and only if all φ-torsion free R-modules are φ-flat, if and

only if each submodule of a φ-flat R-module is φ-flat, if and only if each nonnil ideal

of R is φ-flat.

Theorem 2.11. Let R be a φ-ring. Then the following statements are equivalent

for R.

(1) φ-w.gl.dim(R) ≤ 1.

(2) Every submodule of flat R-module is strongly φ-flat.

(3) Every submodule of strongly φ-flat R-module is strongly φ-flat.

(4) R is a φ-Prüfer strong φ-ring.

Proof. (1)⇔ (2)⇔ (3): By Theorem 2.6.

(4)⇒ (2): It follows by [26, Theorem 4.1].

(2)⇒ (4): Since every submodule of a flat R-module is strongly φ-flat, every ideal

of R is φ-flat. It follows by [15, Corollary 2.8] that R is a strong φ-ring. Hence the

result follows by [25, Theorem 4.3] and Theorem 1.6. �

Note that when w.gl.dim(R/Nil(R)) ≤ 1, Question 2.8 holds by Theorem 2.10

and Theorem 2.11.

Corollary 2.12. Let D be an integral domain, Q its quotient field and V a Q-linear

space. Then D(+)V is a φ-Prüfer ring if and only if D is a Prüfer domain.

Proof. Note that D(+)V is a strong φ-ring. So the result follows by Proposition 2.9

and Theorem 2.10. �
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The following example shows that the φ-weak global dimensions of φ-Prüfer rings

can be sufficiently large, and so the condition “R is a strong φ-ring” in Theorem

2.10(4) cannot be removed.

Example 2.13. Let R be the ring in Example 1.1. Then R is a φ-Prüfer rings since

R/Nil(R) ∼= Z is a Prüfer domain. It is easy to verify that there is a projective

resolution of 〈p〉(+)Z(p∞)

· · · → R
d4−→ R

d3−→ R
d2−→ R

d1−→ R
d0−→ 〈p〉(+)Z(p∞)→ 0,

where dn is a multiplication by (p, 0) when n is even, and a multiplication by (0, 1
p
+Z)

when n is odd. Note that the above projective resolution is not split. So the global

dimension, and hence the weak global dimension of R is infinite. By Example 1.12,

every strongly φ-flat R-module is flat. Hence the φ-weak global dimension of R is

also infinite.

3. on φ-injective dimensions of modules and φ-global dimensions of

rings

It is well known that the injective dimension of an R-module M is defined as the

length of the shortest injective resolutions of M and the global dimension of R is

the supremum of the injective dimensions of all R-modules. We now introduce the

notion of φ-injective dimension of an R-module as follows.

Definition 3.1. Let R be a ring and M an R-module. We write φ-idR(M) ≤ n

(φ-id abbreviates φ-injective dimension) if there is an exact sequence of R-modules

0→M → E0 → E1 → · · · → En → 0 (♥)

where each Ei is strongly nonnil-injective for i = 0, . . . , n. The exact sequence (♥)

is said to be a φ-injective resolution of length n of M . If such finite resolution does

not exist, then we say φ-idR(M) = ∞; otherwise, define φ-idR(M) = n if n is the

length of the shortest φ-injective resolution of M .

It is obvious that an R-module M is strongly nonnil-injective if and only if φ-

idR(M) = 0. Certainly, φ-idR(M) ≤idR(M). If R is an integral domain, then

φ-idR(M) =idR(M)

Proposition 3.2. Let R be an NP-ring. Then the following statements are equiva-

lent for an R-module M .

(1) φ-idR(M) ≤ n.

(2) Extn+k
R (T,M) = 0 for all φ-torsion R-modules T and all positive integers k.

(3) Extn+k
R (R/I,M) = 0 for all nonnil ideals I and all positive integers k.

