## WEAKLY CONFLUENT CLASSES OF DENDRITES

ALEJANDRO ILLANES, VERÓNICA MARTÍNEZ-DE-LA-VEGA, JORGE M. MARTÍNEZ-MONTEJANO, AND DARIA MICHALIK

ABSTRACT. Given continua X, Y and a class  $\mathcal{F}$  of maps between continua, define  $X \geq_{\mathcal{F}} Y$  if there exists an onto map  $f: X \to Y$  belonging to  $\mathcal{F}$ . A map  $f: X \to Y$  is weakly confluent if for each subcontinuum B of Y, there exists a subcontinuum A of X such that f(A) = B. In this paper we consider the class  $\mathcal{W}$  of weakly confluent maps. Two continua X and Y are  $\mathcal{W}$ -equivalent provided that  $X \leq_{\mathcal{W}} Y$  and  $Y \leq_{\mathcal{W}} X$ . We show that any Gehman Dendrite  $G_n$  is  $\mathcal{W}$ -equivalent to any universal dendrite  $D_m$ . We consider the class  $[G_3]_{\mathcal{W}}$  of all dendrites that are  $\mathcal{W}$ -equivalent to  $G_3$ . We characterize the elements of  $[G_3]_{\mathcal{W}}$  in two ways: (a) a dendrite D belongs to  $[G_3]_{\mathcal{W}}$  if and only if D contains uncountably many endpoints, and (b) a dendrite D belongs to  $[G_3]_{\mathcal{W}}$  if and only if D is maximal with respect to the preorder  $\leq_{\mathcal{W}}$ 

#### 1. Introduction

A continuum is a compact connected metric space with more than one point. A subcontinuum of a continuum X is a nonempty closed connected subset of X, so one-point sets in X are subcontinua of X. A map is a continuous function.

Given an onto map  $f: X \to Y$  between continua, we say that f is:

- monotone provided that for each subcontinuum B of Y,  $f^{-1}(B)$  is a subcontinuum of X;
- confluent if for each subcontinuum B of Y and each component A of  $f^{-1}(B)$ , f(A) = B; and
- weakly confluent if for each subcontinuum B of Y, there is a subcontinuum A of X such that f(A) = B.

Note that

monotone  $\Rightarrow$  confluent  $\Rightarrow$  weakly confluent.

The class of monotone (respectively, confluent and weakly confluent) maps is denoted by  $\mathcal{M}$  (respectively,  $\mathcal{C}$  and  $\mathcal{W}$ ). It is easy to show that classes  $\mathcal{M}$ ,  $\mathcal{C}$  and  $\mathcal{W}$  are closed under composition.

1

Date: September 26, 2023.

<sup>2010</sup> Mathematics Subject Classification. Primary 54F50; Secondary, 54E40, 54F15, 54F65.

Key words and phrases. Continuum, confluent, dendrite, Gehman dendrite, monotone, universal dendrite, weakly confluent.

This paper was partially supported by the project "Teoría de Continuos e Hiperespacios, dos" (AI-S-15492) of CONACyT. The work of the last author was supported by the National Science Centre, Poland, through the Grant Nr rej.: 2021/05/X/ST1/00357.

Given continua X and Y, and a class of maps between continua  $\mathcal{F}$ , we define  $X \geq_{\mathcal{F}} Y$  if there exists an onto map  $f: X \to Y$  belonging to  $\mathcal{F}$ . Two continua X and Y are  $\mathcal{F}$ -equivalent (denoted by  $X \simeq_{\mathcal{F}} Y$ ) provided that  $X \leq_{\mathcal{F}} Y$  and  $Y \leq_{\mathcal{F}} X$ . Given a class of continua  $\mathcal{E}$ , a continuum  $X \in \mathcal{E}$  is  $\mathcal{F}$ -isolated in the class  $\mathcal{E}$  provided that the following implication holds: if  $Y \in \mathcal{E}$  and  $X \simeq_{\mathcal{F}} Y$ , then X and Y are homeomorphic.

A curve is a 1-dimensional continuum. A dendrite is a locally connected continuum without simple closed curves. For a continuum X and a point  $p \in X$  we use the order of p in X in the sense of Menger-Urysohn [4, Appendix A.2], which is denoted by o(p, X). For dendrites D, o(p, D) can be defined as the number of components of  $D \setminus \{p\}$  (see [1, p. 2]). Then  $o(p, D) \in \mathbb{N} \cup \{\omega\}$ . Points of order one in X are end-points, and points of order greater than 2 are ramification points. The set of end-points of X is denoted by E(X) and the set of ramification points of X is denoted by R(X).

Given  $n \in \mathbb{N}$   $(n \geq 3)$  and  $m \in \mathbb{N} \cup \{\omega\}$   $(m \geq 3)$ , two important dendrites we will use are the Gehman dendrite  $G_n$  and the the universal dendrite  $D_m$ . The Gehman dendrite  $G_n$  is characterized by having  $E(G_n)$  homeomorphic to the Cantor set; all ramification points of  $G_n$  are of order n; and  $E(G_n) = \operatorname{cl}_X(R(G_n)) \setminus R(G_n)$  (see [5, p. 21], and for a picture of  $G_3$  see [10, p. 424]). The universal dendrite  $D_m$  is characterized by having the following properties: all ramification points are of order m and each arc in X contains ramification points [3, Theorem 3.1] (see [7, p. 61] for a picture of  $D_4$ ).

In the realm of dendrites a very complete study of the preorder  $\leq_{\mathcal{F}}$  was made by J. J. Charatonik, W. J. Charatonik and J. R. Prajs in [5]. Several families  $\mathcal{F}$  were considered, but the most important results are related to monotone and open mappings.

For dendrites, the following facts are known.

- (a) if X and Y are dendrites, then  $X \simeq_{\mathcal{M}} Y$  if and only if  $X \simeq_{\mathcal{C}} Y$  [5, Corollary 5.7],
- (b) for every  $n, m \in \mathbb{N} \cup \{\omega\}$   $(n, m \geq 3)$ ,  $D_n \simeq_{\mathcal{M}} D_m$ ,  $D_n \simeq_{\mathcal{C}} D_m$  and  $D_n \simeq_{\mathcal{W}} D_m$  [5, Theorem 5.27],
- (c) for each  $n \geq 3$  and for each  $m \in \mathbb{N} \cup \{\omega\}$   $(m \geq 3)$ ,  $G_n$  and  $D_m$  are not  $\mathcal{M}$ -equivalent (it follows from [9, Theorem 5.27]),
- (d) trees are W-isolated in the class of trees [8, Theorem 3.3],
- (e) A finite graph X is not W-isolated in the class of all continua if and only if X is either an arc, or a simple closed curve, or contains a cycle (a *cycle* is a simple closed curve with exactly one ramification point of X), or contains a ramification point contained in two distinct sticks (a *stick* is an edge joining a ramification point to an end-point) [8, Theorem 3.4],
- (f) a dendrite X is  $\mathcal{M}$ -isolated in the class of all continua if and only if R(X) is finite [9, Theorem 1.1],
- (g) it follows from [2, Theorem 3.2] that: if two dendrites are monotone-equivalent, then they are quasi-homeomorphic (two dendrites X and Y are quasi-homeomorphic if for each  $\varepsilon > 0$  there are  $\varepsilon$ -onto maps  $f_{\varepsilon}: X \to Y$  and  $g_{\varepsilon}: Y \to X$ ). However the converse is not true.

The authors in [5, Theorem 5.27], gave a complete characterization of dendrites which are maximum elements with respect to the preorder  $\leq_{\mathcal{M}}$  (equivalently,  $\leq_{\mathcal{C}}$  [5, Corollary 5.7]), they showed that a dendrite D satisfies  $X \leq_{\mathcal{M}} D$  for every dendrite X if and only if D contains the dendrite  $L_0$  described in [5, 5.26].

The aim of this paper is to characterize the maximal dendrites with respect to the preorder  $\leq_{\mathcal{W}}$ . We prove that D is one of these dendrites if and only if E(D) is uncountable. The proof of this result is based in the theorem that says that there exists a weakly confluent map f from the Gehman dendrite  $G_6$  onto the universal dendrite  $D_4$ . Most of this paper is devoted to give a detailed construction of the map f.

### 2. Gehman and universal dendrites

**Theorem 2.1.** For  $n \geq 3$  and  $m \in \{3,4,\ldots\} \cup \{\omega\}$ , the Gehman dendrite  $G_n$  and the universal dendrite  $D_m$  are weakly confluent equivalent.

To prove this theorem it is enough to show that there exists a weakly confluent map  $f: G_6 \to D_4$ ; the argument is as follows: By [1, Corollary 6.10], for all  $n, m \geq 3$ ,  $G_n$  is a monotone image of  $G_m$  and, by [3, Corollary 6.4], for all  $k, l \in \{3, 4, ...\} \cup \{\omega\}$ ,  $D_k$  is monotone equivalent to  $D_l$ . Let  $n \geq 3$  and  $m \in \{3, 4, ...\}$ , since monotone maps are weakly confluent, there are weakly confluent maps  $g_0: D_m \to D_\omega$  and  $g_1: D_\omega \to G_n$  [3, Proposition 6.2]. Hence,  $g = g_1 \circ g_0: D_m \to G_n$  is a weakly confluent map. We can take monotone maps  $f_1: G_n \to G_6$  and  $f_2: D_4 \to D_m$ . Thus,  $f_3 = f_2 \circ f \circ f_1: G_n \to D_m$  is weakly confluent. Therefore,  $G_n$  and  $D_m$  are weakly confluent equivalent.

This section is devoted to construct a weakly confluent map  $f: G_6 \to D_4$ .

For simplicity, the ramification and end points of a dendrite will also be called vertices. We will use the universal dendrite  $D_4$ . Recall that this dendrite is characterized by the following two properties [6, Theorem 6.2, p. 229]:

- (a) each ramification point in  $D_4$  has order 4, and
- (b) each arc in  $D_4$  contains points of order 4.

Since the proof that there exists a weakly confluent map from the Gehman dendrite  $G_6$  onto  $D_4$  requires some explicit formulas, we start by giving an appropriate description of  $D_4$ . We will use the set of *dyadic numbers*  $\mathcal{D}$  in the interval [0,1]:

$$\mathcal{D} = \{ \frac{k}{2^m} \in [0, 1] : m \in \mathbb{N} \text{ and } k \in \{0, 1, \dots, 2^m\} \}.$$

Given  $r \in \mathcal{D} \setminus \{0,1\}$ , the degree of r is the unique number  $g(r) \in \mathbb{N}$  such that  $r = \frac{k}{2^{g(r)}}$ , where k is odd.

**Lemma 2.2.** (a) Let  $r, s \in \mathcal{D} \setminus \{0, 1\}$ . Then  $r - \frac{s}{2g(r)} \in \mathcal{D} \setminus \{0, 1\}$  and  $g(r - \frac{s}{2g(r)}) = g(r) + g(s)$ . (b) Let [a, b] be a non-degenerate subinterval of [0, 1]. Then there exists a unique element  $r \in [a, b] \cap (\mathcal{D} \setminus \{0, 1\})$  with minimal degree g(r); if g(r) > 1, then  $\frac{1}{2g(r)} > \max\{b - r, r - a\}$ , and if g(r) = 1, then  $r = \frac{1}{2}$ .

