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ABSTRACT. Given continua X, Y and a class F of maps between continua, define X > Y
if there exists an onto map f : X — Y belonging to F. A map f : X — Y is weakly
confluent if for each subcontinuum B of Y, there exists a subcontinuum A of X such that
f(A) = B. In this paper we consider the class W of weakly confluent maps. Two continua X
and Y are W-equivalent provided that X <,y Y and Y <y, X. We show that any Gehman
Dendrite G,, is W-equivalent to any universal dendrite D,,,. We consider the class [G3]yy
of all dendrites that are W-equivalent to Gi5. We characterize the elements of [G3]y in two
ways: (a) a dendrite D belongs to [Gs]yy if and only if D contains uncountably many end-
points, and (b) a dendrite D belongs to [Gs)w if and only if D is maximal with respect to
the preorder <,y

1. INTRODUCTION

A continuum is a compact connected metric space with more than one point. A subcon-
tinuum of a continuum X is a nonempty closed connected subset of X, so one-point sets in
X are subcontinua of X. A map is a continuous function.

Given an onto map f : X — Y between continua, we say that f is:

- monotone provided that for each subcontinuum B of Y, f~1(B) is a subcontinuum of X;
- confluent if for each subcontinuum B of Y and each component A of f~1(B), f(A) = B;
and
- weakly confluent if for each subcontinuum B of Y, there is a subcontinuum A of X such
that f(A) = B.
Note that
monotone = confluent = weakly confluent.

The class of monotone (respectively, confluent and weakly confluent) maps is denoted by
M (respectively, C and W). It is easy to show that classes M, C and W are closed under
composition.
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Given continua X and Y, and a class of maps between continua F, we define X > Y if
there exists an onto map f : X — Y belonging to F. Two continua X and Y are F-equivalent
(denoted by X ~x Y') provided that X <z Y and Y <z X. Given a class of continua &, a
continuum X € & is F-isolated in the class £ provided that the following implication holds:
if Y € £and X ~7 Y, then X and Y are homeomorphic.

A curveis a 1-dimensional continuum. A dendrite is a locally connected continuum without
simple closed curves. For a continuum X and a point p € X we use the order of p in X in
the sense of Menger-Urysohn [4, Appendix A.2|, which is denoted by o(p, X). For dendrites
D, o(p, D) can be defined as the number of components of D \ {p} (see [1, p. 2]). Then
o(p, D) € NU{w}. Points of order one in X are end-points, and points of order greater than
2 are ramification points. The set of end-points of X is denoted by E(X) and the set of
ramification points of X is denoted by R(X).

Given n € N (n > 3) and m € NU {w} (m > 3), two important dendrites we will use
are the Gehman dendrite GG,, and the the universal dendrite D,,. The Gehman dendrite G,
is characterized by having E(G,,) homeomorphic to the Cantor set; all ramification points
of G, are of order n; and E(G,) = clx(R(G,)) \ R(G,) (see [5, p. 21], and for a picture
of G3 see [10, p. 424]). The universal dendrite D,, is characterized by having the following
properties: all ramification points are of order m and each arc in X contains ramification
points [3, Theorem 3.1] (see [7, p. 61] for a picture of Dy).

In the realm of dendrites a very complete study of the preorder <z was made by J. J.
Charatonik, W. J. Charatonik and J. R. Prajs in [5]. Several families F were considered, but
the most important results are related to monotone and open mappings.

For dendrites, the following facts are known.

(a) if X and Y are dendrites, then X ~,, Y if and only if X ~¢ Y [5, Corollary 5.7],

(b) for every n,m € NU{w} (n,m > 3), D,, ~xq Dy, Dy, ~¢ D,, and D,, >~y D,, [5,
Theorem 5.27],

(c) for each n > 3 and for each m € NU{w} (m > 3), G,, and D,, are not M-equivalent
(it follows from [9, Theorem 5.27]),

(d) trees are Wh-isolated in the class of trees [8, Theorem 3.3,

(e) A finite graph X is not W-isolated in the class of all continua if and only if X is either
an arc, or a simple closed curve, or contains a cycle (a cycle is a simple closed curve
with exactly one ramification point of X), or contains a ramification point contained
in two distinct sticks (a stick is an edge joining a ramification point to an end-point)
[8, Theorem 3.4],

(f) a dendrite X is M-isolated in the class of all continua if and only if R(X) is finite
9, Theorem 1.1],

(g) it follows from [2, Theorem 3.2] that: if two dendrites are monotone-equivalent, then
they are quasi-homeomorphic (two dendrites X and Y are quasi-homeomorphic if for
each € > 0 there are e-onto maps f. : X — Y and ¢. : Y — X). However the converse
is not true.
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WEAKLY CONFLUENT CLASSES OF DENDRITES 3

The authors in [5, Theorem 5.27], gave a complete characterization of dendrites which are
maximum elements with respect to the preorder <, (equivalently, <¢ [5, Corollary 5.7]),
they showed that a dendrite D satisfies X <u, D for every dendrite X if and only if D
contains the dendrite Ly described in [5, 5.26].

The aim of this paper is to characterize the maximal dendrites with respect to the preorder
<. We prove that D is one of these dendrites if and only if F(D) is uncountable. The proof
of this result is based in the theorem that says that there exists a weakly confluent map f
from the Gehman dendrite G¢ onto the universal dendrite D,. Most of this paper is devoted
to give a detailed construction of the map f.

2. GEHMAN AND UNIVERSAL DENDRITES

Theorem 2.1. Forn > 3 and m € {3,4,...} U{w}, the Gehman dendrite G, and the
universal dendrite D,, are weakly confluent equivalent.

To prove this theorem it is enough to show that there exists a weakly confluent map
f : Gg¢ — Dy; the argument is as follows: By [1, Corollary 6.10], for all n,m > 3, G, is
a monotone image of G,, and, by [3, Corollary 6.4], for all k,l € {3,4,...} U{w}, Dy is
monotone equivalent to D,;. Let n > 3 and m € {3,4, ...}, since monotone maps are weakly
confluent, there are weakly confluent maps go : D,, = D, and ¢; : D,, — G,, [3, Proposition
6.2]. Hence, g = g1 0 go : D, — G, is a weakly confluent map. We can take monotone maps
fi:G, = Ggand fo : Dy — D,,. Thus, f3 = foo fo f : G, = D,, is weakly confluent.
Therefore, GG,, and D,,, are weakly confluent equivalent.

This section is devoted to construct a weakly confluent map f : Gg¢ — Dy.