14

31 Mar 2024 17:27:31 PDT
230903-Zhang Version 2 - Submitted to Rocky Mountain J. Math.



(4) If 0 → M → E0 → E1 → · · · → En → 0 is an exact sequence, where

E0, E1, . . . , En−1 are strongly nonnil-injective R-modules, then En is strongly

nonnil-injective.

(5) If 0 → M → E0 → E1 → · · · → En → 0 is an exact sequence, where

E0, E1, . . . , En−1 are injective R-modules, then En is strongly nonnil-injective.

(6) There exists an exact sequence 0 → M → E0 → E1 → · · · → En → 0,

where E0, E1, . . . , En−1 are injective R-modules and En is a strongly nonnil-

injective R-module.

Proof. (1)⇒ (2): We prove (2) by induction on n. For the case n = 0, (2) trivially

holds because M is strongly nonnil-injective. If n > 0, then there is an exact

sequence 0 → M → E0 → E1 → · · · → En → 0, where each Ei is strongly nonnil-

injective for i = 0, . . . , n. Set K0 = Coker(E0 → M). Then both 0 → M → E0 →
K0 → 0 and 0 → K0 → E1 → · · · → En → 0 are exact. So φ-idR(K0) ≤ n − 1.

By induction, Extn−1+k
R (T,K0) = 0 for all φ-torsion R-modules T and all positive

integers k. Thus, it follows from the exact sequence

0 = Extn+k−1
R (T,E0)→ Extn+k−1

R (T,K0)→ Extn+k
R (T,M)→ Extn+k

R (T,E0) = 0

that Extn+k
R (M,T ) ∼= Extn−1+k

R (T,K0) = 0.

(2)⇒ (3) and (4)⇒ (5): Trivial.

(3) ⇒ (4): Let K0 = Coker(M → E0) and Ki = Coker(Ei−1 → Ei), where

i = 1, . . . , n − 1. Then Kn−1
∼= En. Since all E0, E1, . . . , En−1 are strongly nonnil-

injective, ExtkR(R/I,En) ∼= Ext1+k
R (R/I,Kn−2) ∼= · · · ∼= Extn+k

R (R/I,M) = 0 for all

nonnil ideal I and any positive integer k by dimensional shift. Hence En is strongly

nonnil-injective by Lemma 1.4.

(5)⇒ (6): Consider the injective resolution of M : 0→ M → E0 → E1 → · · · →
En−2

dn−2−−−→ En−1 → · · · , where E0, E1, . . . , En−1 are injective R-modules. Then

En := Coker(dn−2) is strongly nonnil-injective by (5).

(6)⇒ (1): Trivial. �

Corollary 3.3. Let R be an NP-ring, M an R-module and E an injective cogener-

ator of the category of all R-modules. Then φ-fdR(M) = φ-idR(HomR(M,E)).

Proof. It follows by Proposition 2.2, Proposition 3.2 and the adjoint isomorphism:

ExtnR(T,HomR(M,E)) ∼= HomR(TorRn (T,M), E) = 0. �

The proofs of the following two results are similar with the classical ones, and so

we omit their proofs.

Corollary 3.4. Let R be an NP-ring and 0 → A → B → C → 0 be an exact

sequence of R-modules. Then the following statements hold.
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(1) φ-idR(A) ≤ 1 + max{φ-idR(B), φ-idR(C)}.
(2) If φ-idR(B) < φ-idR(A), then φ-idR(C) = φ-idR(A)− 1 ≥ φ-idR(B).

Corollary 3.5. Let R be an NP-ring and {Mi | i ∈ Γ} be a family of R-modules.

Then

φ-idR(
∏
i∈Γ

Mi) = sup{φ-idR(Mi)}.

Now, we are ready to introduce the φ-global dimension of a ring in terms of

nonnil-injective dimensions.

Definition 3.6. The φ-global dimension of a ring R is defined by

φ-gl.dim(R) = sup{φ-idR(M) |M is an R-module}.