Proof. (a). Since  $r \geq \frac{1}{2g(r)}$ , we have that  $0 \leq r - \frac{1}{2g(r)} < r - \frac{s}{2g(r)} < r < 1$ , so  $r - \frac{s}{2g(r)} \in \mathcal{D} \setminus \{0,1\}$ . Let m = g(r) and n = g(s). Consider the dyadic representation of r and s:  $r = \frac{r_1}{2^1} + \dots + \frac{r_m}{2^m}$ ,  $s = \frac{s_1}{2^1} + \dots + \frac{s_n}{2^n}$ , where each  $r_i$  and each  $s_i$  is in  $\{0,1\}$  and  $r_m = 1 = s_n$ . Then  $r - \frac{s}{2g(r)} = \frac{r_1}{2^1} + \dots + \frac{r_m}{2^m} - (\frac{s_1}{2^{m+1}} + \dots + \frac{s_n}{2^{m+n}}) = \frac{2^{m+n-1}r_1 + \dots + 2^n r_m - 2^{n-1}s_1 - \dots - 2s_{n-1} - s_n}{2^{m+n}}$ . This shows that  $g(r - \frac{s}{2g(r)}) = m + n = g(r) + g(s)$ .

(b). Suppose to the contrary that  $r_1 < r_2$  are elements with minimal degree in [a, b] such that  $g(r_1) = g(r_2) \in \mathbb{N}$ . Then there exist odd numbers  $k_1, k_2 \in \{1, \dots, 2^{g(r_1)}\}$  such that  $0 \le r_1 = \frac{k_1}{2^{g(r_1)}} < \frac{k_1+1}{2^{g(r_1)}} < \frac{k_2}{2^{g(r_2)}} = r_2 \le 1$ . Since  $k_1 + 1$  is even, the number  $r_0 = \frac{k_1+1}{2^{g(r_1)}}$  belongs to  $[a, b] \cap (\mathcal{D} \setminus \{0, 1\})$  and  $g(r_0) < g(r_1)$ , a contradiction. This proves the uniqueness of the element r of minimal degree. Suppose that  $r = \frac{k}{2^{g(r)}}$ , with k odd and g(r) > 1. If  $r + \frac{1}{2^{g(r)}} = \frac{k+1}{2^{g(r)}} \le b$ , then  $g(\frac{k+1}{2^{g(r)}}) < g(r)$ , this contradicts the choice of r. Thus  $b - r < \frac{1}{2^{g(r)}}$ . Similarly,  $r - a < \frac{1}{2^{g(r)}}$ .

## 2.1. Construction of $D_4$ .

When we take points p and q in a dendrite, by pq we denote the unique arc joining them, if  $p \neq q$ , and  $pq = \{p\}$ , if p = q.

We consider the points v = d = (0,0), a = (0,1), b = (0,-1), c = (1,0) and e = (-1,0) in the Euclidean plane  $\mathbb{R}^2$ . To construct  $D_4$ , we start with a cross and then we add smaller and smaller crosses in strategic points and strategic sizes. Points a, b, c, e will be useful for indicating if we will walk up, down, right or left.

Let  $\mathcal{B}_L = \{d, a, b, c, e\}$  and  $\mathcal{B}'_L = \{a, b, c, e\}$ . Set  $\beta = \frac{7}{8}$ . We use the number  $\beta$  to short segments in order to avoid intersection of paths.

We define two types of elements in the set  $\mathcal{B}'_L$ , we say that a and b are of the *vertical type*; and c and e are of the *horizontal type*.

We consider the set  $D_4^*$  of points q in the plane  $\mathbb{R}^2$  such that either q=v or q is of the following form.

$$q = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{g(r_1)}} + \dots + \beta^{m-1} \frac{r_m z_m}{2^{g(r_1) + \dots + g(r_{m-1})}} + t \beta^m \frac{r_{m+1} z_{m+1}}{2^{g(1) + \dots + g(r_m)}}, \tag{1}$$

where  $m \ge 0$ ,  $t \in (0,1]$ , for each  $i \in \{1, \ldots, m+1\}$ ,  $r_i \in \mathcal{D} \setminus \{0,1\}$ ,  $z_i \in \mathcal{B}'_L$ , and, if i > 1,  $z_i$  is of distinct type than  $z_{i-1}$ , meaning  $z_i \in \{a,b\}$  if and only if  $z_{i+1} \in \{c,d\}$ .

We will give a brief explanation of a point  $q \in D_4^*$ .

In the term  $\frac{r_1z_1}{2^0}$ ,  $z_1$  indicates one of the four fundamental directions a, b, c or e and the dyadic number  $r_1$  indicates how much we advance on the direction  $z_1$ . Similarly, in the term  $\beta \frac{r_2z_2}{2^g(r_1)}$ ,  $z_2$  indicates the direction in which we move when we are standing on point  $v + \frac{r_1z_1}{2^0}$ , we are asking that  $z_2$  is of different type than  $z_1$ , so we change direction, and  $\beta \frac{r_2}{2^g(r_1)}$  indicates how much we move in that direction. This movement is limited by the factor  $\frac{1}{2^g(r_1)}$ . For example if  $r_1 = \frac{1}{2}$ , since  $r_2 \in (0,1)$ , the length of this movement is less than  $\frac{\beta}{2}$ , if  $r_1 \in \{\frac{1}{4}, \frac{3}{4}\}$ , is less than  $\frac{\beta}{4}$ , if  $r_1 \in \{\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}\}$ , is less than  $\frac{\beta}{8}$ , etcetera. The factor  $\beta$  allows us to avoid intersections of paths, so the arcs from the point v to any point in  $D_4^*$  is unique. We continue

until we use the last term:  $t\beta^m \frac{r_{m+1}z_{m+1}}{2^{g(1)+\cdots+g(r_m)}}$ , here the number t indicates that we run on a complete segment.

On Figure 1, we illustrate the set covered by the elements in  $D_4^*$  with m = 0, and we also illustrate some elements with m = 1. In fact the complete elements for m = 1 include countably many segments perpendicular to the first cross.



Figure 1. m=0 and m=1

In the case that q is written in the form (1), define the number m(q) = m and the point

$$w(q) = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{g(r_1)}} + \dots + \beta^{m-1} \frac{r_m z_m}{2^{g(r_1) + \dots + g(r_{m-1})}}.$$

Notice that m(q), w(q) and  $z_{m+1}$  are uniquely determined by q. So we can write

$$q = w(q) + t\beta^{m(q)} \frac{r_{m(q)+1}z_{m(q)+1}}{2g(1)+\cdots+g(r_{m(q)})}.$$

The expression in (1) is not unique since the number  $tr_{m(q)+1}$  can be written in many ways. Observe that  $D_4^*$  includes exactly all points in  $D_4$  of order 2 or 4. That is,  $D_4 \setminus D_4^* = E(D_4)$  ( $E(D_4)$  is the set of end-points of  $D_4$ ). Then  $D_4^*$  is dense in  $D_4$ . The set of ramification points of  $D_4$  is the set  $R(D_4)$  of points  $p \in D_4$  such that either p = v or p is of the form

$$p = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{g(r_1)}} + \dots + \beta^{m-1} \frac{r_m z_m}{2^{g(r_1) + \dots + g(r_{m-1})}} + \beta^m \frac{r_{m+1} z_{m+1}}{2^{g(1) + \dots + g(m)}}$$
(2)

where  $m, r_1, \ldots, r_{m+1}$  and  $z_1, \ldots, z_{m+1}$  satisfy the conditions described previously. Observe that the expression for points in  $R(D_4)$  is unique.

Given  $q \in D_4^*$ , in the following definition we give name the segments we use to go from v to q.

**Definition 2.3.** Given  $q \in D_4^*$  (written as in (1)), define

$$\begin{split} L_1(q) &= \{v + s \frac{r_1 z_1}{2^0} : s \in (0,1] \}, \\ L_2(q) &= \{v + \frac{r_1 z_1}{2^0} + s \beta \frac{r_2 z_2}{2^{g(r_1)}} : s \in (0,1] \}, \\ & \vdots \\ L_m(q) &= \{v + \frac{r_1 z_1}{2^0} + \dots + \beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g(r_1) + \dots + g(r_{m-2})}} + s \beta^{m-1} \frac{r_m z_m}{2^{g(r_1) + \dots + g(r_{m-1})}} : s \in (0,1] \} \ and \\ L_{m+1}(q) &= \{w(q) + s t \beta^m \frac{r_{m+1} z_{m+1}}{2^{g(r_1) + \dots + g(r_m)}} : s \in (0,1] \}. \end{split}$$

Observe that each set  $L_i(q)$  is homeomorphic to the interval (0, 1] and the unique arc in  $D_4$  joining v and q (respectively, v and w(q)) is  $vq = \{v\} \cup L_1(q) \cup \cdots \cup L_{m+1}(q)$  (respectively,  $\{v\} \cup L_1(q) \cup \cdots \cup L_m(q)$ ). Observe that the rays  $L_1(q), \cdots, L_{m+1}(q)$  are uniquely determined by q.

## 2.2. Description of the dendrite X.

Recall that the Gehman dendrite  $G_3$  is characterized as the dendrite satisfying that its set of end-points is homeomorphic to the Cantor set, each ramification point is of order three and  $E(G_3) = \operatorname{cl}_{G_3}(R(G_3)) \setminus R(G_3)$  [11, p. 100], see [12, p. 203], for a picture. Similarly, the Gehman dendrite of order 6, denoted by  $G_6$ , is characterized as the dendrite satisfying that its set of end-points is homeomorphic to the Cantor set, each ramification point is of order 6 and  $E(G_6) = \operatorname{cl}_{G_6}(R(G_6)) \setminus R(G_6)$ .

Instead of working directly with  $G_6$ , it is convenient for us to take  $G_6$  but transforming (exactly) one point of order 6 into a point of order 5. This new space is named X.

Fix a ramification point  $v_{G_6}$  of  $G_6$ , let  $C_1^*, \ldots, C_6^*$  be the components of  $G_6 \setminus \{v_{G_6}\}$ . Consider the continuum X obtained by shrinking the set  $C_1^* \cup \{v_{G_6}\}$  into a point. Let  $V \in X$  be the point corresponding to  $C_1^* \cup \{v_{G_6}\}$ . Then X is a dendrite such that its set of end-points is homeomorphic to the Cantor set, the point V has order 5, the rest of its ramification points are of order 6 and  $E(X) = \operatorname{cl}_X(R(X)) \setminus R(X)$ . Observe that X is a monotone (and then weakly confluent) image of  $G_6$  ( $X \leq_{\mathcal{W}} G_6$ ). We establish the following conventions on dendrite X.

As we did with  $D_4$ , we will describe X by starting at the vertex V, and then giving five possible directions (D, A, B, C and E) indicating the ways we can walk. So, the vertices of X will be described in the following way: V is the first vertex, VD, VA, VB, VC and VE are the five vertices adjacent to V in X. Besides V, the vertices adjacent to VA, are VAD, VAA, VAB, VAC and VAE, and we continue in this way.

