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RELATIVE HOMOLOGICAL RINGS AND MODULES

PARISA POURGHOBADIAN, KAMRAN DIVAANI-AAZAR, AND AHAD RAHIMI

ABSTRACT. The study of rings and modules with homological criteria is fundamental to commutative
algebra. Consider a commutative Noetherian ring R with identity (which need not be local) and a proper
ideal a of R. In this paper, we develop a relative analogue of the theory of homological rings and modules.
Specifically, we introduce the notions of a-relative regular, a-relative complete intersection, and a-relative
Gorenstein rings and modules. By demonstrating some interactions between these types of rings and
modules, we extend some classical results.

1. Introduction

Throughout this article, the word “ring” stands for a commutative Noetherian ring with identity. Let a be
a proper ideal of a ring R. In the following, we will refer to a ring (resp. module) having a homological
criterion as a “homological ring” (resp. “homological module”). The theory of homological rings
and modules traces back to 1954, when Auslander, Buchsbaum, and Serre established a celebrated
homological criterion for regular local rings. Since the 1960s, the study of homological conjectures has
been a significant research area in commutative algebra. Recently, Yves André [An] made a significant
breakthrough in these conjectures by using the theory of perfectoid spaces. Homological rings and
modules are the focus of most of these conjectures. Cohen-Macaulay modules are the most significant
homological modules, and there are various generalizations of them in the literature, including the
notion of relative Cohen-Macaulay modules.

The theory of relative Cohen-Macaulay modules was first introduced by Hellus and Schenzel [HeSc]
and Rahro Zargar and Zakeri [RZ2]. A finitely generated R-module M is said to be a-relative Cohen-
Macaulay if Hi

a (M) = 0 for all i 6= cd(a,M), where cd(a,M) denotes the cohomological dimension
of M with respect to a; that is, the largest integer i for which Hi

a (M) 6= 0. The study of relative
Cohen-Macaulay modules has been pursued by several authors; see, for instance, [HeSt1, Sc1, Sc2, R,
JR, Ra2, RZ1, CH, Ra1, DGTZ1, DGTZ2].

Several subclasses of Cohen-Macaulay rings that have been a subject of research for many years are
also homological. These are regular, complete intersection, and Gorenstein rings, which satisfy the
following implications: regular ring⇒ complete intersection ring⇒ Gorenstein ring.

The aim of this paper is to establish a relative theory of regular, complete intersection, and Gorenstein
rings and modules. We uncover various interactions among these types of rings and modules, which
expand some of the existing outcomes in the classical theory. We demonstrate that certain results
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RELATIVE HOMOLOGICAL RINGS AND MODULES 2

for homological modules do not hold for relative homological modules, as evidenced by several
counterexamples. The paper is organized as follows:

Section 2 provides several additional findings on a-relative Cohen-Macaulay modules, as shown in
Propositions 2.9, 2.11, and 2.12. Then, we introduce the concepts of a-relative regular modules, a-
relative complete intersection rings, and a-relative Gorenstein modules and compare them in Theorem
2.19.

Section 3 focuses on a-relative Gorenstein modules. Firstly, we introduce the notion of a-relative
injective dimension of R-modules to characterize a-relative Gorenstein modules. We establish that
a finitely generated R-module M with M 6= aM is a-relative Gorenstein if and only if M is a-relative
maximal Cohen-Macaulay and the a-relative injective dimension of Hcd(a,R)

a (M) is zero; see Theorem
3.2. In Theorem 3.5, we present a technique for constructing a-relative Gorenstein rings. We also
provide some counterexamples to illustrate that the analogues of certain results for Gorenstein rings do
not hold for a-relative Gorenstein modules.

In Section 4, we investigate a-relative regular modules. We begin by assuming that a is contained in
the Jacobson radical of R, and M is a non-zero finitely generated R-module. If M is a-relative regular,
we establish in Theorem 4.1 that

pdR(M/aM) = pdR M+ cd(a,R) .

Then, in Theorem 4.4, we demonstrate that M is a-relative regular if and only if

grade(a,M) = grade(a,R) = µ(a),

where µ(a) denotes the minimum number of generators of a. Lastly, we establish the invariance of
the category of a-relative regular modules under certain equivalences and dualities of categories in
Propositions 4.8 and 4.9.

2. Relative Cohen-Macaulay modules

Proposition 2.9 states that for any two nonzero finitely generated R-modules M and N, if the ideal a is
contained in the Jacobson radical of R and N is a-relative Cohen-Macaulay with cd(a,N) = ara(a,N),
then we have

grade(a,M)≤ grade(AnnRN,M)+ cd(a,N).

Proposition 2.11 provides a criterion for a-relative Cohen-Macaulay R-modules in terms of associated
primes, assuming a is contained in the Jacobson radical of R. Next, in Proposition 2.12, we show
that if R admits a faithful a-relative Cohen-Macaulay module of finite projective dimension, then R is
a-relative Cohen-Macaulay. Lastly, after defining the notions of a-relative regular modules, a-relative
complete intersection rings and a-relative Gorenstein modules, we compare them in Theorem 2.19.

For each non-negative integer i, the i-th local cohomology module of an R-module M is defined as
follows:

Hi
a (M) = lim−→

n∈N
ExtiR (R/a

n,M) .

To begin, we recall the definition of relative Cohen-Macaulay modules.
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RELATIVE HOMOLOGICAL RINGS AND MODULES 3

Definition 2.1. Let a be a proper ideal of R and M a finitely generated R-module. Then M is said to be
a-relative Cohen-Macaulay if either M = aM or M 6= aM and grade(a,M) = cd(a,M).

To prove Proposition 2.9, we need the following preparatory results.

Lemma 2.2. Let a be an ideal of R, M an a-relative Cohen-Macaulay R-module with M 6= aM and set
c = cd(a,M). Then

(i) SuppR(H
c
a(M)) = SuppR(M/aM).

(ii) Mp is an aRp-relative Cohen-Macaulay Rp-module and cd(aRp,Mp)= c for every p∈SuppR(M/aM).
(iii) Mp is a Cohen-Macaulay Rp-module for every minimal element p of SuppR(M/aM).

Proof. (i) It is obvious, since for every finitely generated R-module L, it is known and straightforward
to verify that ⋃

i∈N0

SuppR(H
i
a(L)) = SuppR(L/aL).