For simplicity, the ramification and end points of a dendrite will also be called vertices. We
will use the universal dendrite D,. Recall that this dendrite is characterized by the following
two properties [6, Theorem 6.2, p. 229]:

(a) each ramification point in D, has order 4, and
(b) each arc in D, contains points of order 4.

Since the proof that there exists a weakly confluent map from the Gehman dendrite G
onto Dy requires some explicit formulas, we start by giving an appropriate description of Dj.
We will use the set of dyadic numbers D in the interval [0, 1]:

D={%€0,1]:meNand ke {0,1,...,2m}}.

Given r € D\ {0,1}, the degree of r is the unique number g(r) € N such that r = 29’@),
where k is odd.

Lemma 2.2. (a) Letr,s € D\{0,1}. Thenr— 55 € D\{0,1} and g(r—567) = g(r)+9(s).
(b) Let [a,b] be a non-degenerate subinterval of [0,1]. Then there exists a unique element
r € [a,b] N (D\{0,1}) with minimal degree g(r); if g(r) > 1, then 557 > max{b—r,r —a},
and if g(r) =1, then r = 1.
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Proof. (a). Since r > we have that 0 < 7 — b <7 — 535 <r < 1,sor — 535 €

29(r 29(r
and n = g(s). Consider the dyadic representation of r and s:

)
D\ {0,1}. Let m = g(r)

:”—l—l—--~—|—£;’;,s—2—}+ + 5=, where each r; and each s; is in {0,1} and r,,, = 1 = s,,.
2m+n 17‘1+ +2n,rm on— 1

Then r — 29< ) — + + 2_'m - (2m+1 + + quj-n) - 2'm+n = 723” — Sn'
This shows that g( 2g(,«)) m+n=g(r ) + g(s).

(b). Suppose to the contrary that r; < ry are elements with minimal degree in [a, b] such
that g(r;) = g(r2) € N. Then there exist odd numbers ki, ky € {1,...,290} such that

g(T

0<r =55 < ot < B2 < Jes — ) < 1. Since ky + 1 is even, the number ro = 25
belongs to [a,b] N (D \ {0, 1}) and g(ry) < g(r1), a contradiction. This proves the uniqueness
of the element r of minimal degree. Suppose that r = 29@), with £ odd and g(r) > 1. If
T+ 5oty = o < b, then g(&55) < g(r), this contradicts the choice of r. Thus b —r < .
Similarly, r — a < 2g(r) 0

2.1. Construction of D,.

When we take points p and ¢ in a dendrite, by pq we denote the unique arc joining them,
if p # q, and pg = {p}, if p = q.

We consider the points v = d = (0,0), a = (0,1), b = (0, —1), ¢ = (1,0) and e = (—1,0)
in the Euclidean plane R?. To construct D,, we start with a cross and then we add smaller
and smaller crosses in strategic points and strategic sizes. Points a, b, ¢, e will be useful for
indicating if we will walk up, down, right or left.

Let By, = {d,a,b,c,e} and B} = {a,b,c,e}. Set f = %. We use the number 5 to short
segments in order to avoid intersection of paths.

We define two types of elements in the set B, we say that a and b are of the vertical type;
and ¢ and e are of the horizontal type.

We consider the set D} of points ¢ in the plane R? such that either ¢ = v or ¢ is of the
following form.

2 2 m— 'm<Zm m  T'm+12m+1
g =0+ g+ B e B ey 8" ety (1)
where m >0, t € (0, 1], for each i € {1,...,m+1}7 ri € D\{0,1}, z; € B}, and, if i > 1, z;
is of distinct type than z;_;, meaning z; € {a, b} if and only if z;1, € {c,d}.
We will give a brief explanation of a point ¢ € Dj.
In the term “55t, z; indicates one of the four fundamental directions a, b, ¢ or e and the
dyadic number r; indicates how much we advance on the direction z;. Similarly, in the term

soty» 22 indicates the direction in which we move when we are standing on point v+5h, we
are asking that z is of different type than z;, so we change direction, and 8 %5 1ndlcates
W FOI'

since 19 € (0 1), the length of this movement is less than 2, if r; € {1, 3

29<T
how much we move in that direction. This movement is limited by the factor

example if 7”1 2,
is less than 2 it € {8, S 808 7} is less than 2 5 etcetera. The factor [ allows us to aV01d

intersections of paths, so the arcs from the point v to any point in Dj is unique. We continue
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WEAKLY CONFLUENT CLASSES OF DENDRITES 5

until we use the last term: ¢3™ 7550t here the number ¢ indicates that we run on a
complete segment.

On Figure 1, we illustrate the set covered by the elements in D} with m = 0, and we
also illustrate some elements with m = 1. In fact the complete elements for m = 1 include
countably many segments perpendicular to the first cross.

‘

I‘I—_Ill
I‘I

m
I‘I|

FIGURE1l. m=0and m=1

In the case that ¢ is written in the form (1), define the number m(q) = m and the point

Tz 222

_ S .« .. m_l Tmzm
w(Q) =v + 2(] + /82g(7'1) + + /8 29(7"1)+---+g(7"m—1) '

Notice that m(q), w(q) and z,,4; are uniquely determined by ¢. So we can write

_ m(q) "m(@)+1%m(g)+1
q= w(Q) + tﬁ 29(1)+---+g(7“m(q)) :

The expression in (1) is not unique since the number 7,41 can be written in many ways.
Observe that D} includes exactly all points in Dy of order 2 or 4. That is, D, \ D} = E(D,)
(E(D,) is the set of end-points of D). Then Dj is dense in Dy,. The set of ramification points
of Dy is the set R(Dy) of points p € D, such that either p = v or p is of the form

. riz o X5) o m—1 'm<Zm m I'm+12m+1
p=vt oy T T B s T S 2)
where m, r1,...,7ne1 and 24, ..., Z,41 satisfy the conditions described previously. Observe

that the expression for points in R(D,) is unique.
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Given ¢ € Dj, in the following definition we give name the segments we use to go from v
to gq.

Definition 2.3. Given q € D} (written as in (1)), define
Li(q) = {v+ s55 1 s € (0, 1]},

La(q) = {v+ 55+ + B3 s € (0, 1]},

L.(q) = {U—f-% 4o fmT2_ImoiEmol 4 ggmol____Tmim g ¢ (0,1]} and

29(rD)+ - +9(rm—_2) 29(r1)++9(rm—1)

Lini1(q) = {w(q) + st0™ sm5eims - s € (0,11}

Observe that each set L;(¢q) is homeomorphic to the interval (0, 1] and the unique arc in
D, joining v and ¢ (respectively, v and w(q)) is vg = {v}UL1(q)U- - UL, 11(q) (respectively,
{v}ULy(q)U---UL,,(q)). Observe that the rays L1(q), - , Lin+1(g) are uniquely determined
by q.