Obviously, by definition, φ-gl.dim(R) ≤gl.dim(R). Notice that if R is an integral

domain, then φ-gl.dim(R) =gl.dim(R). The following result can easily be deduced

by Proposition 3.2 and so we omit its proof.

Theorem 3.7. Let R be an NP-ring. Then the following statements are equivalent

for R.

(1) φ-gl.dim(R) ≤ n.

(2) φ-idR(M) ≤ n for all R-modules M .

(3) Extn+k
R (T,M) = 0 for all R-modules M , all φ-torsion modules T and all

positive integers k.

(4) Extn+k
R (R/I,M) = 0 for all R-modules M , all nonnil ideals I of R and all

positive integers k.

(5) Extn+1
R (T,M) = 0 for all R-modules M and all φ-torsion modules T .

(6) Extn+1
R (R/I,M) = 0 for all R-modules M and all nonnil ideals I of R.

Consequently, the φ-global dimension of R is determined by the formulas:

φ-gl.dim(R) = sup{pdR(R/I)|I is a nonnil ideal of R}.

It follows by Theorem 2.6 and Theorem 3.6 that φ-gl.dim(R) ≤ φ-w.gl.dim(R)

for any NP-ring R. Recall from [10] that an R-module M is called super finitely

presented if there exists an exact sequence of R-modules

· · · → Pn → Pn−1 → · · · → P0 →M → 0

with each Pi finitely generated and projective. It is well-known that the weak global

dimensions and global dimensions coincide over Noetherian rings. For φ-dimensions,

we have the following result.

Corollary 3.8. Let R be a NP-ring such that every nonnil ideal of R is super finitely

presented. Then φ-gl.dim(R) = φ-w.gl.dim(R).
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Proof. Let I be a nonnil ideal ofR. SinceR/I is super finitely presented, pdR(R/I) =

fdR(R/I) because finitely presented flat modules are projective. Hence φ-gl.dim(R) =

φ-w.gl.dim(R) by Theorem 2.6 and Theorem 3.6. �

Remark 3.9. Recall from [6] that a φ-ring R is said to be nonnil-Noetherian if every

nonnil ideal is finitely generated. Trivially, if every nonnil ideal of R is super finitely

presented, then R is nonnil-Noetherian. However, the converse does not hold in

general. Indeed, let R = Z(+)
∞⊕
i=1

(Q/Z). Then R is nonnil-Noetherian. But there

exists a nonnil ideal of R which is not finitely presented (see [17, Remark 1.1] or

[11, Example 4.11]). However, we do not have an example in hand to distinguish

φ-gl.dim(R) and φ-w.gl.dim(R) over a nonnil-Noetherian ring R.

Theorem 3.10. Let R be an NP-ring. Then the following statements hold.

(1) If R is a strong φ-ring, then gl.dim(R/Nil(R)) ≤ φ-gl.dim(R).

(2) φ-gl.dim(R)− fdR(R/Nil(R)) ≤ gl.dim(R/Nil(R)).

Proof. Suppose gl.dim(R/Nil(R)) = n. So there exists a nonnil ideal I of R and an

R/Nil(R)-module M such that

ExtnR/Nil(R)(R/I,M) ∼= ExtnR/Nil(R)(R/I ⊗R R/Nil(R),M) 6= 0.

Note that TorRn (R/I,R/Nil(R)) = 0 for all n ≥ 1. So

ExtnR(R/I,M) ∼= ExtnR/Nil(R)(R/I ⊗R R/Nil(R),M) 6= 0,

and hence pdR(R/I) ≥ n. It follows by Theorem 3.7 that φ-gl.dim(R) ≥ n.

(2) It immediately follows from [19, Theorem 3.8.1] and Theorem 3.7. �

It is natural to ask the question:

Question 3.11. Let R be a strong φ-ring. Does the following equation hold?

gl.dim(R/Nil(R)) = φ-gl.dim(R).