(ii) The flat base change theorem [BS, Theorem 4.3.2] implies an Rp-isomorphism H j
aRp

(Mp) ∼=
H j
a(M)p for every prime ideal p of R and all j ≥ 0. Hence, as M is a-relative Cohen-Macaulay, it

follows that H j
aRp

(Mp) = 0 for every prime ideal p of R and all j 6= c. Let p ∈ SuppR(M/aM). Then (i)
yields that Hc

aRp
(Mp) 6= 0. Therefore,

grade(aRp,Mp) = c = cd(aRp,Mp),

and so Mp is an aRp-relative Cohen-Macaulay Rp-module.
(iii) Let p be a minimal element of SuppR(M/aM). Since p is minimal over a+AnnR M, it follows

that
Rad(aRp+AnnRp Mp) = pRp,

and so Grothendieck’s non-vanishing theorem [BS, Theorem 6.1.4] asserts that

dimRp Mp = cd(pRp,Mp) = cd(aRp+AnnRp Mp,Mp) = cd(aRp,Mp).

Hence,
grade(a,M) ≤ grade(aRp,Mp)

≤ depthRp
Mp

≤ dimRp Mp

= cd(aRp,Mp)
≤ cd(a,M)
= grade(a,M).

Thus depthRp
Mp = dimRp Mp, and so Mp is a Cohen-Macaulay Rp-module. �

Lemma 2.3. Let a be a proper ideal of R and M a nonzero finitely generated R-module. Consider the
following conditions:

(i) M is a-torsion.
(ii) cd(a,M) = 0.

(iii) AssR M∩V(a) 6= /0.
(iv) AssR M ⊆ V(a).
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Then (i)⇒ (ii), (i)⇔ (iv) and (iv)⇒ (iii) hold. If a is contained in the Jacobson radical of R, then
(ii) ⇒ (i) holds. Also, (iii) ⇒ (ii) holds provided that M is a-relative Cohen-Macaulay. So, these
four conditions are equivalent when a is contained in the Jacobson radical of R and M is a-relative
Cohen-Macaulay.

Proof. The implications (i)⇒ (ii), (i)⇔ (iv), and (iv)⇒ (iii) are known and clear.
Now, suppose that a is contained in the Jacobson radical of R and (ii) holds. Set M̃ = M/Γa(M).

Then, H0
a(M̃) = 0 and Hi

a(M̃) ∼= Hi
a(M) = 0 for all i > 0. As we mentioned in the proof of Lemma

2.2(i), for every finitely generated R-module L, one has⋃
i∈N0

SuppR(H
i
a(L)) = SuppR(L/aL).

Hence, SuppR(M̃/aM̃) = /0, and so M̃ = aM̃. Thus M = Γa(M) by Nakayama’s lemma, and so (i)
holds.

Finally, assume that M is a-relative Cohen-Macaulay and (iii) holds. Let p ∈ AssR M∩V(a). Then

grade(aRp,Mp)≤ depthRp
Mp = 0.

Now, by Lemma 2.2(ii), the Rp-module Mp is aRp-relative Cohen-Macaulay and

cd(a,M) = cd(aRp,Mp) = grade(aRp,Mp) = 0,

and so (ii) holds. �

Definition 2.4. Let M be a finitely generated R-module and a an ideal of R with M 6= aM.
(i) Let c = cd(a,M). A sequence x1,x2, . . . ,xc ∈ a is called a-relative system of parameters,

a-s.o.p, of M if

Rad(〈x1,x2, . . . ,xc〉+AnnR M) = Rad(a+AnnR M) .

(ii) Arithmetic rank of a with respect to M, ara(a,M), is defined as the infimum of the integers
n ∈ N0 such that there exist x1,x2, . . . ,xn ∈ R satisfying

Rad(〈x1,x2, . . . ,xn〉+AnnR M) = Rad(a+AnnR M) .

Clearly, if x1,x2, . . . ,xc ∈ R is an a-s.o.p of M, then for all t1, . . . , tc ∈ N, every permutation of
xt1

1 , . . . ,x
tc
c is also an a-s.o.p of M. One may easily check that cd(a,M) ≤ ara(a,M). Obviously,

ara(a,R) = ara(a).
Let M be a d-dimensional finitely generated module over a local (R,m) and x1, . . . ,xd ∈ m. It is

evident that x1, . . . ,xd is a system of parameters of M if and only if x1, . . . ,xd is an m-relative system
of parameters of M. In spite of the fact that M always admits an m-relative system of parameters, this
is not true for a general ideal a. In this regard, we have the following:

Lemma 2.5. (See [DGTZ2, Lemma 2.2].) Let M be a finitely generated R-module and a an ideal of R
with M 6= aM. Then a contains an a-s.o.p of M if and only if cd(a,M) = ara(a,M).

Lemma 2.6. (See [DGTZ2, Lemma 2.4 and Theorem 2.7].) Let a be an ideal of R, M a finitely gener-
ated R-module with M 6= aM and c = cd(a,M). Assume that cd(a,M) = ara(a,M) and x1, . . . ,xc ∈ a.
Consider the following conditions:
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RELATIVE HOMOLOGICAL RINGS AND MODULES 5

(i) x1, . . . ,xc is an a-s.o.p of M.
(ii) cd(a,M/〈x1,x2, . . . ,xi〉M) = c− i for every i = 1,2, . . . ,c.

Then (i) implies (ii). Additionally, if a is contained in the Jacobson radical of R, then (i) and (ii) are
equivalent.

Lemma 2.7. (See [DGTZ2, Theorem 3.3].) Let M be a finitely generated R-module and a an ideal of
R with cd(a,M) = ara(a,M). Consider the following conditions:

(i) M is a-relative Cohen-Macaulay.
(ii) Every a-s.o.p of M is an M-regular sequence.

(iii) There exists an a-s.o.p of M which is an M-regular sequence.

Then (i) and (iii) are equivalent. Furthermore, if a is contained in the Jacobson radical of R, then all
three conditions are equivalent.

In light of Lemma 2.7, one may wonder whether every a-relative Cohen-Macaulay module has an
a-s.o.p. The following example shows that this is not the case.

Example 2.8. Let k be a field and S = k[[x,y,z,w]]. Consider the elements f = xw− yz, g = y3− x2z,
and h = z3− y2w of S. Let R = S/〈 f 〉, and a= 〈 f ,g,h〉/〈 f 〉. Then R is a local complete intersection
ring of dimension 3, cd(a,R) = 1, and ara(a)≥ 2; see [HeSt2, Remark 2.1(ii)]. As cd(a,R) 6= ara(a),
by Lemma 2.5, R possesses no a-s.o.p. Since H0

a(R) = 0, it follows that R is a-relative Cohen-Macaulay.

The next result concerns the vanishing of certain Ext modules.

Proposition 2.9. Let a be an ideal of R contained in its Jacobson radical and M and N two nonzero
finitely generated R-modules. Assume that N is a-relative Cohen-Macaulay and cd(a,N) = ara(a,N).
Then ExtiR(N,M) = 0 for all i < grade(a,M)− cd(a,N).