2.2. Description of the dendrite X.

Recall that the Gehman dendrite G5 is characterized as the dendrite satisfying that its set
of end-points is homeomorphic to the Cantor set, each ramification point is of order three
and E(G3) = clg,(R(G3)) \ R(G3) [11, p. 100], see [12, p. 203, for a picture. Similarly, the
Gehman dendrite of order 6, denoted by G, is characterized as the dendrite satisfying that
its set of end-points is homeomorphic to the Cantor set, each ramification point is of order
6 and E(Gg) = clg,(R(Gg)) \ R(Gé).

Instead of working directly with G, it is convenient for us to take Gg but transforming
(exactly) one point of order 6 into a point of order 5. This new space is named X.

Fix a ramification point vg, of Gg, let C, ..., C§ be the components of Gg\ {vg, }. Consider
the continuum X obtained by shrinking the set C} U {vg,} into a point. Let V' € X be the
point corresponding to Cf U {vg,}. Then X is a dendrite such that its set of end-points
is homeomorphic to the Cantor set, the point V' has order 5, the rest of its ramification
points are of order 6 and E(X) = clx(R(X)) \ R(X). Observe that X is a monotone (and
then weakly confluent) image of Gg (X <), Gg). We establish the following conventions on
dendrite X.

As we did with Dy, we will describe X by starting at the vertex V', and then giving five
possible directions (D, A, B, C and F) indicating the ways we can walk. So, the vertices of
X will be described in the following way: V' is the first vertex, VD, VA VB, VC and VE
are the five vertices adjacent to V in X. Besides V', the vertices adjacent to V A, are VAD,
VAA, VAB, VAC and VAE, and we continue in this way.

Formally: fix five distinct labels D, A, B, C' and E (all different from V). Let Bo =
{D,A,B,C,E} and B, = {A,B,C,E}. The ramification points of X are all the finite
sequences of the form:

T=270Z1Z5...%ny,

where m > 0, Zy =V and for each i € {1,...,m}, Z; € Be.
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WEAKLY CONFLUENT CLASSES OF DENDRITES 7

The maximal free arcs in X are the arcs of the form 7., 7,1, where T, = ZyZ1 25 ... Z,,
and T,,.1 = ZoZ1Zy... ZyZymy1. Then the arc VT, is the union of the arcs Zy(ZyZ,),
(Z021)(Z0217Z5), . (Zo .. Zo—1)(Zo - . . Zy). We fix a one-to-one onto map

U(Tm+1) . [0, 1] — Tme+1

such that o(7},,+1)(0) = T,, and o(Tp41)(1) = Ty1. The set o(Th,41)([0,1]) is the arc
T et in X that joins T, and T,,4. Let

77(Tm+1) : Tme+1 — [07 1]

be the inverse mapping of o(7T},41)-

<

<

£

FIGURE 2. X3

The end-points of X are the infinite sequences of the form:
R=207,175...
where Zy =V and for each i € N, Z; € Bo. The arc VR in X is given by:
VR=T/HLULT,UTyI5U---
where for each m >0, T, = ZoZ1 ... Z,,. Then Ty = Zy =V and
X = U{TOR : R is an end-point of X}.
For each m > 0, let
X ={T0T,, C X : T,,, = ZyZ1Zs ... Zy, and, for each i € {1,... ,m}, Z; € Bc}.

In Figure 2, we illustrate the set X3.

For the definition of Dy, we used the set B, = {d,a,b,c,e}. Recall that the elements
of the set By are denoted with the capital letters A, B, C, D, F we will use the following
correspondence: D — d, A — a, B — b, C' — ¢, E — e. When we denote an element in
Be by Z;, we consider the element z; € By defined with the previous correspondence for
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the element Z;. Conversely, for each element z € By, we define the corresponding element
Z € Be.

We define two types of elements in the set B, we say that A and B are of the vertical
type; and C' and E are of the horizontal type.

2.3. Definition of f.

For a vertex T,,,1 = ZoZ1...Zyn1 of X, define a sequence A\, Ag, ..., \i1 as follows.
Take i € {1,2,...,m+ 1}.

(a) If Z; = D, let \; = 0;

(b) if Zz 7é D and {Zo, ey Zi—l} == {D}, let >\z = 1,

(c) if Z; # D and {Zy,...,Zi_1} # {D}, let jo =max{j € {1,...,i—1}: Z; # D} and
define \; = \j,, in the case that Z; is of the same type than Z,; and \; = S\, (recall
that § = g), in the case that Z; is of distinct type than Z;,. Then each \; belongs to
the set {8*: k € N} U {0,1}

Define f : X — R? as follows. Set f(V) = v, and given a vertex Ty,y1 = ZoZ1 - .. Zyiy Of
X and a point p € T},,T,,,+1, where T,, = ZyZ; ... Z,,, define

A121 | Aaza AmZm Amt12ma1
f(p)=v+7+?+---+2—m+n(Tm+1)(p)% (3)
where A1, ..., \,,y1 are defined as previously, for the sequence T,, .

Given an end-point p = ZyZ1 725 ... of X, define
A1z Aoz A3z
I B S

f(p):U+ 21 22 23 R}

where for each m € N, A\, \g,..., A\, are defined as previously for the sequence T,, =
702y ... Zpy. Observe that each number ); is defined using only the elements 71, ..., Z;, and
it is independent of any number £k > i.

Given m € N, observe that

f(Xn) ={f(To(ZoZy ... Zn)) : ZoZ1Zs . .. Zy, is a ramification point of X'}
={f(p) : p € ThaaTn,1 <n<mand T, € R(X)}
is the minimum tree in R? containing the points in the set
f(Xn) ={f(ZZ1...Zn) : ZoZ1Zs ... Zy is a ramification point of X }.

Since {ZoZ1 : Zy € Bo} ={VD, VA VB, VC,VE}, we have that f(X;) is the minimum
tree in the plane R? containing the points v, v + 5, v+ g, v+ 35 and v+ 5.

Observe that f(X3) is the minimum tree in the plane containing the points:

v, v+ 5, v+ g, v+ 5, v+ 5, (they come from VD, VA VB, VC,VE, or VDD, VAD,
VBD,VCD, VED);

v+ v+ v+ v+ € (from VDA VDB,VDC,VDE);

v+ %‘1, v+ %, v+ %C, v+ %, (from VAA, VBB, VCC,VEE);

v+ v+ vt v+ € (from VAB,VBA VCOE,VEC);
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WEAKLY CONFLUENT CLASSES OF DENDRITES 9

VHEHBL v+ LB v+ L+ B v+ 4B v+ 4B v+ S4B v+ £+ B v+ £+ 88
(from VAC,VAE , VBC,VBE,VCA,VCB,VEA,VEB).
In Figure 3 we picture the sets f(X7), f(X2) and f(X3).