We can verify it in the following case.

Proposition 3.12. Let D be an integral domain with quotient field Q and let V be

a linear space over Q. Then φ-gl.dim(D(+)V ) =gl.dim(D).

Proof. Set R = D(+)V . Assume gl.dim(D) ≤ n. Let M be an R-module. Then M

is naturally a D-module. Let J be a nonnil ideal of R. Then by [3, Corollary 3.4],

we have J = I(+)V with I a nonzero ideal of D. Note that R is a flat D-module.

By [8, Proposition 4.1.3] we have

Extn+1
R (R/J,M) ∼= Extn+1

R (D/I ⊗D R,M) ∼= Extn+1
D (D/I,M) = 0.
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So φ-gl.dim(D(+)V ) ≤gl.dim(D). The result follows by Theorem 3.10. �

It is proved in [22, Theorem 1.7] that a φ-ring R is a φ-von Neumann regular ring

if and only if every R-module is nonnil-injective. Moreover, we have the following

result.

Theorem 3.13. Let R be a φ-ring. Then the following statements are equivalent

for R.

(1) φ-gl.dim(R) = 0.

(2) Every R-module is strongly nonnil-injective.

(3) R is a φ-von Neumann regular ring.

Proof. (1)⇔ (2): Clearly.

(2)⇒ (3): It follows by [22, Theorem 1.7].

(3) ⇒ (2): Suppose R is a φ-von Neumann regular ring. Then R is a ZN-ring

by the proof of Theorem 2.10. Now (2) follows by Theorem 1.6 and [22, Theorem

1.7]. �

Recall from [2] that a φ-ring R is called a φ-Dedekind ring provided that any

nonnil ideal of R is φ-invertible. It is proved in [2, Theorem 2.5] that a φ-ring R is

a φ-Dedekind ring if and only if R/Nil(R) is a Dedekind domain.

Theorem 3.14. Let R be a φ-ring. Then the following statements are equivalent

for R.

(1) φ-gl.dim(R) ≤ 1.

(2) Every quotient module of injective R-module is strong φ-injective.

(3) Every quotient module of strong φ-injective R-module is strong φ-injective.

(4) R is a φ-Dedekind strong φ-ring.

Proof. (1)⇔ (2)⇔ (3): Clearly.

(4)⇒ (2): It follows by [22, Theorem 1.7].

(2) ⇒ (4): Suppose every quotient module of injective R-module is strong φ-

injective. We claim every ideal of R is strongly φ-flat. Indeed, let I be an ide-

al of R. Then for any φ-torsion R-module T and positive integer n, we have

HomZ(TorRn (T, I),Q/Z) ∼= ExtnR(T,HomZ(I,Q/Z)) = 0 since HomZ(I,Q/Z) is a

quotient module of the injective R-module HomZ(R,Q/Z). Hence TorRn (T, I) = 0,

whence I is strongly φ-flat. It follows by [15, Corollary 2.8] that R is a strong φ-ring.

Hence the result follows by [22, Theorem 1.7] and Theorem 1.6. �

Corollary 3.15. Let D be an integral domain with quotient field Q and let V be

a linear space over Q. Then D(+)V is a φ-Dedekind ring if and only if D is a

Dedekind domain.
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Proof. Note that D(+)V is a strong φ-ring. So the result immediately follows by

Proposition 3.12 and Theorem 3.13. �

Remark 3.16. When gl.dim(R/Nil(R)) ≤ 1, Question 3.11 holds by Theorem 3.13

and Theorem 3.14. The φ-global dimensions of φ-Dedekind rings can be large than 1.

Indeed, let D be a Dedekind domain and Q its quotient field. Then R = D(+)Q/D

is a φ-Dedekind ring since R/Nil(R) ∼= Z is a Dedekind domain. However, since R

is not a strong φ-ring, we have φ-gl.dim(R) > 1.
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