Proof. We proceed by induction on c = cd(a,N). If c = 0, then by Lemma 2.3, we conclude that
SuppR N ⊆ V(a), and so the claim in this case follows by Rees’ theorem; see e.g. [M, Theorem 16.6].

Next suppose that c > 0, and let x1, . . . ,xc ∈ a be an a-s.o.p of N. Set N = N/x1N. Then Lemma 2.6
implies that cd(a,N) = c−1, and x1, . . . ,xc is an N-regular sequence by Lemma 2.7. As grade(a,N) =
grade(a,N)−1, it turns out that N is an a-relative Cohen-Macaulay R-module. One can easily check
that x2, . . . ,xc ∈ a is an a-s.o.p of N, and so cd(a,N) = ara(a,N) by Lemma 2.5. From the short exact
sequence

0−→ N
x1−→ N −→ N −→ 0,

one obtains the exact sequence

· · · −→ ExtiR(N,M)−→ ExtiR(N,M)
x1−→ ExtiR(N,M)−→ Exti+1

R (N,M)−→ ·· · .

Let i < grade(a,M)− c be an integer. Then i+ 1 < grade(a,M)− (c− 1), and so Exti+1
R (N,M) =

0 by the induction hypothesis. Thus, the map ExtiR(N,M)
x1−→ ExtiR(N,M) is surjective, and so

ExtiR(N,M) = 0 by Nakayama’s lemma. �

The following corollary provides a lower bound for the vanishing of generalized local cohomology
modules. Recall that, for an ideal a of R and two R-modules N and M, the i-th generalized local
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RELATIVE HOMOLOGICAL RINGS AND MODULES 6

cohomology module of N and M with respect to a is defined by

Hi
a(N,M) = lim−→

n∈N
ExtiR(N/anN,M);

see [H].

Corollary 2.10. Let a be an ideal of R contained in its Jacobson radical and M and N two nonzero
finitely generated R-modules. Assume that N is a-relative Cohen-Macaulay and cd(a,N) = ara(a,N).
Then Hn

b(N,M) = 0 for every ideal b of R and all n < grade(a,M)− cd(a,N).

Proof. By the proof of [DH, Theorem 2.5], there is the following Grothendieck spectral sequence

Ep,q
2 := Hp

b(ExtqR(N,M)) =⇒
p

Hp+q
b (N,M).

So, for each non-negative integer n, there exists a chain

0 = H−1 ⊆ H0 ⊆ ·· · ⊆ Hn = Hn
b(N,M) (∗)

of submodules of Hn
b(N,M) such that Hp /Hp−1 ∼= Ep,n−p

∞ for all p = 0,1, . . . ,n. Let p and n be two
integers such that

0≤ p≤ n < grade(a,M)− cd(a,N).

Then Extn−p
R (N,M) = 0 by Proposition 2.9. This implies that Ep,n−p

∞ = 0, because Ep,n−p
∞ is a subquo-

tient of Ep,n−p
2 . Therefore, from the chain (∗), we can deduce that Hn

b(N,M) = 0. �

Next, we present a new characterization of a-relative Cohen-Macaulay modules in the case that a is
contained in the Jacobson radical of R.

Proposition 2.11. Let a be an ideal of R contained in its Jacobson radical and M a nonzero finitely
generated R-module. Then the following are equivalent:

(i) M is a-relative Cohen-Macaulay;
(ii) cd(a,R/p) = grade(a,M) for all p ∈ AssR M.

Proof. (i)⇒ (ii) First, assume that cd(a,M) = 0. Then grade(a,M) = 0. On the other hand, [DNT,
Theorem 2.2] yields that

0≤ cd(a,R/p)≤ cd(a,M) = 0

for all p ∈ AssR M.
Next, suppose that cd(a,M) > 0. Then by Lemma 2.3, we deduce that AssR M = AssR M \V(a).

Therefore, by [DGTZ1, Lemma 3.3], we conclude that

cd(a,R/p) = cd(a,M) = grade(a,M)

for all p ∈ AssR M.
(ii)⇒ (i) Set N =

⊕
p∈AssR M

R/p. Then we can easily see that SuppR N = SuppR M. Hence, by [DNT,

Theorem 2.2], we deduce that

cd(a,M) = cd(a,N) = max{cd(a,R/p) | p ∈ AssR M}= grade(a,M),

as desired. �
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RELATIVE HOMOLOGICAL RINGS AND MODULES 7

When a local ring (R,m) admits a nonzero Cohen-Macaulay module of finite projective dimension,
it follows that R is Cohen-Macaulay by the Peskine-Szpiro intersection theorem. We now present a
partial relative analogue of this result.

Proposition 2.12. Let a be a proper ideal of R. Assume that R admits a faithful a-relative Cohen-
Macaulay module M of finite projective dimension. Then R is a-relative Cohen-Macaulay.

Proof. Set c = cd(a,R). For every finitely generated R-module N, [BH, Proposition 1.2.10(a)] implies
that

grade(a,N) = inf{depthNp | p ∈ V(a)}.
Since M is faithful, it follows that SuppR M = SpecR, and so cd(a,M) = c by [DNT, Theorem 2.2]. Let
p ∈ V(a). As pdR M < ∞, it follows that pdRp

Mp < ∞, and so by the Auslander-Buchsbaum formula,
we get that depthMp ≤ depthRp. Therefore, grade(a,M)≤ grade(a,R). Now, we have

c = grade(a,M)
≤ grade(a,R)
≤ cd(a,R)
= c,

and so grade(a,R) = cd(a,R), as desired. �

Definition 2.13. Let a be a proper ideal of R.
(i) A finitely generated R-module M is called a-relative regular if either M = aM or M 6= aM and

a can be generated by an M-regular sequence of length cd(a,R) which is also an R-regular
sequence.

(ii) Let R denote the a-adic completion of R. We say that R is a-relative complete intersection if
there exist a ring T , a proper ideal b of T , and elements x1,x2, . . . ,x` ∈ b such that:

(1) x1,x2, . . . ,x` is both a part of a b-s.o.p of T and a T -regular sequence.
(2) T is b-relative regular, T/〈x1,x2, . . . ,x`〉 ∼= R, and bR = aR.

(iii) A finitely generated R-module M is called a-relative Gorenstein if ExtiR(R/a,M) = 0 for all
i 6= cd(a,R).

(iv) A finitely generated R-module M is called a-relative maximal Cohen-Macaulay if grade(a,M)=
cd(a,R).

Note that if there exists an a-relative regular R-module M with M 6= aM, it implies that the ideal a
is a complete intersection. In particular, the ring R is a-relative regular if and only if a is a complete
intersection. Therefore, if there exists an a-relative regular R-module M with M 6= aM, it follows that
the ring R itself is a-relative regular.