Formally: fix five distinct labels D, A, B, C and E (all different from V). Let  $\mathcal{B}_C = \{D, A, B, C, E\}$  and  $\mathcal{B}'_C = \{A, B, C, E\}$ . The ramification points of X are all the finite sequences of the form:

$$T = Z_0 Z_1 Z_2 \dots Z_m,$$

where  $m \geq 0$ ,  $Z_0 = V$  and for each  $i \in \{1, ..., m\}$ ,  $Z_i \in \mathcal{B}_C$ .

The maximal free arcs in X are the arcs of the form  $T_m T_{m+1}$ , where  $T_m = Z_0 Z_1 Z_2 \dots Z_m$  and  $T_{m+1} = Z_0 Z_1 Z_2 \dots Z_m Z_{m+1}$ . Then the arc  $VT_m$  is the union of the arcs  $Z_0(Z_0 Z_1)$ ,  $(Z_0 Z_1)(Z_0 Z_1 Z_2), \dots, (Z_0 \dots Z_{m-1})(Z_0 \dots Z_m)$ . We fix a one-to-one onto map

$$\sigma(T_{m+1}): [0,1] \to T_m T_{m+1}$$

such that  $\sigma(T_{m+1})(0) = T_m$  and  $\sigma(T_{m+1})(1) = T_{m+1}$ . The set  $\sigma(T_{m+1})([0,1])$  is the arc  $T_m T_{m+1}$  in X that joins  $T_m$  and  $T_{m+1}$ . Let

$$\eta(T_{m+1}): T_m T_{m+1} \to [0, 1]$$

be the inverse mapping of  $\sigma(T_{m+1})$ .



Figure 2.  $X_3$ 

The end-points of X are the infinite sequences of the form:

$$R = Z_0 Z_1 Z_2 \dots$$

where  $Z_0 = V$  and for each  $i \in \mathbb{N}$ ,  $Z_i \in \mathcal{B}_C$ . The arc VR in X is given by:

$$VR = T_0T_1 \cup T_1T_2 \cup T_2T_3 \cup \cdots$$

where for each  $m \geq 0$ ,  $T_m = Z_0 Z_1 \dots Z_m$ . Then  $T_0 = Z_0 = V$  and

$$X = \bigcup \{T_0R : R \text{ is an end-point of X}\}.$$

For each m > 0, let

$$X_m = \{T_0 T_m \subseteq X : T_m = Z_0 Z_1 Z_2 \dots Z_m \text{ and, for each } i \in \{1, \dots, m\}, Z_i \in \mathcal{B}_C\}.$$

In Figure 2, we illustrate the set  $X_3$ .

For the definition of  $D_4$ , we used the set  $\mathcal{B}_L = \{d, a, b, c, e\}$ . Recall that the elements of the set  $\mathcal{B}_C$  are denoted with the capital letters A, B, C, D, E we will use the following correspondence:  $D \to d$ ,  $A \to a$ ,  $B \to b$ ,  $C \to c$ ,  $E \to e$ . When we denote an element in  $\mathcal{B}_C$  by  $Z_i$ , we consider the element  $z_i \in \mathcal{B}_L$  defined with the previous correspondence for

the element  $Z_i$ . Conversely, for each element  $z \in \mathcal{B}_L$ , we define the corresponding element  $Z \in \mathcal{B}_C$ .

We define two types of elements in the set  $\mathcal{B}'_C$ , we say that A and B are of the *vertical* type; and C and E are of the horizontal type.

## 2.3. Definition of f.

For a vertex  $T_{m+1} = Z_0 Z_1 \dots Z_{m+1}$  of X, define a sequence  $\lambda_1, \lambda_2, \dots, \lambda_{m+1}$  as follows. Take  $i \in \{1, 2, \dots, m+1\}$ .

- (a) If  $Z_i = D$ , let  $\lambda_i = 0$ ;
- (b) if  $Z_i \neq D$  and  $\{Z_0, ..., Z_{i-1}\} = \{D\}$ , let  $\lambda_i = 1$ ;
- (c) if  $Z_i \neq D$  and  $\{Z_0, \ldots, Z_{i-1}\} \neq \{D\}$ , let  $j_0 = \max\{j \in \{1, \ldots, i-1\} : Z_j \neq D\}$  and define  $\lambda_i = \lambda_{j_0}$ , in the case that  $Z_i$  is of the same type than  $Z_{j_0}$ ; and  $\lambda_i = \beta \lambda_{j_0}$  (recall that  $\beta = \frac{7}{8}$ ), in the case that  $Z_i$  is of distinct type than  $Z_{j_0}$ . Then each  $\lambda_i$  belongs to the set  $\{\beta^k : k \in \mathbb{N}\} \cup \{0,1\}$

Define  $f: X \to \mathbb{R}^2$  as follows. Set f(V) = v, and given a vertex  $T_{m+1} = Z_0 Z_1 \dots Z_{m+1}$  of X and a point  $p \in T_m T_{m+1}$ , where  $T_m = Z_0 Z_1 \dots Z_m$ , define

$$f(p) = v + \frac{\lambda_1 z_1}{2^1} + \frac{\lambda_2 z_2}{2^2} + \dots + \frac{\lambda_m z_m}{2^m} + \eta(T_{m+1})(p) \frac{\lambda_{m+1} z_{m+1}}{2^{m+1}}$$
(3)

where  $\lambda_1, \ldots, \lambda_{m+1}$  are defined as previously, for the sequence  $T_{m+1}$ .

Given an end-point  $p = Z_0 Z_1 Z_2 \dots$  of X, define

$$f(p) = v + \frac{\lambda_1 z_1}{2^1} + \frac{\lambda_2 z_2}{2^2} + \frac{\lambda_3 z_3}{2^3} + \cdots,$$

where for each  $m \in \mathbb{N}$ ,  $\lambda_1, \lambda_2, \ldots, \lambda_m$  are defined as previously for the sequence  $T_m = Z_0 Z_1 \ldots Z_m$ . Observe that each number  $\lambda_i$  is defined using only the elements  $Z_1, \ldots, Z_i$ , and it is independent of any number  $k \geq i$ .

Given  $m \in \mathbb{N}$ , observe that

$$f(X_m) = \{ f(T_0(Z_0 Z_1 \dots Z_m)) : Z_0 Z_1 Z_2 \dots Z_m \text{ is a ramification point of } X \}$$
  
=  $\{ f(p) : p \in T_{n-1} T_n, 1 \le n \le m \text{ and } T_n \in R(X) \}$ 

is the minimum tree in  $\mathbb{R}^2$  containing the points in the set

$$f(X_m) = \{f(Z_0Z_1 \dots Z_m) : Z_0Z_1Z_2 \dots Z_m \text{ is a ramification point of } X\}.$$

Since  $\{Z_0Z_1: Z_1 \in \mathcal{B}_C\} = \{VD, VA, VB, VC, VE\}$ , we have that  $f(X_1)$  is the minimum tree in the plane  $\mathbb{R}^2$  containing the points  $v, v + \frac{a}{2}, v + \frac{b}{2}, v + \frac{c}{2}$  and  $v + \frac{e}{2}$ .

Observe that  $f(X_2)$  is the minimum tree in the plane containing the points:

 $v, v + \frac{a}{2}, v + \frac{b}{2}, v + \frac{c}{2}, v + \frac{e}{2}$ , (they come from VD, VA, VB, VC, VE, or VDD, VAD, VBD, VCD, VED);

$$v, v + \frac{1}{2}, v + \frac{1}{2}, v + \frac{1}{2}, v + \frac{1}{2}, \text{ they come nom } vD, vA, vB, VBD, VCD, VED);$$

$$v + \frac{a}{4}, v + \frac{b}{4}, v + \frac{c}{4}, v + \frac{e}{4}, \text{ (from } VDA, VDB, VDC, VDE);}$$

$$v + \frac{3a}{4}, v + \frac{3b}{4}, v + \frac{3c}{4}, v + \frac{3e}{4}, \text{ (from } VAA, VBB, VCC, VEE);}$$

$$v + \frac{a}{4}, v + \frac{b}{4}, v + \frac{c}{4}, v + \frac{e}{4}, \text{ (from } VAB, VBA, VCE, VEC);}$$

 $v + \frac{a}{2} + \beta \frac{c}{4}, v + \frac{a}{2} + \beta \frac{e}{4}, v + \frac{b}{2} + \beta \frac{c}{4}, v + \frac{b}{2} + \beta \frac{e}{4}, v + \frac{c}{2} + \beta \frac{a}{4}, v + \frac{c}{2} + \beta \frac{b}{4}, v + \frac{e}{2} + \beta \frac{a}{4}, v + \frac{e}{2} + \beta \frac{a$ (from VAC, VAE, VBC, VBE, VCA, VCB, VEA, VEB).

In Figure 3 we picture the sets  $f(X_1)$ ,  $f(X_2)$  and  $f(X_3)$ .



FIGURE 3.  $f(X_1)$ ,  $f(X_2)$  and  $f(X_3)$ .

Clearly f is continuous.

The following lemma is an easy consequence of the definitions.

**Lemma 2.4.** Let  $T_{m+1} = Z_0 Z_1 \dots Z_{m+1}$  be a vertex of X and  $T_m = Z_0 Z_1 \dots Z_m$ . Then:

- (a)  $f(T_m) = v + \frac{\lambda_1 z_1}{2^1} + \frac{\lambda_2 z_2}{2^2} + \dots + \frac{\lambda_m z_m}{2^m}$ ,
- (b) if  $Z_{m+1} = D$ , then  $f(T_m T_{m+1}) = \{f(T_m)\} = \{f(T_{m+1})\} = f(T_m)f(T_{m+1})$ , (c) if  $Z_{m+1} \neq D$ , then  $f(T_m T_{m+1}) = f(T_m)f(T_{m+1})$ . That is,  $f(T_m T_{m+1}) = \{v + \frac{\lambda_1 z_1}{2^1} + \frac{\lambda_1$  $\frac{\lambda_2 z_2}{2^2} + \dots + \frac{\lambda_m z_m}{2^m} + t \frac{\lambda_{m+1} z_{m+1}}{2^{m+1}} \in D_4 : t \in [0,1]$

**Lemma 2.5.** Let  $T = Z_0 Z_1 \dots Z_m$  be a vertex of X and  $Z \in \mathcal{B}'_C$ . Suppose that  $\{W_1, \dots, W_n\} \subset \mathcal{B}'_C$  $\{D,Z\}$ . Define the sequence  $S=Z_0Z_1\ldots Z_mW_1\ldots W_n$ . For each  $i\in\{1,\ldots,n\}$ , let  $s_i=0$ , if  $W_i = D$ ; and  $s_i = 1$ , if  $W_i = Z$ . Set  $r = \frac{s_1}{2^1} + \cdots + \frac{s_n}{2^n} \in \mathcal{D}$ . Then:

- (a) if  $\{W_1, \ldots, W_n\} = \{D\}$ , then  $f(TS) = \{f(T)\}$ ;
- (b) if  $Z \in \{W_1, ..., W_n\}$ , then f(TS) = f(T)f(S); and
- (c) if Z and  $Z_m$  are of different type and  $Z_m \neq D$ , then  $f(S) = f(T) + \frac{\beta \lambda_m}{2^m} rz$ , where  $\lambda_m$ is defined for the sequence T.