FIGURE 3. f(X3), f(X3) and f(X3).

Clearly f is continuous.
The following lemma is an easy consequence of the definitions.

Lemma 2.4. Let T,, .1 = ZoZy ... Zymyq be a vertex of X and T,, = ZyZy ... Z,,. Then:
(a) f(T )_ /U“_ )\1Z1 + )\222 _|_ + /\mim’
(b) if Zyyr =D, ihen f(T Tm+1) {f(T )} ={f(Tni)}t = F(Tn) [ (Tns1),
(C) if Zmy1 7£ D, then f(T Tm+1) f(T )f( m+1 ) That 1s, f( m m+1) = {U + A1Z1 +
M2 4. dmEn g pdmitinnl € D, e [0,1])

Lemma 2.5. Let T = ZyZ; ... Zy, be a vertex of X and Z € B'¢. Suppose that {Wy,..., W, } C
{D, Z}. Define the sequence S = ZyZy ... Zp Wy...W,. For each i € {1,...,n}, let s; =0,
ifWi=D; and s; =1, if Wy =Z. Setr =5t +---+ 3= € D. Then:
(a) if {Wh,...,Wa} ={D}, then f(T'S) ={f(T)};
(b) if Z € {Wy,..., Wy}, then f(TS) = f(T)f(S); and
(c) if Z and Z,, are of different type and Z,, # D, then f(S) = f(T)+ 'BAmT’Z where A\,
18 defined for the sequence T.
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Proof. (a) follows from Lemma 2.4. To prove (b) and (c), suppose that W;,, ..., W, are all
the elements in {Wy, ..., W, } which are equal to Z, where k € N and i; < --- < i;. For each
l e {1,...,k}, let S[ = ZOZlZmW1W”

Given i € {1,...,n}, if i ¢ {iy,...,ix}, then w; = d = (0,0) and A,4; = 0; if i €

{i1,... i}, then w; = z and A\, 1; = Ajpay, (since there are not changes of types). Thus, by
the definition of f, we obtain that
)\121 )\222 )\mzm /\erilZ )\erilZ
J&) =vt o+ 5t e e T
Amis 1 1 (4)
— Ioma e oL
In particular, if Z is of different type of Z,,, by (a) we have that f(S) = f(Sx) = f(T) +
/\’;—,ffkrz = f(T) + %\—mmrz (Amtis =+ = Amti, = Amf since there is exactly one change of

type from m to m + ).
Observe that Lemma 2.4 implies that

FTS) = f(T(ZoZs .. Z Wi . Wi, ) U (ZoZs - .. ZnWi - Wiy1)Sh)
= F(T(ZoZy ... ZWr .. Wi, ) U f(ZoZs ... ZWi ... Wiy1)Sh)
={f(M}u f(ZZ...ZuWi... Wy 1) f(S1) = f(T)f(S1).
By (4), this arc is the set J; = {f(T) + t%( L) : t € [0,1]}. Similarly, f(S;5:) =

21

F(S1)f(S5) and by (4), this arc is the set Jo = {f(T) 4 Jmtf( Ly 4 g2miaZ( 1 4 1.

2m 201 2m 21 2!2

t € [0,1]}. Since J; N Jo = {f(T) + %(211)} = {f(S1)}, we conclude that f(T'Sy) =
F(TS1) U f(S182) = J1U Jy = f(T)f(S2).
Inductively, the proof of (b) can be completed. O

We have described the elements of D} in (1) and we defined f with the expression in (3).
We see how they are related.

First, we show how to associate a finite sequence of elements of Bo to an element of the
form rz, where r € D\ {0,1} and z € B}. Let Z € B be the element associated to z.
Suppose that r = 2%, where k is odd. We write r using dyadic notation, that is, we write
r =5+ + 5%, where s, = 1 and for each i € {1,...,n — 1}, s; € {0,1}. Observe that
g(r) = n. We define the sequence Z; ...Z, by making Z; = D, if s; = 0; and Z; = Z, if
s; = 1. Observe that Z,, = Z.

Given an element of the form tz, where ¢t € (0, 1] and z € B'y,, we associate to tz a sequence
Z\Zy ... of elements in the set {D, Z} in a similar way. That is, we start writing ¢ = 5+ +- -
and we define Z; = Z if s; = 1, otherwise Z; = 0 (¢ > 1). In the case that ¢ has two dyadic
representations, we simply choose the finite one (the one with a tail of zeros).

Lemma 2.6. Let r € D\{0,1}, z € B}, and Z, ... Z, be the sequence associated to rz. Then

Zn=zandrz = + -+ 5

Proof. We have observed that Z,, = Z, so 2, = z. As before, we write r = 5 + --- + 2.

Given i € {1,...,n}, if s; = 0, then Z; = D, so (0,0) = d = z;, and z; = 0z = s;z; if
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WEAKLY CONFLUENT CLASSES OF DENDRITES 11

=1, then Z; = Z, so 2; = z = s;z. In both cases, z; = s;z. Therefore 5} + 33 + -+ 32 =
8124—822—1- o RE =z [

Lemma 2.7. Letry,...,rmym in D\{0,1} and 2y, ..., 2, in By. For each k € {1,...,m}, let
Z}k) e Z](-f) be the sequence in Be associated to ryzy. Suppose that for each k € {1,...,m—1},
Zp+1 1S of distinct type than z. Let T = ZOZ{U . Z](-ll) . Zim) . ZJ(::). Then

(Cl) f( ) =v+ r1z1 + ﬁgzjzlg et ﬁm_lzjlffbignmfu where ]z — Q(Zi), fO?“ each 7;7
(b) for each k € {1, ...,m}, the contribution of the subsequence Zl(k) e Z;,’:) to the sum
that deﬁnes f(T) is the term B s

oIl Hig—1 7
(c) if Mooy Njy+tj 1S the sequence associated to the vertex T, then \j, = 8°, Nj 44, =

/81 < ]1+ +im T Bm 1
(d) the number of terms in the sum that defines f(T) in (3), equivalently, the number of

terms in the sequence T, is equal to jy + -+ + jm + 1 =g(r1) + -+ glrm) + 1,

(e) let S =YyYy...Y, be a vertex of X andR:%E...Yanl)...ZJ(-ll)...me)...Zj(Zl).
Suppose that Y, and Zy are of distinct type and Y,, # D. Let {\1,...\,} be the set
of X’s defined for the sequence S and v = ’B)‘”. Then

f(R) = f(S) + (55 + B2 + -+ B i),
(f) let S and R be as in (e). Then f(SR) = f(S)f(R).