In the following immediate observation, the connection between classical homological modules and
relative homological modules is revealed.

Observation 2.14. Let (R,m) be a local ring and M a finitely generated R-module.
(i) R is regular if and only if R is m-relative regular.

(ii) R is complete intersection if and only if R is m-relative complete intersection.
(iii) M is Gorenstein if and only if M is m-relative Gorenstein.
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RELATIVE HOMOLOGICAL RINGS AND MODULES 8

(iv) M is maximal Cohen-Macaulay if and only if M is m-relative maximal Cohen-Macaulay.
(v) M is Cohen-Macaulay if and only if M is m-relative Cohen-Macaulay.

Theorem 2.19 is the main result of this section. To prove it, we need the following four lemmas.
From Definition 2.13, we have the following immediate result:

Lemma 2.15. Let a be a proper ideal of R and R denote the a-adic completion of R. Then R is an
a-relative complete intersection if and only if R is an aR-relative complete intersection.

Lemma 2.16. Let a be an ideal of R, f : R−→ T a flat ring homomorphism and M a finitely generated
R-module with M 6= aM. We have the following inequalities, with equality when f is faithfully flat.

(i) grade(a,M)≤ grade(aT,M⊗R T ).
(ii) cd(a,M)≥ cd(aT,M⊗R T ).

Proof. (i) For every non-negative integer i, there is a natural T -isomorphism

ExtiT (T/aT,M⊗R T )∼= ExtiR(R/a,M)⊗R T.

In particular, ExtiT (T/aT,M⊗R T ) 6= 0 implies that ExtiR(R/a,M) 6= 0, and so

grade(a,M)≤ grade(aT,M⊗R T ).

If f is faithfully flat, then ExtiT (T/aT,M⊗R T ) 6= 0 if and only if ExtiR(R/a,M) 6= 0, and so grade(a,M)=
grade(aT,M⊗R T ).

(ii) The flat base change theorem yields a natural T -isomorphism

Hi
aT (M⊗R T )∼= Hi

a (M)⊗R T

for all i≥ 0. In particular, Hi
aT (M⊗R T ) 6= 0 implies that Hi

a (M) 6= 0, and so cd(a,M)≥ cd(aT,M⊗R T ).
If f is faithfully flat, then Hi

aT (M⊗R T ) 6= 0 if and only if Hi
a (M) 6= 0, and so cd(a,M)= cd(aT,M⊗R T ).

�

Lemma 2.17. Let a be an ideal of R contained in its Jacobson radical and R denote the a-adic
completion of R. Let M be a finitely generated R-module.

(i) If M is a-relative regular, then M⊗R R is aR-relative regular.
(ii) M is a-relative Gorenstein if and only if M⊗R R is aR-relative Gorenstein.

Proof. Let c = cd(a,R) and ψ : R−→R denote the natural ring monomorphism. Since a is contained
in the Jacobson radical of R, it follows that R is a faithfully flat R-algebra. Clearly, we may and do
assume that M 6= aM, and so M⊗R R 6= (aR)(M⊗R R). By Lemma 2.16(ii), one has cd(aR,R) =
cd(a,R).

(i) Assume that M is a-relative regular. Then, a has generators x1,x2, . . . ,xc which form both an M-
regular sequence and an R-regular sequence. This immediately yields that aR = 〈ψ(x1),ψ(x2), . . . ,ψ(xc)〉R .
Clearly, ψ(x1),ψ(x2), . . . ,ψ(xc) is both an M⊗R R-regular sequence and an R-regular sequence. Thus,
M⊗R R is aR-relative regular.

(ii) For every non-negative integer j, in view of the faithfulness of ψ and the existence of the natural
R-isomorphism

Ext j
R(R/a,M)⊗R R ∼= Ext j

R(R/aR,M⊗R R),
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RELATIVE HOMOLOGICAL RINGS AND MODULES 9

it turns out that Ext j
R(R/a,M) = 0 if and only if Ext j

R(R/aR,M⊗R R) = 0. This completes the proof
(ii). �

Lemma 2.18. Let a be a proper ideal of R. If R is a-relative regular, then cd(a,R) = pdR(R/a).

Proof. Let c = cd(a,R). Assume that R is a-relative regular. Then, there is an R-regular sequence
x1,x2, . . . ,xc that generates a. So,

pdR(R/a) = pdR (R/〈x1,x2, . . . ,xc〉) = c.

�

It is now time to present the main result of this section.

Theorem 2.19. Let a be a proper ideal of R.
(i) Suppose that a is contained in the Jacobson radical of R. If R is a-relative regular, then it is

a-relative complete intersection.
(ii) Suppose that a is contained in the Jacobson radical of R. If R is a-relative complete intersection,

then it is a-relative Gorenstein.
(iii) Every a-relative Gorenstein module M with M 6= aM is a-relative maximal Cohen-Macaulay.
(iv) Every a-relative maximal Cohen-Macaulay module is a-relative Cohen-Macaulay.

Proof. (i) By Lemmas 2.17(i) and 2.15, we may and do assume that R is a-adically complete. So, the
claim is immediate by the definition.

(ii) In view of Lemmas 2.15 and 2.17(ii), we may and do assume that R is a-adically complete. So,
there are a ring T , a proper ideal b of T and x1,x2, . . . ,x` ∈ b which form both a part of a b-s.o.p of T
and a T -regular sequence such that T is b-relative regular, T/〈x1,x2, . . . ,x`〉 ∼= R and bR = a.

Set c = cd(b,T ). As T is b-relative regular, the ideal b can be generated by a T -regular sequence of
length c. Hence c≤ grade(b,T )≤ c, and so grade(b,T ) = c. The fact that T is b-relative regular, also
implies that pdT (T/b) = c by Lemma 2.18. Thus, ExtiT (T/b,T ) = 0 for all i 6= c. By Lemma 2.6, we
have

cd(a,R) = cd(b,T/〈x1,x2, . . . ,x`〉) = cd(b,T )− `= c− `. (†)
Clearly, R/a∼= T/b. Since x1,x2, . . . ,x` is a T -regular sequence, by [M, §18, Lemma 2(i)], we have a
T -isomorphism

ExtnR(R/a,R)∼= Extn+`
T (T/b,T ) (‡)

for all n≥ 0. Now, (†) and (‡) imply that ExtiR(R/a,R) = 0 for all i 6= cd(a,R), and so R is a-relative
Gorenstein.

(iii) Let M be an a-relative Gorenstein module with M 6= aM. Then ExtiR(R/a,M) 6= 0 if and only if
i = cd(a,R). This means that grade(a,M) = cd(a,R).