*Proof.* (a) follows from Lemma 2.4. To prove (b) and (c), suppose that  $W_{i_1}, \ldots, W_{i_k}$  are all the elements in  $\{W_1, \ldots, W_n\}$  which are equal to Z, where  $k \in \mathbb{N}$  and  $i_1 < \cdots < i_k$ . For each  $l \in \{1, \ldots, k\}$ , let  $S_l = Z_0 Z_1 \ldots Z_m W_1 \ldots W_{i_l}$ .

Given  $i \in \{1, ..., n\}$ , if  $i \notin \{i_1, ..., i_k\}$ , then  $w_i = d = (0, 0)$  and  $\lambda_{m+i} = 0$ ; if  $i \in \{i_1, ..., i_k\}$ , then  $w_i = z$  and  $\lambda_{m+i} = \lambda_{m+i_1}$  (since there are not changes of types). Thus, by the definition of f, we obtain that

$$f(S_l) = v + \frac{\lambda_1 z_1}{2^1} + \frac{\lambda_2 z_2}{2^2} + \dots + \frac{\lambda_m z_m}{2^m} + \frac{\lambda_{m+i_1} z}{2^{m+i_1}} + \dots + \frac{\lambda_{m+i_1} z}{2^{m+i_l}}$$

$$= f(T) + \frac{\lambda_{m+i_1}}{2^m} (\frac{1}{2^{i_1}} + \dots + \frac{1}{2^{i_l}}) z.$$
(4)

In particular, if Z is of different type of  $Z_m$ , by (a) we have that  $f(S) = f(S_k) = f(T) + \frac{\lambda_{m+i_k}}{2^m} rz = f(T) + \frac{\beta \lambda_m}{2^m} rz$  ( $\lambda_{m+i_1} = \cdots = \lambda_{m+i_k} = \lambda_m \beta$  since there is exactly one change of type from m to  $m+i_1$ ).

Observe that Lemma 2.4 implies that

Inductively, the proof of (b) can be completed.

$$f(TS_1) = f(T(Z_0Z_1 \dots Z_mW_1 \dots W_{i_1-1}) \cup (Z_0Z_1 \dots Z_mW_1 \dots W_{i_l-1})S_1)$$
  
=  $f(T(Z_0Z_1 \dots Z_mW_1 \dots W_{i_1-1})) \cup f((Z_0Z_1 \dots Z_mW_1 \dots W_{i_l-1})S_1)$   
=  $\{f(T)\} \cup f(Z_0Z_1 \dots Z_mW_1 \dots W_{i_l-1})f(S_1) = f(T)f(S_1).$ 

By (4), this arc is the set  $J_1 = \{f(T) + t \frac{\lambda_{m+i_1}z}{2^m}(\frac{1}{2^{i_1}}) : t \in [0,1]\}$ . Similarly,  $f(S_1S_2) = f(S_1)f(S_2)$  and by (4), this arc is the set  $J_2 = \{f(T) + \frac{\lambda_{m+i_1}z}{2^m}(\frac{1}{2^{i_1}}) + t \frac{\lambda_{m+i_2}z}{2^m}(\frac{1}{2^{i_1}} + \frac{1}{2^{i_2}}) : t \in [0,1]\}$ . Since  $J_1 \cap J_2 = \{f(T) + \frac{\lambda_{m+i_1}z}{2^m}(\frac{1}{2^{i_1}})\} = \{f(S_1)\}$ , we conclude that  $f(TS_2) = f(TS_1) \cup f(S_1S_2) = J_1 \cup J_2 = f(T)f(S_2)$ .

We have described the elements of  $\mathcal{D}_4^*$  in (1) and we defined f with the expression in (3). We see how they are related.

First, we show how to associate a finite sequence of elements of  $\mathcal{B}_C$  to an element of the form rz, where  $r \in \mathcal{D} \setminus \{0,1\}$  and  $z \in \mathcal{B}'_L$ . Let  $Z \in \mathcal{B}'_C$  be the element associated to z. Suppose that  $r = \frac{k}{2^n}$ , where k is odd. We write r using dyadic notation, that is, we write  $r = \frac{s_1}{2^1} + \cdots + \frac{s_n}{2^n}$ , where  $s_n = 1$  and for each  $i \in \{1, \ldots, n-1\}$ ,  $s_i \in \{0,1\}$ . Observe that g(r) = n. We define the sequence  $Z_1 \ldots Z_n$  by making  $Z_i = D$ , if  $s_i = 0$ ; and  $Z_i = Z$ , if  $s_i = 1$ . Observe that  $Z_n = Z$ .

Given an element of the form tz, where  $t \in (0,1]$  and  $z \in \mathcal{B}'_L$ , we associate to tz a sequence  $Z_1Z_2...$  of elements in the set  $\{D,Z\}$  in a similar way. That is, we start writing  $t = \frac{s_1}{2^1} + \cdots$  and we define  $Z_i = Z$  if  $s_i = 1$ , otherwise  $Z_i = 0$   $(i \ge 1)$ . In the case that t has two dyadic representations, we simply choose the finite one (the one with a tail of zeros).

**Lemma 2.6.** Let  $r \in \mathcal{D} \setminus \{0,1\}$ ,  $z \in \mathcal{B}'_L$  and  $Z_1 \dots Z_n$  be the sequence associated to rz. Then  $z_n = z$  and  $rz = \frac{z_1}{2^1} + \dots + \frac{z_n}{2^n}$ .

*Proof.* We have observed that  $Z_n = Z$ , so  $z_n = z$ . As before, we write  $r = \frac{s_1}{2^1} + \cdots + \frac{s_n}{2^n}$ . Given  $i \in \{1, \ldots, n\}$ , if  $s_i = 0$ , then  $Z_i = D$ , so  $(0,0) = d = z_i$ , and  $z_i = 0z = s_i z$ ; if

 $s_i = 1$ , then  $Z_i = Z$ , so  $z_i = z = s_i z$ . In both cases,  $z_i = s_i z$ . Therefore  $\frac{z_1}{2^1} + \frac{z_2}{2^2} + \cdots + \frac{z_n}{2^n} = \frac{s_1 z}{2^1} + \frac{s_2 z}{2^2} + \cdots + \frac{s_n z}{2^n} = rz$ .

**Lemma 2.7.** Let  $r_1, \ldots, r_m$  in  $\mathcal{D} \setminus \{0, 1\}$  and  $z_1, \ldots, z_m$  in  $\mathcal{B}'_L$ . For each  $k \in \{1, \ldots, m\}$ , let  $Z_1^{(k)} \ldots Z_{j_k}^{(k)}$  be the sequence in  $\mathcal{B}_C$  associated to  $r_k z_k$ . Suppose that for each  $k \in \{1, \ldots, m-1\}$ ,  $z_{k+1}$  is of distinct type than  $z_k$ . Let  $T = Z_0 Z_1^{(1)} \ldots Z_{j_1}^{(n)} \ldots Z_{j_m}^{(m)}$ . Then

- (a)  $f(T) = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{j_1}} + \dots + \beta^{m-1} \frac{r_m z_m}{2^{j_1 + \dots + j_{m-1}}}$ , where  $j_i = g(z_i)$ , for each i,
- (b) for each  $k \in \{1, ..., m\}$ , the contribution of the subsequence  $Z_1^{(k)} ... Z_{j_k}^{(k)}$  to the sum that defines f(T) is the term  $\frac{\beta^{k-1} r_k z_k}{2^{j_1+\cdots+j_{k-1}}}$ ,
- (c) if  $\lambda_1, \ldots, \lambda_{j_1+\cdots+j_m}$  is the sequence associated to the vertex T, then  $\lambda_{j_1} = \beta^0$ ,  $\lambda_{j_1+j_2} = \beta^1, \ldots, \lambda_{j_1+\cdots+j_m} = \beta^{m-1}$ ,
- (d) the number of terms in the sum that defines f(T) in (3), equivalently, the number of terms in the sequence T, is equal to  $j_1 + \cdots + j_m + 1 = g(r_1) + \cdots + g(r_m) + 1$ ,
- (e) let  $S = Y_0 Y_1 \dots Y_n$  be a vertex of X and  $R = Y_0 Y_1 \dots Y_n Z_1^{(1)} \dots Z_{j_1}^{(m)} \dots Z_{j_m}^{(m)} \dots Z_{j_m}^{(m$

$$f(R) = f(S) + \gamma(\frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{j_1}} + \dots + \beta^{m-1} \frac{r_m z_m}{2^{j_1 + \dots + j_{m-1}}}),$$

(f) let S and R be as in (e). Then f(SR) = f(S)f(R).

Proof. Let  $i \in \{1, ..., j_1\}$ . Since  $\{Z_1^{(1)}, ..., Z_{j_1}^{(1)}\} \subset \{D, Z_1\}$ , by definition:  $\lambda_i = 0$ , if  $Z_i^{(1)} = D$ ; and  $\lambda_i = 1$  (there are not changes of types), if  $Z_i^{(1)} = Z_1$ . In the first case, since d = (0, 0), we conclude that  $\frac{\lambda_i z_i^{(1)}}{2^i} = \frac{\lambda_i (0, 0)}{2^i} = \frac{z_i^{(1)}}{2^i}$ . In the second case,  $\frac{\lambda_i z_i^{(1)}}{2^i} = \frac{z_i^{(1)}}{2^i}$ . Thus, by Lemma 2.6,  $\frac{\lambda_1 z_1^{(1)}}{2^1} + \dots + \frac{\lambda_{j_1} z_{j_1}^{(1)}}{2^{j_1}} = \frac{z_1^{(1)}}{2^{j_1}} + \dots + \frac{z_{j_1}^{(1)}}{2^{j_1}} = r_1 z_1$ . Given  $i \in \{1, ..., j_2\}$ . Since  $\{Z_1^{(2)}, ..., Z_{j_2}^{(2)}\} \subset \{D, Z_2\}$ , by definition of f(T):  $\lambda_{j_1+i} = 0$ , if

Given  $i \in \{1, ..., j_2\}$ . Since  $\{Z_1^{(2)}, ..., Z_{j_2}^{(2)}\} \subset \{D, Z_2\}$ , by definition of f(T):  $\lambda_{j_1+i} = 0$ , if  $Z_i^{(2)} = D$ , and  $\lambda_{j_1+i} = \beta$  (there is exactly one change of type), if  $Z_i^{(2)} = Z_2$ . In the first case, since d = (0,0), we have that  $\frac{\lambda_{j_1+i}z_i^{(2)}}{2^{j_1+i}} = \frac{\lambda_{j_1+i}(0,0)}{2^{j_1+i}} = \frac{\beta z_i^{(2)}}{2^{j_1+i}}$ . In the second case,  $\frac{\lambda_{j_1+i}z_i^{(2)}}{2^{j_1+i}} = \frac{\beta z_i^{(2)}}{2^{j_1+i}}$ . Thus, by Lemma 2.6,  $\frac{\lambda_{j_1+i}z_1^{(2)}}{2^{j_1+i}} + \dots + \frac{\lambda_{j_1+j_2}z_{j_2}^{(2)}}{2^{j_1+j_2}} = \frac{\beta^1}{2^{j_1}}(\frac{z_1^{(2)}}{2^{j_1}} + \dots + \frac{z_{j_2}^{(2)}}{2^{j_2}}) = \frac{\beta^1 r_2 z_2}{2^{j_1}}$ .