Proof. Let i € {1,...,j1}. Since {Z{",..., 2"} c {D, Z:}, by definition: \, = 0, if 2" =

D;and \; =1 (there are not Changes of types) if Z; ) = Z,. In the ﬁrst case, since d = (0, 0),
Z( )

e
we conclude that = (20 ) — = 2— Thus, by Lemma 2.6,
)\IZ(I) )\jlzj('l) (1> ](1)
211 + -+ 2j11 ==+ + 2J11 _7”121
Given i € {1,... ,32}. Smce {Zf2 e } C {D, Z,}, by deﬁmtlon of f(T): A\jy+i =0, if
Zi@) = D, and \j,4; = [ (there is exactly one change of type), if ZZ- = Zs. In the first case,
. d— h h )\j1+iz£2> g +i(0,0) ﬂz@) In th d )\j1+i2§2> _ B §2)
since d = (0,0), we have that 45— = e 2]1“. n the second case, “ii— = Fi.

(2) Ao s 22 i e )
31—0—121 J1+32 % I o Blrozg
Thus, by Lemma 2.6, T+---+2jl—ﬂ2—2n( + +2J2)—23—-1.

The proofs of (a) and (b) can be completed continuing in this way.

Properties (¢) and (d) are easy to show.

We prove (e). The case m = 1 was proved in Lemma 2.5 (c¢). We prove the case m = 2.
Suppose that Ai,...\,yj, are the X\ ’s defined for the sequence Y; .. .Yanl) . ..Zj(ll). Ob-
serve that since each \; depends only on the first i terms, ;...\, are the \'s defined

for Y;...Y,. Since there is exactly one change of type among the terms Yanl) . ..Z](ll),

we have that A, = A3. By Lemma 2.5 (c), f(Y()Yl...YZ(”...Z(”Zf)...z@)) =

J1 J2
FOOYs .. Y,z ZD) + Siryzy = f(S) +ym + £z = f(S)+ (5 +522). The
rest of (e) can be proved in a similar way.
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12 A. ILLANES, V. MARTI’NEZ-DE—LA—VEGA7 J. M. MARTfNEZ—MONTEJANO, AND D. MICHALIK

We prove (f) by induction. The case m = 1 follows from Lemma 2.5 (b). Now, suppose
that (f) holds for m —1 > 1. Let R’ = YoY;... Y, z{V ... 200 ... z{" Y ... Z{"" V. Using the
induction hypothesis and (e), we obtain that

f(SR) = f((YoY1 Y,)R) = f((YyYi...Y,)R UR'R)
FIOYi .. Y,)R) U F(R'R) = f(S)f(R) U f(R)f(R)
= F(S)(f(S) + v(ﬁ + B2 Ly prr ImlEmol

20 1 j1t+im—2
(F(S)+y (5 + B2 4+ B2 e ) (F(S) +y (B + B2+ 4+ B g — ).

Observe that the arc in D, joining the points f(.S) + (lel +57”22ﬁ2 4o g2 2§ﬂf»l-i§2;_l2)
and f(S) + (55 + g2 + - + g fmin—) s the set

271 oJ1+Fim—1

L={f(S)+y (B +BZ2+ -+ 2 iy R i) 1t € [0, 1]} = f(R) f(R),
and the intersection of L with the arc Ly = f(S)(f(S)+y ("t +B8%2+ -+ 872 Juiin=s)) =
f(S)f(R') is the point f(S)+(%F + S22 4+ " *miiyty) = f(R). Then LU Ly =
F(RHF(R)U f(S)f(R') is the arc joining f(S) and f(R). Therefore f(SR) = f(S)f(R). O

Lemma 2.8. f(X) = Dj,.

Proof. Let ry,... 1y in D\ {0,1}, 21,..., 2, in B} and for each k € {1,...,m — 1}, 2541 is
of distinct type than z;. By Lemma 2.7, each element ¢ € R(D,),

TmZm
g(r1)++g(rm—1)’

. riz X m— 1
g=v+ 20 +ﬁ29(r1) +6

and any arc vq in D, is contained in Im(f). We obtain that R(D,) C f(IU>_; Xim) C Dy.
Since X = clx (U, _; X,) is compact and R(Dy) is dense in Dy, we obtain that f(X) =

D,. -
Lemma 2.9. Let T = Zyz{" ... 2\ ... 2" ... 2" and
B r121 7“222 m—1__ T'mZm
q= f(T) v+ 20 + ﬁ 271 + B Q1+ t+im—1

be as in Lemma 2.7. Let k = j; + - +]m Write the sequence T in the form T = YyY; ... Y.
Lett € D\ {0,1,r,,} be such that > |rp, — t] and let

29(7777,

tzm

m—2 'm—12m—1 m—1
=t g BT T E——

20 i1t +im
Then there exist n € N, Y, € B, and Yiy1, ..., Yipn € {D, Y/} such that Y/ is of the same

type than Y, = Z](-m , and the vertex Tyyn, = YoY1...Yr ... Yy, has the following properties

f(Tiin) = @6 [(TThogn) = q@t, 9(rm) +n = g(t) and Npyr, = gt (where A1, ..., Ajyn is the
sequence defined for the vertex Ty ).
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WEAKLY CONFLUENT CLASSES OF DENDRITES 13

Proof. We suppose that z,,, = a, the rest of the cases (that is, z,, is one of the points {b, ¢, e})
are similar. We consider two cases.

Case 1. t < 1,,.

We take the dyadic representation of the number 290=)(r,, —t) € D\ {0, 1}, to be:
29(7’m) m —t) = _
(rm—1) = 57+ + o,
where {s1,...,s,} C {0,1} and s,, = 1.
Since Y} is of the same type than Y}, t < r,, and 2, = a, we have that 2,11 = —2, = b.

Let 7' = 290m) (1, —1), Yiq1 . . . Yiqn be the sequence associated to r'b = r'(—a) = r'(—2,).
Then Yiin = —Zm = B, {Yir1, .., Yern} C {D, B} and

Thpn = YoZtV . 280 2™ 20 Yi = VoY1 VY Yi,

Observe that ¢g(r') = n. By Lemma 2.2 (a), g(rp,) +n = g(rn) + g(r') = g(rm — QQZ"T/m)) =
g(t). Thus g(r,) +n = g(t).