(iv) Let M be an a-relative maximal Cohen-Macaulay R-module. Then grade(a,M) = cd(a,R).
Now, we have

cd(a,R) = grade(a,M)≤ cd(a,M)≤ cd(a,R),
and so grade(a,M) = cd(a,M). �

We conclude this section with the following three examples. The first example provides a relative
Cohen-Macaulay R-module, which is not relative Gorenstein.
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RELATIVE HOMOLOGICAL RINGS AND MODULES 10

Example 2.20. Let k be a field and G the following cyclic graph:

y2

x1 x2

y1

Then the edge ideal of G in the polynomial ring S = k[x1,x2,y1,y2] is I(G) = 〈x1x2,x2y1,y1y2,y2x1〉.
Set a= 〈y1,y2〉. It is routine to see that I(G) = 〈x1,y1〉∩ 〈x2,y2〉 is a minimal primary decomposition
of I(G), and so

AssS(S/I(G)) = {〈x1,y1〉,〈x2,y2〉}.
Since a is not contained in any member of AssS(S/I(G)), it follows that grade(a,S/I(G))≥ 1. On the
other hand, one has

cd(a,S/I(G)) = max{cd(a,S/〈x1,y1〉),cd(a,S/〈x2,y2〉)}= 1.

Hence, the S-module S/I(G) is a-relative Cohen-Macaulay. But, S/I(G) is not a-relative maximal
Cohen-Macaulay, because cd(a,S) = 2. Consequently, S/I(G) is not a a-relative Gorenstein.

The following two examples show that there are plenty of relative Gorenstein and relative regular
R-modules.

Example 2.21. Let S = k[x1, . . . ,xn] be a polynomial ring over a field k. Set m = 〈x1, . . . ,xn〉 and
a= 〈xp1

1 , . . . ,xpn
n ,m1, . . . ,mr〉, where r, p1, . . . , pn ∈N and m j

′s are monomials in S. By [Bo, Proposition
28], we have ExtiS(S/a,S) = 0 for all i 6= n. Notice that Rad(a) = m. Hence, Hi

a(S) = Hi
m(S) for all

i≥ 0, and so cd(a,S) = n. Consequently, S is a-relative Gorenstein.

Example 2.22. Let S = k[x1, . . . ,xn] be a polynomial ring over a field k. Set a= 〈xp1
1 , . . . ,xp`

` 〉, where
1≤ `≤ n and p1, . . . , p` ∈ N. Then, obviously, S is a-relative regular.

3. Relative Gorenstein modules

In this section, we delve deeper into the study of relative Gorenstein modules. We begin by providing a
characterization of relative Gorenstein modules in Theorem 3.2. We then establish a class of relative
Gorenstein rings in Theorem 3.5. However, we also present some counterexamples to address some
natural questions about relative Gorenstein modules.

It is well known that a d-dimensional local ring (R,m) is Gorenstein if and only if it is Cohen-
Macaulay and Hd

m(R)∼= ER(R/m) if and only if ExtiR(R/m,R) = 0 for all i > d. We now extend this
characterization to relative Gorenstein modules over arbitrary rings. To do so, we first introduce the
following definition:

Definition 3.1. Let a be a proper ideal of R and M an R-module. The a-relative injective dimension of
M is defined by a− idR M = sup{i ∈ N0 | ExtiR(R/a,M) 6= 0}.

It is worth mentioning that m− idR M = idR M for any finitely generated module M over a local ring
(R,m).
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RELATIVE HOMOLOGICAL RINGS AND MODULES 11

Theorem 3.2. Let a be an ideal of R, M a finitely generated R-module with M 6= aM and set c= cd(a,R).
Then the following are equivalent:

(i) M is a-relative Gorenstein;
(ii) M is a-relative maximal Cohen-Macaulay and a− idR (Hc

a (M)) = 0;
(iii) M is a-relative maximal Cohen-Macaulay and ExtiR(R/a,M) = 0 for all i > c.

Proof. Let N be an a-relative maximal Cohen-Macaulay R-module. Then Hi
a (N) = 0 for all i 6= c.

Thus by [RZ2, Proposition 2.1], one has

ExtiR(R/a,H
c
a(N))∼= Exti+c

R (R/a,N) (∗)
for all i≥ 0.

(i) ⇒ (ii) As M 6= aM and M is a-relative Gorenstein, by Theorem 2.19(iii), we see that M is
a-relative maximal Cohen-Macaulay, and ExtcR(R/a,M) is the only non-vanishing Ext module of R/a
and M. Thus from (∗), we conclude that a− idR (Hc

a (M)) = 0.
(ii) ⇒ (i) Since M is a-relative maximal Cohen-Macaulay, we have grade(a,M) = c. Hence,

ExtiR(R/a,M) = 0 for all i < c. On the other hand, as a− idR (Hc
a (M)) = 0, by (∗), we conclude that

ExtiR(R/a,M) = 0 for all i > c. Therefore, M is a-relative Gorenstein.
(i)⇔ (iii) is obvious by Theorem 2.19(iii) and the definition. �

Recall that over a local ring R, a Gorenstein module is a maximal Cohen-Macaulay module of finite
injective dimension. The fact that for a finitely generated R-module M and a maximal ideal m of R, all
local cohomology modules Hi

m (M) are Artinian, enables us to record the following corollary.

Corollary 3.3. Let (R,m) be a local ring of dimension d and M a nonzero finitely generated R-module.
Then the following are equivalent:

(i) M is Gorenstein.
(ii) M is maximal Cohen-Macaulay and Hd

m (M) is an Artinian injective R-module.

In order to present the next result, we need the following definition; see [PDR, Definition 3.1].

Definition 3.4. Let a be a proper ideal of R and c = cd(a,R). Assume that R is a-relative Cohen-
Macaulay. The a-relative dualizing module of R is defined by

Ωa = HomR(Hc
a(R),

⊕
m∈MaxR

ER(R/m)).

This section’s final main result is now ready to be presented.

Theorem 3.5. Let R be a complete semi-local ring, a an ideal of R contained in its Jacobson radical
and set c = cd(a,R). Assume that R is a-relative Cohen-Macaulay and Ωa can be identified with an
ideal b of R. If Hc

a(R/b) = 0, then the ring R/b is (a+b)/b-relative Gorenstein.

Proof. Set T = R/b. From the exact sequence

0−→ b−→ R−→ T −→ 0, (∗)
we deduce the exact sequence

· · · −→ Hi
a(R)−→ Hi

a(T )−→ Hi+1
a (b)−→ ·· · .
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RELATIVE HOMOLOGICAL RINGS AND MODULES 12

By [PDR, Theorem 3.5(ii)], Hi
a(b)
∼= Hi

a(Ωa) = 0 for all i 6= c. So, as R is a-relative Cohen-Macaulay
and Hc

a(T )= 0, from the above exact sequence, we conclude that Hi
a(T )= 0 for all i 6= c−1. As T 6= aT ,

it turns out that T is aT -relative Cohen-Macaulay and cd(aT,T ) = c−1. Hence, ΩaT ∼= Ext1R(T,b) by
[PDR, Theorem 3.7].