The proofs of (a) and (b) can be completed continuing in this way.

Properties (c) and (d) are easy to show.

We prove (e). The case m=1 was proved in Lemma 2.5 (c). We prove the case m=2. Suppose that  $\lambda_1, \ldots \lambda_{n+j_1}$  are the  $\lambda$  's defined for the sequence  $Y_1 \ldots Y_n Z_1^{(1)} \ldots Z_{j_1}^{(1)}$ . Observe that since each  $\lambda_i$  depends only on the first i terms,  $\lambda_1 \ldots \lambda_n$  are the  $\lambda$ 's defined for  $Y_1 \ldots Y_n$ . Since there is exactly one change of type among the terms  $Y_n Z_1^{(1)} \ldots Z_{j_1}^{(1)}$ , we have that  $\lambda_{n+j_1} = \lambda_n \beta$ . By Lemma 2.5 (c),  $f(Y_0 Y_1 \ldots Y_n Z_1^{(1)} \ldots Z_{j_1}^{(1)} Z_1^{(2)} \ldots Z_{j_2}^{(2)}) = f(Y_0 Y_1 \ldots Y_n Z_1^{(1)} \ldots Z_{j_1}^{(1)}) + \frac{\beta \lambda_{n+j_1}}{2^{n+j_1}} r_2 z_2 = f(S) + \gamma \frac{r_1 z_1}{2^0} + \frac{\beta^2 \lambda_n}{2^{n+j_1}} r_2 z_2 = f(S) + \gamma (\frac{r_1}{2^0} + \beta \frac{r_2 z_2}{2^{j_1}})$ . The rest of (e) can be proved in a similar way.

We prove (f) by induction. The case m=1 follows from Lemma 2.5 (b). Now, suppose that (f) holds for  $m-1 \geq 1$ . Let  $R'=Y_0Y_1 \ldots Y_nZ_1^{(1)} \ldots Z_{j_1}^{(n)} \ldots Z_1^{(m-1)} \ldots Z_{j_{m-1}}^{(m-1)}$ . Using the induction hypothesis and (e), we obtain that

$$f(SR) = f((Y_0Y_1 \dots Y_n)R) = f((Y_0Y_1 \dots Y_n)R' \cup R'R)$$

$$= f((Y_0Y_1 \dots Y_n)R') \cup f(R'R) = f(S)f(R') \cup f(R')f(R)$$

$$= f(S)(f(S) + \gamma(\frac{r_1z_1}{2^0} + \beta\frac{r_2z_2}{2^{j_1}} + \dots + \beta^{m-2}\frac{r_{m-1}z_{m-1}}{2^{j_1+\dots+j_{m-2}}})) \cup$$

$$(f(S) + \gamma(\frac{r_1z_1}{2^0} + \beta\frac{r_2z_2}{2^{j_1}} + \dots + \beta^{m-2}\frac{r_{m-1}z_{m-1}}{2^{j_1+\dots+j_{m-2}}}))(f(S) + \gamma(\frac{r_1z_1}{2^0} + \beta\frac{r_2z_2}{2^{j_1}} + \dots + \beta^{m-1}\frac{r_mz_m}{2^{j_1+\dots+j_{m-1}}})).$$

Observe that the arc in  $D_4$  joining the points  $f(S) + \gamma(\frac{r_1z_1}{2^0} + \beta \frac{r_2z_2}{2^{j_1}} + \dots + \beta^{m-2} \frac{r_{m-1}z_{m-1}}{2^{j_1+\dots+j_{m-2}}})$  and  $f(S) + \gamma(\frac{r_1z_1}{2^0} + \beta \frac{r_2z_2}{2^{j_1}} + \dots + \beta^{m-1} \frac{r_mz_m}{2^{j_1+\dots+j_{m-1}}})$  is the set

$$L = \{f(S) + \gamma(\frac{r_1z_1}{2^0} + \beta\frac{r_2z_2}{2^{j_1}} + \dots + \beta^{m-2}\frac{r_{m-1}z_{m-1}}{2^{j_1+\dots+j_{m-2}}} + t\beta^{m-1}\frac{r_mz_m}{2^{j_1+\dots+j_{m-1}}}) : t \in [0,1]\} = f(R')f(R),$$

and the intersection of L with the arc  $L_0 = f(S)(f(S) + \gamma(\frac{r_1z_1}{2^0} + \beta \frac{r_2z_2}{2^{j_1}} + \dots + \beta^{m-2} \frac{r_{m-1}z_{m-1}}{2^{j_1+\dots+j_{m-2}}})) = f(S)f(R')$  is the point  $f(S) + \gamma(\frac{r_1z_1}{2^0} + \beta \frac{r_2z_2}{2^{j_1}} + \dots + \beta^{m-2} \frac{r_{m-1}z_{m-1}}{2^{j_1+\dots+j_{m-2}}}) = f(R')$ . Then  $L \cup L_0 = f(R')f(R) \cup f(S)f(R')$  is the arc joining f(S) and f(R). Therefore f(SR) = f(S)f(R).  $\square$ 

**Lemma 2.8.**  $f(X) = D_4$ .

*Proof.* Let  $r_1, \ldots, r_m$  in  $\mathcal{D} \setminus \{0, 1\}, z_1, \ldots, z_m$  in  $\mathcal{B}'_L$  and for each  $k \in \{1, \ldots, m-1\}, z_{k+1}$  is of distinct type than  $z_k$ . By Lemma 2.7, each element  $q \in R(D_4)$ ,

$$q = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{g(r_1)}} + \dots + \beta^{m-1} \frac{r_m z_m}{2^{g(r_1) + \dots + g(r_{m-1})}},$$

and any arc vq in  $D_4$  is contained in  $\mathrm{Im}(f)$ . We obtain that  $R(D_4) \subset f(\bigcup_{m=1}^{\infty} X_m) \subset D_4$ . Since  $X = \mathrm{cl}_X(\bigcup_{m=1}^{\infty} X_m)$  is compact and  $R(D_4)$  is dense in  $D_4$ , we obtain that  $f(X) = D_4$ .

**Lemma 2.9.** Let  $T = Z_0 Z_1^{(1)} \dots Z_{j_1}^{(1)} \dots Z_1^{(m)} \dots Z_{j_m}^{(m)}$  and

$$q = f(T) = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{j_1}} + \dots + \beta^{m-1} \frac{r_m z_m}{2^{j_1 + \dots + j_{m-1}}}$$

be as in Lemma 2.7. Let  $k=j_1+\cdots+j_m$ . Write the sequence T in the form  $T=Y_0Y_1\ldots Y_k$ . Let  $t\in\mathcal{D}\setminus\{0,1,r_m\}$  be such that  $\frac{1}{2^{g(r_m)}}>|r_m-t|$  and let

$$q_t = v + \frac{r_1 z_1}{2^0} + \dots + \beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{j_1 + \dots + j_{m-2}}} + \beta^{m-1} \frac{t z_m}{2^{j_1 + \dots + j_{m-1}}}.$$

Then there exist  $n \in \mathbb{N}$ ,  $Y'_k \in \mathcal{B}'_C$ , and  $Y_{k+1}, \ldots, Y_{k+n} \in \{D, Y'_k\}$  such that  $Y'_k$  is of the same type than  $Y_k = Z^{(m)}_{j_m}$ , and the vertex  $T_{k+n} = Y_0Y_1 \ldots Y_k \ldots Y_{k+n}$  has the following properties  $f(T_{k+n}) = q_t$ ,  $f(TT_{k+n}) = q_t$ ,  $g(r_m) + n = g(t)$  and  $\lambda_{k+n} = \beta^{m-1}$  (where  $\lambda_1, \ldots, \lambda_{k+n}$  is the sequence defined for the vertex  $T_{k+n}$ ).

*Proof.* We suppose that  $z_m = a$ , the rest of the cases (that is,  $z_m$  is one of the points  $\{b, c, e\}$ ) are similar. We consider two cases.

# Case 1. $t < r_m$ .

We take the dyadic representation of the number  $2^{g(r_m)}(r_m - t) \in \mathcal{D} \setminus \{0, 1\}$ , to be:

$$2^{g(r_m)}(r_m - t) = \frac{s_1}{2^1} + \dots + \frac{s_n}{2^n},$$

where  $\{s_1, ..., s_n\} \subset \{0, 1\}$  and  $s_n = 1$ .

Since  $Y'_k$  is of the same type than  $Y_k$ ,  $t < r_m$  and  $z_m = a$ , we have that  $z_{m+1} = -z_m = b$ . Let  $r' = 2^{g(r_m)}(r_m - t)$ ,  $Y_{k+1} \dots Y_{k+n}$  be the sequence associated to  $r'b = r'(-a) = r'(-z_m)$ . Then  $Y_{k+n} = -Z_m = B$ ,  $\{Y_{k+1}, \dots, Y_{k+n}\} \subset \{D, B\}$  and

$$T_{k+n} = Y_0 Z_1^{(1)} \dots Z_{j_1}^{(1)} \dots Z_1^{(m)} \dots Z_{j_m}^{(m)} Y_{k+1} \dots Y_{k+n} = Y_0 Y_1 \dots Y_k Y_{k+1} \dots Y_{k+n}.$$

Observe that g(r') = n. By Lemma 2.2 (a),  $g(r_m) + n = g(r_m) + g(r') = g(r_m - \frac{r'}{2^{g(r_m)}}) = g(t)$ . Thus  $g(r_m) + n = g(t)$ .

Since  $\{Y_{k+1}, \ldots, Y_{k+n}\} \subset \{D, B\}$  and  $B \in \{Y_{k+1}, \ldots, Y_{k+n}\}$ , by Lemma 2.5 (b), we have that  $f(TT_{k+n}) = f(T)f(T_{k+n}) = qf(T_{k+n})$ . We prove that  $f(T_{k+n}) = q_t$ . By definition,

$$f(T_{k+n}) = v + \frac{\lambda_1 y_1}{2^1} + \dots + \frac{\lambda_k y_k}{2^k} + \frac{\lambda_{k+1} y_{k+1}}{2^{k+1}} + \dots + \frac{\lambda_{k+n} y_{k+n}}{2^{k+n}}.$$

Since for each  $i \in \{1, ..., k\}$ , the definition of a number  $\lambda_i$ , depends only on the sequence  $Y_0 ... Y_i$ , we have that  $\lambda_i$  also is the one used in the definition of f(T). Then

$$f(T) = v + \frac{\lambda_1 y_1}{2^1} + \dots + \frac{\lambda_k y_k}{2^k}$$

$$= v + \frac{\lambda_1 z_1^{(1)}}{2^1} + \dots + \frac{\lambda_{j_1} z_{j_1}^{(1)}}{2^{j_1}} + \dots + \frac{\lambda_{j_1 + \dots + j_{m-1} + 1} z_1^{(m)}}{2^{j_1 + \dots + j_{m-1} + 1}} + \dots + \frac{\lambda_{j_1 + \dots + j_m} z_{j_m}^{(m)}}{2^{j_1 + \dots + j_m}}.$$

By Lemma 2.7 (a) and (c), the last sum is equal to

$$v + \frac{r_1 z_1}{2^{0}} + \beta \frac{r_2 z_2}{2^{j_1}} + \dots + \beta^{m-1} \frac{r_m z_m}{2^{j_1 + \dots + j_{m-1}}}$$

and  $\lambda_k = \beta^{m-1}$ .