Since {Yii1, .-, Yern) C {D,B} and B € {Yii1, ..., Yein}, by Lemma 2.5 (b), we have
that f(TTiin) = f(T)f(Thin) = ¢f (Tiyn). We prove that f(Tyyn) = ;-

By definition,

A1y1 AkYk | Akr1Ykt1 Ak+n¥k+n
f(Tin) = v + o1 T ok ok+1 +21€T
Since for each i € {1,...,k}, the definition of a number )\;, depends only on the sequence

Yo ... Y;, we have that \; also is the one used in the definition of f(7"). Then

ALt AkYk
f(T)=v+ o1 +"‘+7
1 m m
s A2y L A2y - Mjytotjmr 4124 - My potin 2
VT T 2 it Himo1t1 2t tim
By Lemma 2.7 (a) and (c), the last sum is equal to
iz 222 m—1  T'm”m
I v rew ey
and \, = ™1
Thus
A1y AkYk 7”121 ToZ9 m—1__ TmZm
T R A v g
Since y, and b are of the same type, in fact, b = —a = —z,,, = —z(m) = —y, we have that

for each i € {1,...,n}, 8™ = \p = Moy, if Viyy = B (equlvalently, si =1); and A\gyy = 0,
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14 A. ILLANES, V. MARTI’NEZ-DE—LA—VEGA7 J. M. MARTfNEZ—MONTEJANO, AND D. MICHALIK

if Y., = D (equivalently, s; = 0). Then ypy; = $;0, and M\pyiUprs = Mlrgps = 8™ Lsib.

Therefore

J(Tpgn) = v+ % + ﬁ% o4 gml leiﬁi?m_l n ﬁzkjjlb T /6”;]6:”()
e
= gt

Hence, f(Tkin) = -
Case 2. r,, <'t.

The proof in this case is similar to the proof of Case 1, using the dyadic representation of
the number 7" = 290)(¢ — r,,) and the sequence associated to r”a. O

Theorem 2.10. The function f is weakly confluent.

Proof. Take a subcontinuum B of D,. We are going to show that there exists a subcontinuum
A of X such that f(A) = B. By 2.8, we suppose that B is non-degenerate. Let gy € B be
such that qq is the first point in B when we walk from v to B. That is, qq is the only point in
B with the property that for each g € B, qy € vq (equivalently, vgy C vq). Then B # {qo}.
So qo is not an end-point of Dy. So either ¢y = v or gy can be written as in (1).

Case A. qy #v.

In this case

121 T2 'mZm

_ 22 . m—2 T'm—12m—1 * om—1
w=v+ o5ty Tt B et U sy O
where t* > 0.
Let w = v+ Tégl +621;2(ff) - '+Bm_2 gg(rjﬁil‘f;(;:n_zﬂ to =t"rm and z = ﬁm—l 29(T1)+'%T“7("“m—1) )
Then

Qo = w +tpz.
Consider the arc L ={w+tz € D, :t € [0,1]}. We know that (see Definition 2.3)

vgo = {v} U Li(q0) U~ U Ly-1(q0) U Lin(qo)-

where L,,(q0) = {w + stoz : s € (0,1]}. Then for each s < 1, w + stpz ¢ B. Thus t; =
min{t € [0,1] : w+ tz € B}. Since BN L is a subcontinuum of Dy there exists to € [to, 1]
such that BN L ={w +tz € Dy:t € [ty,ta]}.

Case 1. t) < t».

By Lemma 2.2 (b), there exists a unique element r € (tg,%2) N (D \ {0, 1}) with minimum
degree. Set
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WEAKLY CONFLUENT CLASSES OF DENDRITES 15

gL =w+rz.

T222 TZm

Then
7’121 ﬁm 2 T'm—-12m—1 Bm 1
g(r1)+4+g(rm—2)+g(rm-1)"

g1 =v +/B 29(r1)+-+g(rm—2)

Since r € D\{O, 1}, by Lemma 2.7 (a) and (d), there exist k € N and a sequence Yy, ..., Y%
in Be such that the vertex

Ty = YoYi ... Y
of X satisfies f(1y) = ¢ and k = g(r1) + - 4+ g(rpm—1) + g(7).

Claim 1. Let g € (B\ {q}) N R(D,). Then there exists an arc J, in X such that Ty € J,
and q € f(J,) C B.

We prove Claim 1. We start writing ¢ as in (2)

iz 2 mi—2 Tmi 1w m'—1 Tt
q‘”+20+5ymf“”+5 Py Ty e o
Since ¢ € R(Dy), 1, € D\ {0,1}. Let Li(q),...,Ln(q) be as in Definition 2.3. Since
{v}ULi(qo)U-+-ULpy_1(q) C vgo C vq, the uniqueness of arcs in D4 implies that Li(qy) =
Li(q),- .-y Lin—1(q0) = Lim—1(q), m < m' and z,, = 2/,. Then ry =r},... 11 =1, _;; and
2 =21, %m = 2. Thus
. rz raz2 m— 3 'm—22m—2 m— 2 'm—12m—1
¢=v+ 20 ng(m) + g(r1)+-+g(rm—3) + g(r1)+-+g(rm—2)
1 T Zm /2 r’ 1% 1 1 vz
B 29(r1)+-+g(rm _1) +5 ) +tg(r L) +8 99(r)+-+g(ry )
/ /! / /
_ m Tint1Zm1 =2 "1 F— m'—1 T Zm
= w2+ B e ey T T8 S, 5 TP 2()++u;,g

(6)

For each i € {1,...,m'}, let I/Vl(i)7 ce Wj(j) be the sequence in B¢ associated to riz). Let
K" =g(r1) 4+ -+ g(rm). Observe that by Lemma 2.7, if V;, ..., Vir € Be satisfies that the
sequence

V - %‘/1 Vk”

is the sequence VOWl(l) o W(lg, o Wl(m,) o W(( ) ) then f(V') = q. Moreover,
Then

Vit rtglrtyet - Vi = WD et )

Subcase 1.1. m < m/'.
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16 A. ILLANES, V. MARTI’NEZ-DE—LA—VEGA7 J. M. MARTfNEZ—MONTEJANO, AND D. MICHALIK

Take the natural order < for the arc vg for which v < ¢. Since ¢o € LNwvq and w+ 1], 2z is
the last point of vq in L, we have that ¢qo <w +7r],2 < ¢q. Then w+7r) 2 € qqNL C BNL.
Thus !, € [to,t2] and w+ 1) z € B.