Next, by [PDR, Theorem 3.5(iii)], we have

HomR(b,b)∼= ∏
m∈MaxR

R̂m
∼= R.

In particular, AnnR(b) = 0. This implies that HomR(T,b) = 0. So, applying the functor HomR(−,b)
to the exact sequence (∗) yields the exact sequence

0−→ b−→ R−→ Ext1R(T,b)−→ 0.

Thus,
T ∼= Ext1R(T,b)∼= ΩaT .

Therefore, [PDR, Lemma 3.3(ii)] implies that

ExtiT (T/aT,T )∼= ExtiT (T/aT,ΩaT ) = 0

for all i 6= c−1, and so the ring T is aT -relative Gorenstein. �

According to Bass’s theorem, a local ring (R,m) is Cohen-Macaulay if it possesses a nonzero
finitely generated module of finite injective dimension. Moreover, a local ring (R,m) is Gorenstein
if it possesses a nonzero cyclic R-module of finite injective dimension. This might lead us to guess
that a ring R is a-relative Cohen-Macaulay (resp. a-relative Gorenstein) if it admits a nonzero finitely
generated (resp. cyclic) module M of finite a-relative injective dimension. As we will see in the
following example, this is not the case.

Example 3.6. Let k be a field, S = k[x1,x2,y1,y2] and m= 〈x1,x2,y1,y2〉. Let a be the edge ideal of
the cycle graph C4, given in Example 2.20. So, a= 〈x1x2,x2y1,y1y2,y2x1〉. We observed in Example
2.20 that a= 〈x1,y1〉∩ 〈x2,y2〉. This yields the exact sequence

0−→ S/a−→ S/〈x1,y1〉⊕S/〈x2,y2〉 −→ S/m−→ 0, (∗)

which immediately implies that dimS(S/a) = 2. Taking into account the long exact sequence of local
cohomology modules induced by (∗), yields that H0

m(S/a) = 0 and H1
m(S/a) ∼= S/m 6= 0. Hence,

depthS(S/a) = 1. Thus, by [Ly, Theorem 1] and the Auslander-Buchsbaum formula, we deduce that

cd(a,S) = pdS(S/a) = 3.

As S is Cohen-Macaulay, we get

grade(a,S) = dimS−dimS(S/a) = 2.

Thus, S is not a-relative Cohen-Macaulay. On the other hand, we have a− idS S≤ pdS(S/a) = 3.

We need the following lemma for our next example.

Lemma 3.7. Let (R,m) be a local ring and a a proper ideal of R such that pdR(R/a) < ∞. Then
a− idR M = pdR(R/a) for every nonzero finitely generated R-module M.
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RELATIVE HOMOLOGICAL RINGS AND MODULES 13

Proof. Let M be a nonzero finitely generated R-module. As pdR(R/a)< ∞, by [M, §7, Lemma 1(iii)],
it turns out that

pdR(R/a) = sup{i ∈ N0 | ExtiR(R/a,N) 6= 0}
for every nonzero finitely generated R-module N. In particular, pdR(R/a) = a− idR M. �

When (R,m) is a d-dimensional local ring, vanishing of the Ext modules ExtiR(R/m,R) for all
i > d implies that R is Gorenstein. This might suggest that if a is a proper ideal of R and M a finitely
generated R-module such that ExtiR(R/a,M) = 0 for all i > cd(a,R), then M is a-relative Gorenstein.
While this is not the case by Example 3.6, we also give the following simpler example.

Example 3.8. Let (R,m) be a local ring and x1 ∈ m a nonzero-divisor on R. Set a = 〈x1〉. Then
pdR(R/a) = 1. Let M be any nonzero finitely generated R-module which is annihilated by x1. Then, by
the choice of M and Lemma 3.7, we have ExtiR(R/a,M) 6= 0 for i= 0,1. So, although ExtiR(R/a,M)= 0
for all i > 1 = cd(a,R), the R-module M is not a-relative Gorenstein.

Our next example requires the following lemma.

Lemma 3.9. Let a an ideal of R and M a finitely generated R-module with M 6= aM. Let x ∈ a be a
nonzero-divisor on M. Then a− idR M = a− idR(M/xM).

Proof. Set M = M/xM. The short exact sequence

0−→M x−→M −→M −→ 0

yields the exact sequence

· · · −→ Exti−1
R (R/a,M)−→ ExtiR(R/a,M)

x−→ ExtiR(R/a,M)−→ ExtiR(R/a,M)−→

−→ Exti+1
R (R/a,M)

x−→ Exti+1
R (R/a,M)−→ ·· · . (†)

Let n be a non-negative integer. Assume that Ext j
R(R/a,M) = 0 for all j > n. Then from (†), we

conclude that Ext j
R(R/a,M) = 0 for all j > n. Hence, a− idR M ≤ a− idR M.

Next, assume that Ext j
R(R/a,M) = 0 for all j > n. Then for every j > n, from (†), we see that the

zero map
Ext j

R(R/a,M)
x−→ Ext j

R(R/a,M)

is surjective, and so Ext j
R(R/a,M) = 0. Thus, a− idR M ≤ a− idR M. Therefore, a− idR M = a−

idR(M/xM). �

Let a be an ideal of R and M an a-relative Gorenstein R-module. One may guess that if x ∈ a is a
nonzero-divisor on M, then the R-module M/xM is also a-relative Gorenstein. The following example
demonstrates that this is not true.

Example 3.10. Let c ≥ 1 be an integer. Let a be an ideal of R that is generated by an R-regular
sequence x1,x2, . . . ,xc. Then, clearly, R is a-relative Gorenstein. Now, Lemma 3.9 implies that

a− idR(R/〈x1〉) = a− idR R,

while
grade(a,R/〈x1〉) = grade(a,R)−1 = a− idR R−1.

Hence, the R-module R/〈x1〉 is not a-relative Gorenstein.
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RELATIVE HOMOLOGICAL RINGS AND MODULES 14

A local ring (R,m) is Gorenstein if and only if R is Cohen-Macaulay and it possesses an irreducible
parameter ideal. Accordingly, for a proper ideal a of R, we may expect that R is a-relative Gorenstein
if and only if R is a-relative Cohen-Macaulay and there exists an a-s.o.p x1,x2, . . . ,xc such that the
ideal 〈x1,x2, . . . ,xc〉 is irreducible. However, as the following example shows, this is not the case.