Thus

$$v + \frac{\lambda_1 y_1}{2^1} + \dots + \frac{\lambda_k y_k}{2^k} = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{j_1}} + \dots + \beta^{m-1} \frac{r_m z_m}{2^{j_1 + \dots + j_{m-1}}}.$$

Since  $y_k$  and b are of the same type, in fact,  $b = -a = -z_m = -z_{j_m}^{(m)} = -y_k$ , we have that for each  $i \in \{1, \ldots, n\}$ ,  $\beta^{m-1} = \lambda_k = \lambda_{k+i}$ , if  $Y_{k+i} = B$  (equivalently,  $s_i = 1$ ); and  $\lambda_{k+i} = 0$ ,

if  $Y_{k+i} = D$  (equivalently,  $s_i = 0$ ). Then  $y_{k+i} = s_i b$ , and  $\lambda_{k+i} y_{k+i} = \lambda_k y_{k+i} = \beta^{m-1} s_i b$ . Therefore

$$f(T_{k+n}) = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{j_1}} + \dots + \beta^{m-1} \frac{r_m z_m}{2^{j_1 + \dots + j_{m-1}}} + \frac{\beta^{m-1} s_1 b}{2^{k+1}} + \dots + \frac{\beta^{m-1} s_n b}{2^{k+n}}$$

$$= v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{j_1}} + \dots + \beta^{m-1} \frac{r_m z_m}{2^{j_1 + \dots + j_{m-1}}} - \frac{\beta^{m-1} z_m}{2^{j_1 + \dots + j_{m-1}} 2^{j_m}} (\frac{s_1}{2^1} + \dots + \frac{s_n}{2^n})$$

$$= v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{j_1}} + \dots + \beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{j_1 + \dots + j_{m-2}}} + \beta^{m-1} \frac{z_m}{2^{j_1 + \dots + j_{m-1}}} (r_m - \frac{2^{j_m} (r_m - t)}{2^{j_m}})$$

$$= q_t.$$

Hence,  $f(T_{k+n}) = q_t$ .

Case 2.  $r_m < t$ .

The proof in this case is similar to the proof of Case 1, using the dyadic representation of the number  $r'' = 2^{g(r_m)}(t - r_m)$  and the sequence associated to r''a.

**Theorem 2.10.** The function f is weakly confluent.

*Proof.* Take a subcontinuum B of  $D_4$ . We are going to show that there exists a subcontinuum A of X such that f(A) = B. By 2.8, we suppose that B is non-degenerate. Let  $q_0 \in B$  be such that  $q_0$  is the first point in B when we walk from v to B. That is,  $q_0$  is the only point in B with the property that for each  $q \in B$ ,  $q_0 \in vq$  (equivalently,  $vq_0 \subset vq$ ). Then  $B \neq \{q_0\}$ . So  $q_0$  is not an end-point of  $D_4$ . So either  $q_0 = v$  or  $q_0$  can be written as in (1).

Case A.  $q_0 \neq v$ .

In this case

$$q_0 = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{g(r_1)}} + \dots + \beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g(r_1) + \dots + g(r_{m-2})}} + t^* \beta^{m-1} \frac{r_m z_m}{2^{g(r_1) + \dots + g(r_{m-1})}}$$
(5)

where  $t^* > 0$ .

Let  $w = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{g(r_1)}} + \dots + \beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g(r_1) + \dots + g(r_{m-2})}}$ ,  $t_0 = t^* r_m$  and  $z = \beta^{m-1} \frac{z_m}{2^{g(r_1) + \dots + g(r_{m-1})}}$ . Then

$$q_0 = w + t_0 z$$
.

Consider the arc  $L = \{w + tz \in D_4 : t \in [0,1]\}$ . We know that (see Definition 2.3)

$$vq_0 = \{v\} \cup L_1(q_0) \cup \cdots \cup L_{m-1}(q_0) \cup L_m(q_0).$$

where  $L_m(q_0) = \{w + st_0z : s \in (0,1]\}$ . Then for each s < 1,  $w + st_0z \notin B$ . Thus  $t_0 = \min\{t \in [0,1] : w + tz \in B\}$ . Since  $B \cap L$  is a subcontinuum of  $D_4$  there exists  $t_2 \in [t_0,1]$  such that  $B \cap L = \{w + tz \in D_4 : t \in [t_0,t_2]\}$ .

Case 1.  $t_0 < t_2$ .

By Lemma 2.2 (b), there exists a unique element  $r \in (t_0, t_2) \cap (\mathcal{D} \setminus \{0, 1\})$  with minimum degree. Set

$$q_1 = w + rz$$
.

Then

$$q_1 = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{g(r_1)}} + \dots + \beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g(r_1) + \dots + g(r_{m-2})}} + \beta^{m-1} \frac{r z_m}{2^{g(r_1) + \dots + g(r_{m-2}) + g(r_{m-1})}}.$$

Since  $r \in \mathcal{D} \setminus \{0, 1\}$ , by Lemma 2.7 (a) and (d), there exist  $k \in \mathbb{N}$  and a sequence  $Y_0, \ldots, Y_k$  in  $\mathcal{B}_C$  such that the vertex

$$T_0 = Y_0 Y_1 \dots Y_k$$

of X satisfies  $f(T_0) = q_1$  and  $k = g(r_1) + \cdots + g(r_{m-1}) + g(r)$ .

Claim 1. Let  $q \in (B \setminus \{q_0\}) \cap R(D_4)$ . Then there exists an arc  $J_q$  in X such that  $T_0 \in J_q$  and  $q \in f(J_q) \subset B$ .

We prove Claim 1. We start writing q as in (2)

$$q = v + \frac{r'_1 z'_1}{2^0} + \beta \frac{r'_2 z'_2}{2^{g(r'_1)}} + \dots + \beta^{m'-2} \frac{r'_{m'-1} z'_{m'-1}}{2^{g(r'_1) + \dots + g(r'_{m'-2})}} + \beta^{m'-1} \frac{r'_{m'} z'_{m'}}{2^{g(r'_1) + \dots + g(r'_{m'-1})}}.$$

Since  $q \in R(D_4)$ ,  $r'_{m'} \in \mathcal{D} \setminus \{0,1\}$ . Let  $L_1(q), \ldots, L_m(q)$  be as in Definition 2.3. Since  $\{v\} \cup L_1(q_0) \cup \cdots \cup L_{m-1}(q_0) \subset vq_0 \subset vq$ , the uniqueness of arcs in  $D_4$  implies that  $L_1(q_0) = L_1(q), \ldots, L_{m-1}(q_0) = L_{m-1}(q)$ ,  $m \leq m'$  and  $z_m = z'_m$ . Then  $r_1 = r'_1, \ldots, r_{m-1} = r'_{m-1}$ ; and  $z_1 = z'_1, \ldots, z_m = z'_m$ . Thus

$$q = v + \frac{r_{1}z_{1}}{2^{0}} + \beta \frac{r_{2}z_{2}}{2^{g(r_{1})}} + \dots + \beta^{m-3} \frac{r_{m-2}z_{m-2}}{2^{g(r_{1})+\dots+g(r_{m-3})}} + \beta^{m-2} \frac{r_{m-1}z_{m-1}}{2^{g(r_{1})+\dots+g(r_{m-2})}} + \beta^{m-1} \frac{r'_{m}z_{m}}{2^{g(r_{1})+\dots+g(r_{m-1})}} + \dots + \beta^{m'-2} \frac{r'_{m'-1}z'_{m'-1}}{2^{g(r'_{1})+\dots+g(r'_{m'-2})}} + \beta^{m'-1} \frac{r'_{m'}z'_{m'}}{2^{g(r'_{1})+\dots+g(r'_{m'-1})}} = w + r'_{m}z + \beta^{m} \frac{r'_{m+1}z'_{m+1}}{2^{g(r_{1})+\dots+g(r'_{m-1})+g(r'_{m})}} + \dots + \beta^{m'-2} \frac{r'_{m'-1}z'_{m'-1}}{2^{g(r'_{1})+\dots+g(r'_{m'-2})}} + \beta^{m'-1} \frac{r'_{m'}z'_{m'}}{2^{g(r'_{1})+\dots+g(r'_{m'-1})}}$$

$$(6)$$

For each  $i \in \{1, \ldots, m'\}$ , let  $W_1^{(i)}, \ldots, W_{j_i}^{(i)}$  be the sequence in  $\mathcal{B}_C$  associated to  $r_i' z_i'$ . Let  $k'' = g(r_1) + \cdots + g(r_{m'})$ . Observe that by Lemma 2.7, if  $V_0, \ldots, V_{k''} \in \mathcal{B}_C$  satisfies that the sequence

$$V = V_0 V_1 \dots V_{k''}$$

is the sequence  $V_0W_1^{(1)}...W_{g(r'_1)}^{(1)}...W_1^{(m')}...W_{g(r'_{m'})}^{(m')}$ , then f(V)=q. Moreover,

$$V_0V_1 \dots V_{g(r'_1)+\dots+g(r'_m)} = V_0W_1^{(1)} \dots W_{g(r'_1)}^{(1)} \dots W_1^{(m)} \dots W_{g(r'_m)}^{(m)}$$

Then

$$V_{g(r'_1)+\cdots+g(r'_m)+1}\dots V_{k''}=W_1^{(m+1)}\dots W_{g(r'_{m+1})}^{(m+1)}\dots W_1^{(m')}\dots W_{g(r'_{m'})}^{(m')}.$$

Subcase 1.1. m < m'.

Take the natural order < for the arc vq for which v < q. Since  $q_0 \in L \cap vq$  and  $w + r'_m z$  is the last point of vq in L, we have that  $q_0 \le w + r'_m z \le q$ . Then  $w + r'_m z \in q_0 q \cap L \subset B \cap L$ . Thus  $r'_m \in [t_0, t_2]$  and  $w + r'_m z \in B$ .

# **1.1.1.** Suppose that $r \neq r'_m$ .

If g(r) > 1, by Lemma 2.2 (b) we have that  $\frac{1}{2^{g(r)}} > \max\{t_2 - r, r - t_0\} \ge |r - r'_m|$ ; and if g(r) = 1, then  $r = \frac{1}{2}$ , since  $r'_m \in (0,1)$ , we conclude that  $\frac{1}{2^{g(r)}} = \frac{1}{2} > |r'_m - r|$ . Thus we can apply Lemma 2.9 to  $T_0$ ,  $q_1$  and  $w + r'_m z$  to obtain that there exist  $n \in \mathbb{N}$  and  $Y_{k+1}, \ldots, Y_{k+n} \in \mathcal{B}_{\mathcal{C}}$ , such that the vertex  $T_{k+n} = Y_0 Y_1 \ldots Y_k \ldots Y_{k+n}$  satisfies  $f(T_{k+n}) = w + r'_m z$ ,  $f(T_0 T_{k+n}) = q_1 (w + r'_m z) = \{w + tz : t \text{ is in the subinterval of } [0, 1] \text{ joining } r \text{ and } r'_m\} \subset \{w + tz : t \in [t_0, t_2]\} \subset B$ ,  $g(r) + n = g(r'_m)$  and  $\lambda_{k+n} = \beta^{m-1}$  (where  $\lambda_1, \ldots, \lambda_{k+n}$  are defined for the vertex  $T_{k+n}$ ).