1.1.1. Suppose that r # /.

If g(r) > 1, by Lemma 2.2 (b) we have that 5 > max{ty, —r,r —to} > |r —r,|; and
if g(r) = 1, then r = 3, since 7}, € (0,1), we conclude that 5 = 3 > |r}, — r|. Thus
we can apply Lemma 2.9 to Ty, ¢; and w + ) z to obtain that there exist n € N and
Yii1,- -y Yeen € Be, such that the vertex Ty, = YoYi...Yy ... Yiy, satisfies f(Typin) =
w7z, f(ToTkin) = q(w+71l,2) = {w + tz : t is in the subinterval of [0, 1] joining r and
Y C{w+tz:t €ty ta]} C B, g(r)+n=g(r,) and Ay, = 8™ ! (where Ay, ... Ay, are
defined for the vertex Tyy,).

Since k = g(r1) + -+ -+ g(rm-1) + g(r), we obtain k+n = g(r) + -+ g(rm—1) + g(r,) =
g(ry) + -+ g(rh_y) + g(r’,). Therefore

ktnt1=g(1)+-+g(rn ) +907,) +1
Observe that
f(Thsn) =w + 71" 2

rz

. X o m—2 I'm—1Zm—1 m—1
vt e T B e T o

Note that f(Tjin) coincides with the first terms in the equality (6). Define

T Zm (7)
r1)++g(rm—1) "’

7 =YoVi .. YisnVirnst . Vir = YoYy o YWD owrlmt oy e,

T Jmtl Im!
We claim that f(Z*) =q, Ty € Ty Z*, f(TvZ*) C B.
Observe that 2,11 € {Vkgnt1, - s Vktntjmer y C 14 Zmi1}s Yisn = Zm and Zp, 4 are of

different type, k +n = g(r}) + -+ g(rl,_1) + g(r,) and Mgy, = ™71, by Lemma 2.7 (e)
we have that

/

7" = f(T, m T;”'HZ;”'H 5m’—2 Tm’—lzin’—l m'—1 r;n”z;n’
HZ) = FTua) + B e iat,oraem + 0 P87 tmraer, 5 VO ibratr,
T/ Z, ’ TJ ’ Z/ ’ ’ 7‘/ Z/
_ / m m+1~m+1 m’—2 m/—1"m’/—1 m’—1 m’'“m/
=Wtz 0 e tateorae T A e, ) TP St

Therefore f(Z*) = q. Moreover, by Lemma 2.7 (f), f(TxsnZ*) = f(Trsn) f(Z%).

Set J, = TpZ*. Then Ty € J, and ¢ = f(Z*) € f(J,). Since f(Ty4n), f(Z*) € B, we
have that f(J,) = f(ToZ*) C f(ToThin) U f(TosnZ*) C BU f(Thpsn)f(Z*) C B.
f(J,) C B. This completes the analysis of the case r # r/ .

1.1.2. Suppose that r =1/ .

In this case define Z* =Y} .. .Yle(mH) W Wl(ml) . VVj(mll). Since f(Yy...Ys) =

T Jm

f(Ty) = @1 = w+rz = w+r],, by Lemma 2.7 (e) f(Z*) = f(Yo...Yr)+/" i1 % m1 X

99(r++9(ry, 1) +9(rn)

Therefore
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WEAKLY CONFLUENT CLASSES OF DENDRITES 17

/ ! !
. m'—2_ "m/—1Fm/ 1 m’—1 " *Fm! _ *\ :
+ B AT + 8 T,y = ¢ Hence, f(Z*) = q. Moreover, since

f(Ty) =w +r,, € B, by Lemma 2.7 (f), (TOZ*) = ( )f( *) C B.
Set J, =1yZ*. Then Ty € J,, ¢ = f(Z*) € f(J,) C

Subcase 1.2. m =m/'.

In this subcase,

/
q= +@ ﬁTQZQ 57”2 Tm—12m—1 5m1 T Zm
20 29(r1) g(r1)++g(rm— 2) g(r1)+-+g(rm—1)
=w+r,z.

In the case that r 7é r,q € LNB,sor., € ty,ts]. As at the beginning of subcase 1.1.1.,
we conclude that (T) > |r! —r|, so we can apply Lemma 2.9 to Ty, ¢; and w + r], 2z to
obtain that there ex1st M € N and Yii1,..., Yo € Be, such that the vertex Ty =
YoYi... Y. Yoy satisfies f(Tyyn) = w+rl,z=qand f(ToTrinm) = 1g = {w+tz : tisin
the subinterval of [0, 1] joining  and 7/, } C {w+tz : t € [ty,t2]} C B. Set Sy = Ty p. In the
case that r = r/ , we have that ¢; = ¢q. Set Sy = Tp. In both cases, Ty € ToSo, f(ToS0) C B
and ¢1q = f(T0Sp). In this case, define J, = TS.

This completes the proof of Claim 1.

Hence, we have shown that for each ¢ € (B \ {q}) N R(D,), there exists an arc J, in X
suchthatTOEJ and ¢ € f(J,) C B.

Define A = clx(|J{J, : ¢ € (B \{q}) N R(Dy4)}). Then A is a subcontinuum of X such
that f(A) C B. Since (B\{q}) N R(D,) is dense in B, (B\{q}) N R(D4) C f(A) and f(A)
is compact, we have that f(A) = B.

Case 2. ty = ts.

In this case, BN L = {q}.
Take an element ¢ € (B \ {q}) N R(Dy4). We write ¢ as in (2):

/ / o
T/ —1%m/ -1 m'—1 Vot 2yt

rh 2 rh 2t ,
q:v+g+ﬁﬂ+...+ﬁmi2

/ ! ! + / M
20 29(r1) 29(7“1)"!‘""'1‘9(7"7”/,2) 2g(7“/1) 4+t 29("'m/,1)
Since gy € wvq, proceeding as at the beginning of the proof of Claim 1, we obtain that
m<m,r=r,..., "1 =1 and 2 = 21,..., 2, = 2. Thus
_ r121 T'222 B m—2  Tm—12m—1 m—1 Tm?m
4=vt o Hhm T e TP e T
/Bm T:’)’L—l-IZ;)’L—l-l o + 6m1_2 T;n/ 12,’/ 1 ﬁm ’I"/ /Z/

29 () +—+g(rp) I+, ) QD+t )

Let L1(q), ..., Lyw/(q) be as in Definition 2.3. Since L N (clp, (Lm+1(q)) U+ U Ly (q)) =
{w + 7! =z}, we have that the first point of the arc vq, going from ¢ to v that belongs to L
is w + r! z. Since gy € L, we infer that w + r] 2z € gog. Then w + 1/ 2 € L N B. Therefore
go =w—+71 z=w+tyz and 1 = to. In particular, ty € D and gy € R(Dy,).
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For each i € {1,...,m'}, let Wl(i), ce W be the sequence in B¢ associated to 7}z. Let
E=j1+ -+ Jm andk’:j1+...+jm,'

Observe that by Lemma 2.7, if V), ..., Vi € Bg satisfies that the sequence Z = 7 ... Z;
(respectively, Z' = Zy...Zy...Zy) is the sequence ZOWfl) . Wj(ll) . Wl(m) LW (re-

Im
spectively, ZOWf”...W(”. W W“”)) then f(Z) = qo and f(Z') = q. Observe that
the sequence Wl(i), e ,W ™) depends on 1! 2/ = toz,. This implies that the sequence Z de-
pends on 1z, ... ,rm,lzm 1, toZm. Thus Z depends only on qq, therefore Z does not depend
on q.