Example 3.11. Let (R,m) be a d-dimensional Cohen-Macaulay local ring which is not Gorenstein.
Since R is not Gorenstein, it has no irreducible parameter ideal. Let x1,x2, . . . ,xd ∈m be a system of pa-
rameters of R. As R is Cohen-Macaulay, x1,x2, . . . ,xd is an R-regular sequence. Set a= 〈x1,x2, . . . ,xd〉.
Then R is a-relative Gorenstein, while there is no irreducible ideal generated by an a-s.o.p of R.

For a local ring (R,m) and a nonzero finitely generated R-module M of finite injective dimension, it
is known that idR M = depthR. As a consequence, we may conjecture that if a is an ideal of R and M a
finitely generated R-module with M 6= aM such that a− idR M < ∞, then a− idR M = grade(a,R). The
following example shows that this is not the case as well.

Example 3.12. Let (R,m) be a regular local ring and a a nonzero proper ideal of R such that cd(a,R) 6=
pdR(R/a). Then Lemma 3.7 implies that a− idR R 6= cd(a,R). More precisely, let k be a field and
consider the formal power series ring R = k[[x,y]]. Then, R is a regular local ring with the unique
maximal ideal m= 〈x,y〉. Let a= 〈xy,x2〉. One has

AssR(R/a) = {〈x〉,m}.
As m ∈ AssR(R/a), it follows that depthR(R/a) = 0, and so by Lemma 3.7 and the Auslander-
Buchsbaum formula, we get that

a− idR R = pdR(R/a) = 2.

On the other hand,
Rad(a) = 〈x〉∩m= 〈x〉.

Thus, we have
1 ≤ grade(a,R)
≤ cd(a,R)
= cd(〈x〉,R)
= 1.

Therefore, R is a-relative Cohen-Macaulay and grade(a,R) = 1. Consequently, a− idR R 6= grade(a,R).

Definition 3.13. A finitely generated R-module C is called semidualizing if it satisfies the following
conditions:

(i) the homothety map χR
C : R−→ HomR (C,C) is an isomorphism, and

(ii) ExtiR (C,C) = 0 for all i > 0.

Definition 3.14. Let C be a semidualizing module of R.
(i) The Auslander class AC (R) is the class of all R-modules M for which the natural map γC

M :
M −→ HomR (C,C⊗R M) is an isomorphism, and

TorR
i (C,M) = 0 = ExtiR (C,C⊗R M)

for all i≥ 1.
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RELATIVE HOMOLOGICAL RINGS AND MODULES 15

(ii) The Bass class BC (R) is the class of all R-modules M for which the evaluation map ξC
M :

C⊗R HomR (C,M)−→M is an isomorphism, and

ExtiR (C,M) = 0 = TorR
i (C,HomR (C,M))

for all i≥ 1.

Notation 3.15. Let a be a proper ideal of R and n a non-negative integer.
(i) CMn

a(R) stands for the full subcategory of a-relative Cohen-Macaulay R-modules M with
cd(a,M) = n.

(ii) Ga (R) stands for the full subcategory of a-relative Gorenstein R-modules.

Let a be a proper ideal of R, C a semidualizing module of R and n a non-negative integer. By [PDR,
Theorem 6.3], there is an equivalence of categories:

AC (R)
⋂

CMn
a(R)

C⊗R− //
BC (R)

⋂
CMn

a(R).
HomR(C,−)

oo

The following example illustrates that CMn
a(R) cannot be replaced by Ga(R) in the above equivalence

of categories.

Example 3.16. Let (R,m) be a non-Gorenstein Cohen-Macaulay local ring with a dualizing module
ωR. Then ωR is a semidualizing module of R and it is m-relative Gorenstein. On the other hand, it is
easy to see that ωR ∈BωR (R). Hence ωR ∈BωR (R)

⋂
Gm(R), while

HomR(ωR,ωR)∼= R /∈AωR (R)
⋂

Gm(R).

Thus, the functors

AωR (R)
⋂

Gm(R)
ωR⊗R− //

BωR (R)
⋂

Gm(R)
HomR(ωR,−)

oo

do not induce an equivalence of categories.

Let (R,m) be a Cohen-Macaulay local ring with a dualizing module ωR and MCM(R) denote the
full subcategory of maximal Cohen-Macaulay R-modules. There is a well-known duality of categories:

MCM(R)
HomR(−,ωR) // MCM(R).
HomR(−,ωR)

oo

One might expect that MCM(R) can be replaced by Ga(R) in the above duality of categories.
However, the following example shows that this is not true as well.

Example 3.17. Let (R,m) be a non-Gorenstein Cohen-Macaulay local ring with a dualizing module
ωR. Then ωR is m-relative Gorenstein, while HomR(ωR,ωR)∼= R is not m-relative Gorenstein. Hence,
the functor

Gm(R)
HomR(−,ωR) //

Gm(R)
HomR(−,ωR)

oo

does not induce a duality of categories.
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RELATIVE HOMOLOGICAL RINGS AND MODULES 16

4. Relative regular modules

Theorem 4.1 generalizes Lemma 2.18 to relative regular modules, provided that a is contained in the
Jacobson radical of R. A characterization of relative regular modules is given in Theorem 4.4. We
also establish the fact that every relative regular module is relative Gorenstein in Proposition 4.6. In
Propositions 4.8 and 4.9, we demonstrate that relative regular modules remain invariant under certain
equivalences and dualities of categories.

Theorem 4.1. Let a be an ideal of R contained in its Jacobson radical and M a nonzero a-relative
regular R-module. Then pdR(M/aM) = pdR M+ cd(a,R).

Proof. Set c = cd(a,R). As M is nonzero and a is contained in the Jacobson radical of R, it follows that
M 6= aM. So, a has generators x1,x2, . . . ,xc which form both an M-regular sequence and an R-regular
sequence. In particular, a = 0 if and only if c = 0. Since the claim holds trivially if a = 0, we may
assume that c > 0. By induction on c, we may assume that c = 1. Set R = R/〈x1〉 and M = M/〈x1〉M.
Then M is an aR-relative regular R-module. For every R-module N, from the short exact sequence

0−→M
x1−→M −→M −→ 0,

we get the following exact sequence

· · · −→ ExtiR(M,N)
x1−→ ExtiR(M,N)−→ Exti+1

R (M,N)−→ Exti+1
R (M,N)−→ ·· · . (∗)

Let n be a non-negative integer. If pdR M = n, then from (∗), we deduce that Ext j
R(M,N) = 0 for all

j > n+1. Thus,
pdR(M)≤ pdR M+1.