Since  $k = g(r_1) + \cdots + g(r_{m-1}) + g(r)$ , we obtain  $k + n = g(r_1) + \cdots + g(r_{m-1}) + g(r'_m) = g(r'_1) + \cdots + g(r'_{m-1}) + g(r'_m)$ . Therefore

$$k+n+1 = g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m) + 1$$

Observe that

$$f(T_{k+n}) = w + r'_{m}z$$

$$= v + \frac{r_{1}z_{1}}{2^{0}} + \beta \frac{r_{2}z_{2}}{2^{g(r_{1})}} + \dots + \beta^{m-2} \frac{r_{m-1}z_{m-1}}{2^{g(r_{1})+\dots+g(r_{m-2})}} + \beta^{m-1} \frac{r'_{m}z_{m}}{2^{g(r_{1})+\dots+g(r_{m-1})}}.$$
(7)

Note that  $f(T_{k+n})$  coincides with the first terms in the equality (6). Define

$$Z^* = Y_0 Y_1 \dots Y_{k+n} V_{k+n+1} \dots V_{k''} = Y_0 Y_1 \dots Y_{k+n} W_1^{(m+1)} \dots W_{j_{m+1}}^{(m+1)} \dots W_1^{(m')} \dots W_{j_{m'}}^{(m')}$$

We claim that  $f(Z^*) = q$ ,  $T_0 \in T_0Z^*$ ,  $f(T_0Z^*) \subset B$ .

Observe that  $z_{m+1} \in \{v_{k+n+1}, \dots, v_{k+n+j_{m+1}}\} \subset \{d, z_{m+1}\}, Y_{k+n} = Z_m \text{ and } Z_{m+1} \text{ are of different type, } k + n = g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m) \text{ and } \lambda_{k+n} = \beta^{m-1}, \text{ by Lemma 2.7 (e) we have that}$ 

$$f(Z^*) = f(T_{n+k}) + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \dots + \beta^{m'-2} \frac{r'_{m'-1} z'_{m'-1}}{2^{g(r'_1) + \dots + g(r'_{m'-2})}} + \beta^{m'-1} \frac{r'_{m'} z'_{m'}}{2^{g(r'_1) + \dots + g(r'_{m'-1})}}$$

$$= w + r'_m z + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r_1) + \dots + g(r_{m-1}) + g(r'_m)}} + \dots + \beta^{m'-2} \frac{r'_{m'-1} z'_{m'-1}}{2^{g(r'_1) + \dots + g(r'_{m'-2})}} + \beta^{m'-1} \frac{r'_{m'} z'_{m'}}{2^{g(r'_1) + \dots + g(r'_{m'-1})}}.$$

Therefore  $f(Z^*) = q$ . Moreover, by Lemma 2.7 (f),  $f(T_{k+n}Z^*) = f(T_{k+n})f(Z^*)$ .

Set  $J_q = T_0 Z^*$ . Then  $T_0 \in J_q$  and  $q = f(Z^*) \in f(J_q)$ . Since  $f(T_{k+n}), f(Z^*) \in B$ , we have that  $f(J_q) = f(T_0 Z^*) \subset f(T_0 T_{k+n}) \cup f(T_{k+n} Z^*) \subset B \cup f(T_{k+n}) \cap f(Z^*) \subset B$ . Therefore  $f(J_q) \subset B$ . This completes the analysis of the case  $r \neq r'_m$ .

**1.1.2.** Suppose that  $r = r'_m$ .

In this case define 
$$Z^* = Y_0 \dots Y_k W_1^{(m+1)} \dots W_{j_{m+1}}^{(m+1)} \dots W_1^{(m')} \dots W_{j_{m'}}^{(m')}$$
. Since  $f(Y_0 \dots Y_k) = f(T_0) = q_1 = w + rz = w + r'_m$ , by Lemma 2.7 (e)  $f(Z^*) = f(Y_0 \dots Y_k) + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_{m-1}) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + \dots + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m) + g(r'_m)}} + \beta^m \frac{r'_{m+1} z'_{m+1}}{2^{g(r'_1) + g(r'_m) + g(r'_m) + g(r'_m)}}$ 

Subcase 1.2. m = m'.

In this subcase,

$$q = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{g(r_1)}} + \dots + \beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g(r_1) + \dots + g(r_{m-2})}} + \beta^{m-1} \frac{r'_m z_m}{2^{g(r_1) + \dots + g(r_{m-1})}}$$
$$= w + r'_m z.$$

In the case that  $r \neq r'_m$ ,  $q \in L \cap B$ , so  $r'_m \in [t_0, t_2]$ . As at the beginning of subcase 1.1.1., we conclude that  $\frac{1}{2^{g(r)}} > |r'_m - r|$ , so we can apply Lemma 2.9 to  $T_0$ ,  $q_1$  and  $w + r'_m z$  to obtain that there exist  $M \in \mathbb{N}$  and  $Y_{k+1}, \ldots, Y_{k+M} \in \mathcal{B}_C$ , such that the vertex  $T_{k+M} = Y_0 Y_1 \ldots Y_k \ldots Y_{k+M}$  satisfies  $f(T_{k+M}) = w + r'_m z = q$  and  $f(T_0 T_{k+M}) = q_1 q = \{w + tz : t \text{ is in the subinterval of } [0,1] \text{ joining } r \text{ and } r'_m \} \subset \{w + tz : t \in [t_0,t_2]\} \subset B$ . Set  $S_0 = T_{k+M}$ . In the case that  $r = r'_m$ , we have that  $q_1 = q$ . Set  $S_0 = T_0$ . In both cases,  $T_0 \in T_0 S_0$ ,  $f(T_0 S_0) \subset B$  and  $q_1 q = f(T_0 S_0)$ . In this case, define  $J_q = T_0 S_0$ .

This completes the proof of Claim 1.

Hence, we have shown that for each  $q \in (B \setminus \{q_0\}) \cap R(D_4)$ , there exists an arc  $J_q$  in X such that  $T_0 \in J_q$  and  $q \in f(J_q) \subset B$ .

Define  $A = \operatorname{cl}_X(\bigcup\{J_q : q \in (B \setminus \{q_0\}) \cap R(D_4)\})$ . Then A is a subcontinuum of X such that  $f(A) \subset B$ . Since  $(B \setminus \{q_0\}) \cap R(D_4)$  is dense in B,  $(B \setminus \{q_0\}) \cap R(D_4) \subset f(A)$  and f(A) is compact, we have that f(A) = B.

Case 2.  $t_0 = t_2$ .

In this case,  $B \cap L = \{q_0\}.$ 

Take an element  $q \in (B \setminus \{q_0\}) \cap R(D_4)$ . We write q as in (2):

$$q = v + \frac{r'_1 z'_1}{2^0} + \beta \frac{r'_2 z'_2}{2^{g(r'_1)}} + \dots + \beta^{m'-2} \frac{r'_{m'-1} z'_{m'-1}}{2^{g(r'_1) + \dots + g(r'_{m'-2})}} + \beta^{m'-1} \frac{r'_{m'} z'_{m'}}{2^{g(r'_1)} + \dots + 2^{g(r'_{m'-1})}}.$$

Since  $q_0 \in vq$ , proceeding as at the beginning of the proof of Claim 1, we obtain that  $m \leq m'$ ,  $r_1 = r'_1, \ldots, r_{m-1} = r'_{m-1}$ ; and  $z_1 = z'_1, \ldots, z_m = z'_m$ . Thus

$$q = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^{g(r_1)}} + \dots + \beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g(r_1) + \dots + g(r_{m-2})}} + \beta^{m-1} \frac{r'_m z_m}{2^{g(r_1) + \dots + g(r_{m-1})}} + \beta^{m-1} \frac{r'_m z_m}{2^{g(r_1) + \dots + g(r'_m)}} + \dots + \beta^{m'-2} \frac{r'_{m'-1} z'_{m'-1}}{2^{g(r'_1) + \dots + g(r'_{m'-2})}} + \beta^{m'-1} \frac{r'_m z_m}{2^{g(r'_1) + \dots + g(r'_{m'-1})}}.$$

Let  $L_1(q), \ldots, L_{m'}(q)$  be as in Definition 2.3. Since  $L \cap (\operatorname{cl}_{D_4}(L_{m+1}(q)) \cup \cdots \cup L_{m'}(q)) = \{w + r'_m z\}$ , we have that the first point of the arc vq, going from q to v that belongs to L is  $w + r'_m z$ . Since  $q_0 \in L$ , we infer that  $w + r'_m z \in q_0 q$ . Then  $w + r'_m z \in L \cap B$ . Therefore  $q_0 = w + r'_m z = w + t_0 z$  and  $r'_m = t_0$ . In particular,  $t_0 \in \mathcal{D}$  and  $q_0 \in R(D_4)$ .

For each  $i \in \{1, \ldots, m'\}$ , let  $W_1^{(i)}, \ldots, W_{i_i}^{(i)}$  be the sequence in  $\mathcal{B}_C$  associated to  $r_i'z_i'$ . Let  $k = j_1 + \dots + j_m \text{ and } k' = j_1 + \dots + j_{m'}.$ 

Observe that by Lemma 2.7, if  $V_0, \ldots, V_{k'} \in \mathcal{B}_C$  satisfies that the sequence  $Z = Z_0 \ldots Z_k$  (respectively,  $Z' = Z_0 \ldots Z_k \ldots Z_{k'}$ ) is the sequence  $Z_0 W_1^{(1)} \ldots W_{j_1}^{(1)} \ldots W_1^{(m)} \ldots W_{j_m}^{(m)}$  (respectively,  $Z_0 W_1^{(1)} \ldots W_{j_1}^{(1)} \ldots W_1^{(m')} \ldots W_{j_{m'}}^{(m')}$ ) then  $f(Z) = q_0$  and f(Z') = q. Observe that the sequence  $W_1^{(i)}, \ldots, W_{j_m}^{(m)}$  depends on  $r_m' z_m' = t_0 z_m$ . This implies that the sequence Z depends on  $r_1z_1, \ldots, r_{m-1}z_{m-1}, t_0z_m$ . Thus Z depends only on  $q_0$ , therefore Z does not depend on q.

Note that  $Z' = Z_0 \dots Z_k W_1^{(m+1)} \dots W_{j_{m+1}}^{(m+1)} \dots W_1^{(m')} \dots W_{j_{m'}}^{(m')}$ . By Lemma 2.7 (f), f(ZZ') = $f(Z)f(Z') = q_0q \subset B.$ 

Set  $J_q = ZZ'$ . Then  $Z \in J_q$ ,  $q = f(Z') \in f(J_q) \subset B$ . Hence, we have shown that for each  $q \in (B \setminus \{q_0\}) \cap R(D_4)$ , there exists an arc  $J_q$  in X such that  $Z \in J_q$  and  $q \in f(J_q) \subset B$ .