Note that Z' = Zy... ZyW,"™ ™0 w0 w™ W™ By Lemma 2.7 (f), f(Z2') =
f(2)f(Z') = qq C B.

Set J, =27 Then Z € J,, q= f(Z') € f(J,) C B. Hence, we have shown that for each
q € (B\{q}) N R(D,), there exists an arc J, in X such that Z € J, and q € f(J,) C B.

Define A = clx(U{J; : ¢ € (B\ {q}) N R(D4)}). Then A is a subcontinuum of X such
that f(A) C B. Since (B\{q}) N R(Dy) is dense in B, (B\{q}) N R(D4) C f(A) and f(A)
is compact, we have that f(A) = B.

This completes the proof of the existence of A in the case that by # v.

Case B. ¢y = v, equivalently, v € B.

Given g € (B \ {q}) N R(Dy), write ¢ as in (2). Then

7’121 7”222

T'mZm
q=v+ —— 6

g(ri)+-+g(rm-1)"

ﬁm 2 'm—12m—1 ﬁm 1
g(ri)+-+g(rm—2)

For each k € {1, e ,m}, let Z{ )...ij be the sequence in BC associated to rpzp. Let
To=2z"...2". . 2" .. Z" and

J1
Q= v+t B 4 B
By Lemma 2.7, f(Tk) = qx.
Let Li(q),. .., Ln(q) be as in Definition 2.3. Then vg = {v} U Li(q) U --- U L,,(g). Since
vq C B and for each k € {1,...m}, qx € Li(q), we obtain that ¢, € B.
Given k € {1,...,m}, since {ka), e ZJ(-]]:)} C {D, Z;}, we can apply Lemma 2.5 (c), to
obtain that f(Ty_171y) = f(Tk_l)f(Tk) = qk—1qx C B. Therefore f(VT,,) = f(VI7 UTyT, U
U Ty = f(VTIY)U f(TY ) U--- U f(T,,-1T),) C B.
Let J, = VT,,. Then J, is an arc in X such that v = f(V) € f(J,), ¢ = ¢m = f(Tm) €
f(J,) and f(J;) C B. Define A = clx(|J{J, : ¢ € (B\{q}) NR(D4)}). Proceeding as before,
we conclude that f(A) = B. This finishes the proof that f is weakly confluent. O

TLZk
29(r1)++g(rr—1)

3. THE CHARACTERIZATION

Theorem 3.1. Let X be a dendrite such that E(X) is at most countable. Then the Gehman
dendrite G3 is not a weakly confluent image of X.

Proof. Suppose to the contrary that there exists a weakly confluent map f: X — Gjs. Fix a
point v € G such that ord(v,G3) = 2. Recall that, E(G3) is homeomorphic to the Cantor
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set [5, p. 21]. Given ¢ € E(G3) consider the arc B, = vq. Let A, be a subcontinumm of X
such that f(A,) = B,. Fix a, € A, such that f(a,) = ¢. Fix a point v € X. Observe that
X = Ufue € X : e € E(X)}. Since R(X) and E(X) are at most countable [4, Theorem
1.5 (d)] and {a, € X : ¢ € E(G3)} is uncountable, there exists ey € E(X) such that the set
D = (uep \ (R(X)U{u,e0})) N{a,: g € E(G3)} is uncountable.

Given a, € D, since a;, ¢ R(X) U {u,ep}, we have that A, N uey is an arc. We identify
the arc uey with the interval [0, 1], so we write A, Nuey = [sy, ty], where s, < t,. Since D is
uncountable, there exists € > 0 such that 2e < ¢, — s, for uncountably many points a, € D.
Since a, € [s4,t,], we may assume that t, — a, > ¢ for uncountably many points a, € D.
Thus there exist a,,,a,, € D such that [ag,t,] N [ag.te,] # 0 and ¢ # ¢2. Thus we may
assume that a4, € [ag,,1t, ] Hence ay, € Ay, ¢2 = flag,) € f(Ay) = B, = vqr. Therefore
¢2 € vq1, a contradiction. This finishes the proof of the theorem. [l

Denote by
M(D) ={D : D is a dendrite and E <,y D for each dendrite E'}.

Observe that M(D) denotes the family of dendrites that are maximum elements with
respect to the preorder <. By [5, Fact 5.22 and Theorem 5.27], all the universal dendrites
D,, (n € NU{w}) belong to M(D). By Theorem 2.1, each Gehman dendrite G,, (n > 3)
also belongs to M (D). In the following theorem we characterize the elements of M(D).

Theorem 3.2. A dendrite X belongs to M(D) if and only if E(X) is uncountable.

Proof. The necessity is proved in Theorem 3.1. Now, suppose that E(X) is uncountable.
By [10, Theorem 1] X contains a dendrite G homeomorphic to Gs. By [5, Theorem 4.16],
GSMX,SOG;gSVVX&ndXEM(D>. O

4. ANOTHER ANSWER

In [5, Question 5.12], it was asked if the existence of a weakly confluent map from a
dendrite X onto a dendrite Y implies the existence of a confluent map from X onto Y. The
following example answers this question in the negative.

Example 4.1. Dj is a weakly confluent image of Gs, but D3 is not a confluent image of Gs.

We show the assertions in Example 4.1. By Theorem 2.1, there exists a weakly confluent
map from Gj onto D3. In order to show that Dj is not the confluent image of (G5, suppose to
the contrary that D3 <¢ G5. By [5, Corollary 5.7], D3 < G3. Since G3 < D3 [3, Corollary
6.5], G3 ~x Ds. By [5, Theorem 5.27|, G5 contains a copy of the dendrite Ly constructed
in [5, 5.6, p. 16]. This is a contradiction since Ly contains sequences of ramification points
converging to points of order > 2 and, in (G5, each limit of ramification points is an end-point.
Therefore, D3 is not a confluent image of G3.

A simpler example that answers Question 5.12 in [5], is the following. Let

X = (L1 x{0h U (U3} x [0,7] : n € N}).
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We can prove that X is a dendrite such that X is a weakly confluent image of G3, but X
is not a confluent image of Gs.
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