Next, suppose that pdR(M) = n. Then for every j > n−1, from (∗), we conclude that the map

Ext j
R(M,N)

x1−→ Ext j
R(M,N)

is surjective, and so Ext j
R(M,N) = 0 by Nakayama’s lemma. Hence,

pdR M ≤ pdR(M)−1.

Therefore,
pdR(M) = pdR M+1,

as required. �

To present the next main result, we need the following two lemmas.

Lemma 4.2. Let a be an ideal of R contained in its Jacobson radical. If R is a-relative regular, then
every a-relative maximal Cohen-Macaulay R-module is a-relative regular.

Proof. Set c = cd(a,R). Assume that R is a-relative regular. So, there is an R-regular sequence
x1, . . . ,xc that generates a. Let M be an a-relative maximal Cohen-Macaulay R-module. Then, by
Theorem 2.19(iv), it turns out that cd(a,M) = c. Now, from the definition, it is obvious that x1, . . . ,xc
is an a-s.o.p of M. Therefore, x1, . . . ,xc is an M-regular sequence by Lemma 2.7, and so M is a-relative
regular. �

In what follows, µ(a) stands for the minimum number of generators of an ideal a.
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RELATIVE HOMOLOGICAL RINGS AND MODULES 17

Lemma 4.3. Let a be a proper ideal of R. Then R is a-relative regular if and only if grade(a,R) = µ(a).

Proof. Set c = cd(a,R). First, assume that R is a-relative regular. Then a can be generated by an
R-regular sequence x1, . . . ,xc. So, c≤ grade(a,R)≤ c and µ(a)≤ c. On the other hand, as Hi

a (M) = 0
for all i > µ(a), it follows that c≤ µ(a). Thus, grade(a,R) = µ(a).

Conversely, suppose that grade(a,R) = µ(a). Then

µ(a) = grade(a,R)≤ c≤ µ(a),

and so grade(a,R) = c. Now, [BH, Exercise 1.2.21] yields that a can be generated by an R-regular
sequence of length c. Thus, R is a-relative regular. �

Theorem 4.4. Let a be an ideal of R contained in its Jacobson radical and M a nonzero finitely
generated R-module. Then the following are equivalent:

(i) M is a-relative regular;
(ii) grade(a,M) = grade(a,R) = µ(a).

Proof. Set c = cd(a,R).
(i)⇒ (ii) Assume that M is a-relative regular. Then a can be generated by an M-regular sequence

x1, . . . ,xc of length c. Hence,

c≤ grade(a,M)≤ cd(a,M)≤ µ(a)≤ c,

and so grade(a,M) = µ(a). Since M is a-relative regular, by the definition, it follows that R is also
a-relative regular. So, grade(a,R) = µ(a) by Lemma 4.3.

(ii)⇒ (i) Assume that

grade(a,M) = grade(a,R) = µ(a).

The equality grade(a,R) = µ(a) yields that R is a-relative regular by Lemma 4.3. Hence, R is a-relative
Cohen-Macaulay by Theorem 2.19, and so

grade(a,M) = grade(a,R) = c.

Thus M is a-relative maximal Cohen-Macaulay, and so M is a-relative regular by Lemma 4.2. �

A local ring (R,m) is regular if and only if dimR = pdR(R/m). So, one may guess that if a is
a proper ideal of R, then R is a-relative regular if and only if cd(a,R) = pdR(R/a). The following
example indicates that this is not the case.

Example 4.5. Let k be a field, S = k[x1,x2,y1,y2] and a= 〈x1x2,x2y1,y1y2,y2x1〉. In Example 3.6, we
observed that

cd(a,S) = pdS(S/a) = 3.

On the other hand, a can not be generated by an S-regular sequence of length 3, because grade(a,S) = 2.
Hence, S is not a-relative regular.

Next, we show that every a-relative regular R-module is a-relative Gorenstein.
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Proposition 4.6. Let a be a proper ideal of R and M an a-relative regular R-module. Then

ExtiR(R/a,M)∼=

{
M/aM if i = cd(a,R)
0 if i 6= cd(a,R).

In particular, M is a-relative Gorenstein.

Proof. Set c = cd(a,R). Clearly, we may assume that M 6= aM. Hence, the ideal a has generators
x1,x2, . . . ,xc, which form both an M-regular sequence and an R-regular sequence. As x1,x2, . . . ,xc is
an M-regular sequence, we see

c≤ grade(a,M)≤ cd(a,M)≤ c,

and so grade(a,M) = c. In particular, ExtiR(R/a,M) = 0 for all i < c. From the definition, it follows
that R is a-relative regular, and so Lemma 2.18 implies that pdR(R/a) = c. So, ExtiR(R/a,M) = 0 for
all i > c. Thus M is a-relative Gorenstein.

Finally, [BH, Lemma 1.2.4] yields that

ExtcR(R/a,M) ∼= HomR(R/a,M/〈x1,x2, . . . ,xc〉M)
= HomR(R/a,M/aM)
∼= M/aM.

�

Notation 4.7. Let a be a proper ideal of R. Let Ra (R) denote the full subcategory of a-relative regular
R-modules.

Proposition 4.8. Let a be a proper ideal of R. Assume that R is a-relative regular. For every
semidualizing module C of R, there is an equivalence of categories:

AC (R)∩Ra (R)
C⊗R− //

BC (R)∩Ra (R) .
HomR(C,−)

oo

Proof. Set c = cd(a,R). Because of the equivalence

AC (R)
C⊗R− //

BC (R) ,
HomR(C,−)

oo

it is enough to show that a finitely generated R-module N ∈AC (R) belongs to Ra (R) if and only if
C⊗R N belongs to Ra (R).

Let M ∈ AC (R) be a finitely generated R-module. As R is a-relative regular, the ideal a can be
generated by an R-regular sequence x = x1, . . . ,xc. By [AbDT, Lemma 3.2(ii)], x is an M-regular
sequence if and only if it is a C⊗R M-regular sequence. Thus, M ∈Ra (R) if and only if C⊗R M ∈
Ra (R). �
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Proposition 4.9. Let J denote the Jacobson radical of a complete semi-local ring R. Assume that R is
J-relative regular. Then there is a duality of categories:

RJ (R)
HomR(−,ΩJ) //

RJ (R) .
HomR(−,ΩJ)

oo

Proof. Let MCMJ(R) stands for the full subcategory of J-relative maximal Cohen-Macaulay R-
modules. Proposition 4.6 and Theorem 2.19(iii) yield that RJ (R)\{0} ⊆MCMJ(R). On the other
hand, as R is J-relative regular, Lemma 4.2 implies that MCMJ(R)⊆RJ (R)\{0}. Thus RJ (R) =
MCMJ(R)∪{0}, and so the claim follows by [PDR, Corollary 5.3]. �
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