Define  $A = \operatorname{cl}_X(\bigcup \{J_q : q \in (B \setminus \{q_0\}) \cap R(D_4)\})$ . Then A is a subcontinuum of X such that  $f(A) \subset B$ . Since  $(B \setminus \{q_0\}) \cap R(D_4)$  is dense in B,  $(B \setminus \{q_0\}) \cap R(D_4) \subset f(A)$  and f(A)is compact, we have that f(A) = B.

This completes the proof of the existence of A in the case that  $b_0 \neq v$ .

Case B.  $q_0 = v$ , equivalently,  $v \in B$ .

Given  $q \in (B \setminus \{q_0\}) \cap R(D_4)$ , write q as in (2). Then

$$q = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^1} + \dots + \beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g(r_1) + \dots + g(r_{m-2})}} + \beta^{m-1} \frac{r_m z_m}{2^{g(r_1) + \dots + g(r_{m-1})}}.$$

For each  $k \in \{1, ..., m\}$ , let  $Z_1^{(k)} ... Z_{j_k}^{(k)}$  be the sequence in  $\mathcal{B}_C$  associated to  $r_k z_k$ . Let  $T_k = Z_1^{(1)} \dots Z_{j_1}^{(1)} \dots Z_1^{(k)} \dots Z_{j_k}^{(k)}$  and

$$q_k = v + \frac{r_1 z_1}{2^0} + \beta \frac{r_2 z_2}{2^1} + \dots + \beta^{k-1} \frac{r_k z_k}{2^{g(r_1) + \dots + g(r_{k-1})}}.$$

By Lemma 2.7,  $f(T_k) = q_k$ .

Let  $L_1(q), \ldots, L_m(q)$  be as in Definition 2.3. Then  $vq = \{v\} \cup L_1(q) \cup \cdots \cup L_m(q)$ . Since

 $vq \subset B$  and for each  $k \in \{1, \dots, m\}$ ,  $q_k \in L_k(q)$ , we obtain that  $q_k \in B$ . Given  $k \in \{1, \dots, m\}$ , since  $\{Z_1^{(k)}, \dots, Z_{j_k}^{(k)}\} \subset \{D, Z_k\}$ , we can apply Lemma 2.5 (c), to obtain that  $f(T_{k-1}T_k) = f(T_{k-1})f(T_k) = q_{k-1}q_k \subset B$ . Therefore  $f(VT_m) = f(VT_1 \cup T_1T_2 \cup T_1T_2)$  $\cdots \cup T_{m-1}T_m) = f(VT_1) \cup f(T_1T_2) \cup \cdots \cup f(T_{m-1}T_m) \subset B.$ 

Let  $J_q = VT_m$ . Then  $J_q$  is an arc in X such that  $v = f(V) \in f(J_q), q = q_m = f(T_m) \in$  $f(J_q)$  and  $f(J_q) \subset B$ . Define  $A = \operatorname{cl}_X(\bigcup \{J_q : q \in (B \setminus \{q_0\}) \cap R(D_4)\})$ . Proceeding as before, we conclude that f(A) = B. This finishes the proof that f is weakly confluent.

### 3. The Characterization

**Theorem 3.1.** Let X be a dendrite such that E(X) is at most countable. Then the Gehman dendrite  $G_3$  is not a weakly confluent image of X.

*Proof.* Suppose to the contrary that there exists a weakly confluent map  $f: X \to G_3$ . Fix a point  $v \in G_3$  such that  $\operatorname{ord}(v, G_3) = 2$ . Recall that,  $E(G_3)$  is homeomorphic to the Cantor set [5, p. 21]. Given  $q \in E(G_3)$  consider the arc  $B_q = vq$ . Let  $A_q$  be a subcontinumm of X such that  $f(A_q) = B_q$ . Fix  $a_q \in A_q$  such that  $f(a_q) = q$ . Fix a point  $u \in X$ . Observe that  $X = \bigcup \{ue \subset X : e \in E(X)\}$ . Since R(X) and E(X) are at most countable [4, Theorem 1.5 (d)] and  $\{a_q \in X : q \in E(G_3)\}$  is uncountable, there exists  $e_0 \in E(X)$  such that the set  $D = (ue_0 \setminus (R(X) \cup \{u, e_0\})) \cap \{a_q : q \in E(G_3)\}$  is uncountable.

Given  $a_q \in D$ , since  $a_q \notin R(X) \cup \{u, e_0\}$ , we have that  $A_q \cap ue_0$  is an arc. We identify the arc  $ue_0$  with the interval [0, 1], so we write  $A_q \cap ue_0 = [s_q, t_q]$ , where  $s_q < t_q$ . Since D is uncountable, there exists  $\varepsilon > 0$  such that  $2\varepsilon < t_q - s_q$  for uncountably many points  $a_q \in D$ . Since  $a_q \in [s_q, t_q]$ , we may assume that  $t_q - a_q > \varepsilon$  for uncountably many points  $a_q \in D$ . Thus there exist  $a_{q_1}, a_{q_2} \in D$  such that  $[a_{q_1}, t_{q_1}] \cap [a_{q_2}, t_{q_2}] \neq \emptyset$  and  $q_1 \neq q_2$ . Thus we may assume that  $a_{q_2} \in [a_{q_1}, t_{q_1}]$ . Hence  $a_{q_2} \in A_{q_1}, q_2 = f(a_{q_2}) \in f(A_{q_1}) = B_{q_1} = vq_1$ . Therefore  $q_2 \in vq_1$ , a contradiction. This finishes the proof of the theorem.

Denote by

 $\mathcal{M}(\mathcal{D}) = \{D : D \text{ is a dendrite and } E \leq_{\mathcal{W}} D \text{ for each dendrite } E\}.$ 

Observe that  $\mathcal{M}(\mathcal{D})$  denotes the family of dendrites that are maximum elements with respect to the preorder  $\leq_{\mathcal{W}}$ . By [5, Fact 5.22 and Theorem 5.27], all the universal dendrites  $D_n$   $(n \in \mathbb{N} \cup \{\omega\})$  belong to  $\mathcal{M}(\mathcal{D})$ . By Theorem 2.1, each Gehman dendrite  $G_n$   $(n \geq 3)$  also belongs to  $\mathcal{M}(\mathcal{D})$ . In the following theorem we characterize the elements of  $\mathcal{M}(\mathcal{D})$ .

**Theorem 3.2.** A dendrite X belongs to  $\mathcal{M}(\mathcal{D})$  if and only if E(X) is uncountable.

*Proof.* The necessity is proved in Theorem 3.1. Now, suppose that E(X) is uncountable. By [10, Theorem 1] X contains a dendrite G homeomorphic to  $G_3$ . By [5, Theorem 4.16],  $G \leq_{\mathcal{M}} X$ , so  $G_3 \leq_{\mathcal{W}} X$  and  $X \in \mathcal{M}(\mathcal{D})$ .

### 4. Another answer

In [5, Question 5.12], it was asked if the existence of a weakly confluent map from a dendrite X onto a dendrite Y implies the existence of a confluent map from X onto Y. The following example answers this question in the negative.

**Example 4.1.**  $D_3$  is a weakly confluent image of  $G_3$ , but  $D_3$  is not a confluent image of  $G_3$ .

We show the assertions in Example 4.1. By Theorem 2.1, there exists a weakly confluent map from  $G_3$  onto  $D_3$ . In order to show that  $D_3$  is not the confluent image of  $G_3$ , suppose to the contrary that  $D_3 \leq_{\mathcal{C}} G_3$ . By [5, Corollary 5.7],  $D_3 \leq_{\mathcal{M}} G_3$ . Since  $G_3 \leq_{\mathcal{M}} D_3$  [3, Corollary 6.5],  $G_3 \simeq_{\mathcal{M}} D_3$ . By [5, Theorem 5.27],  $G_3$  contains a copy of the dendrite  $L_0$  constructed in [5, 5.6, p. 16]. This is a contradiction since  $L_0$  contains sequences of ramification points converging to points of order  $\geq 2$  and, in  $G_3$ , each limit of ramification points is an end-point. Therefore,  $D_3$  is not a confluent image of  $G_3$ .

A simpler example that answers Question 5.12 in [5], is the following. Let

$$X = ([-1, 1] \times \{0\}) \cup (\bigcup (\{\frac{1}{n}\} \times [0, \frac{1}{n}] : n \in \mathbb{N}\}).$$

20

We can prove that X is a dendrite such that X is a weakly confluent image of  $G_3$ , but X is not a confluent image of  $G_3$ .

### References

- D. Arévalo, W. J. Charatonik, P. Pellicer-Covarrubias and L. Simón, Dendrites with closed set of end points, Topology Appl. 115 (2001), no. 1, 1-17.
- [2] R. Carmelo, U. Darji and A. Marcone, Classification problems in continuum theory, Trans. Amer. Math. Soc., 357 (2005), no. 11, 4301-4328.
- [3] J. J. Charatonik, Monotone mappings of universal dendrites, Topology Appl. 38 (1991), no. 2, 163-187.
- [4] J. J. Charatonik and W. J. Charatonik, *Dendrites*, XXX National Congress of the Mexican Mathematical Society (Spanish) (Aguascalientes, 1997), 227-253, Aportaciones Mat. Comun. 22, Soc. Mat. Mexicana, México, 1998.
- [5] J. J. Charatonik, W. J. Charatonik and J. R. Prajs, Mapping hierarchy for dendrites, Dissertationes Math. (Rozprawy Mat.) 333 (1994), 52 pp.
- [6] W. J. Charatonik and A. Dilks, On self-homeomorphic spaces, Topology Appl. 55 (1994), no. 3, 215-238.
- [7] A. Illanes, Countable closed set aposyndesis and hyperspaces, Houston J. Math. 23, no. 1, 1997.
- [8] A. Illanes, V. Martínez-de-la-Vega, J. M. Martínez-Montejano and D. Michalik, *Hierarchy of curves with weakly confluent maps*, preprint.
- [9] V. Martínez-de-la-Vega and C. Mouron, Monotone classes of dendrites, Canad. J. Math. 68 (2016), no. 3, 675-697.
- [10] J. Nikiel, A characterization of dendroids with uncountably many end-points in the classical sense, Houston J. Math. 9 (1983), no. 3, 421-432.
- [11] J. Nikiel, On dendroids and their end-points and ramification points in the classical sense, Fund. Math. 124 (1984), no. 2, 99-108.
- [12] J. Nikiel, On Gehman dendroids, Glas. Mat. Ser. III 20(40) (1985), no.1, 203-214.
- (A. Illanes) Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Ciudad de México, 04510, México E-mail address: illanes@matem.unam.mx
- (V. Martínez-de-la-Vega) Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Ciudad de México, 04510, México E-mail address: vmvm@matem.unam.mx

(J. M. Martínez-Montejano) DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, CIRCUITO EXTERIOR, CD. UNIVERSITARIA, CIUDAD DE MÉXICO, 04510, MÉXICO

 $E\text{-}mail\ address: \verb"jorgemm@ciencias.unam.mx"$ 

(D. Michalik) Jan Kochanowski University, Świętokrzyska 15, 25-406, Kielce, Poland  $E\text{-}mail\ address:}$  daria.michalik@ujk.edu.pl