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" ABSTRACT. In this paper, we study a Cauchy problem for non-autonomous evolution equations with
5 Riemann-Liouville fractional derivative. We propose two different concepts of fundamental solutions
— and classical solutions corresponding to the homogeneous problem. We also prove some existence
3 results of non-homogeneous Cauchy problem. Our methods rely upon analytic semigroup theory, the
14 Mittag-Leffler function and a variation of parameters formula. As an application, we apply the main
15 results to a time dependent fractional Schrodinger type equation.

16

7 1. Introduction

18

19 The classical autonomous evolution equations have provided an important manner to solve mathe-
20 matical models in science and engineering. Among various models containing many concrete non-
21 local problems or memory characteristics of materials, fractional calculus has been proven as one
22 of the most efficient analysis tools, such as in anomalous diffusion [23, 34, 39], control theory and
23 engineering [24, 32, 33], viscoelasticity [26, 30], Hamiltonian chaos [40], biophysics [21], impul-
24 sive systems [11] and several other areas. Nevertheless, many evolution equations play an important
25 role in mathematical research driven by the time-varying parameters, a non-autonomous evolution
26 equation becomes the main equation for studying this issue, see e.g. [1, 17]. When considering a
27 nonlocal problems or a memory characteristic of materials with time-varying parameters described
28 by the fractional derivative, there are still many difficulties and challenges in obtaining the qualitative
29 properties of these non-autonomous models. In particular, we remark that the structure of solutions
30 for non-autonomous fractional evolution equations is not obvious, while the cases of integer orders
31 are also natural to construct by an evolution operator, which provides great convenience in defining
s2 and establishing the properties of mild solutions or classical solutions. Moreover, when studying the
33 solutions to non-autonomous fractional evolution equations, the useful Laplace transform for study-
34 ing autonomous type equations is not as applicable. To overcome this difficulty, the technique of a
35 variation of parameters formula will be proposed.

3 A common mathematical physics model d%x = a(t)Ax, t > 0, is represented by a fractional evo-

37 lution equation with time-varying parameters, where A is the Laplace operator, d% is the Caputo
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1 fractional derivative of order a € (0,2), and a(-) : R; — R is a continuous function. If a(-) reduces
2 to a constant function, this model of order o € (0,1) can simulate anomalous diffusion phenomena,
‘3 ensuring the behavior of a subdiffusion process [27]. For the case of order & € (1,2), it will ensure the
"4 behavior of a superdiffusion process in anomalous diffusion phenomena [3, 12]. Several abstract theo-
‘5 ries, such as semigroup theory, cosine family theory, and resolvent family theory, will be more useful
5 in obtaining the qualitative properties of this model, see e.g. [13, 14, 15, 36, 37, 41, 42]. Replacing
‘7 a(t) by A(r), a more general closed linear operator, was considered in [4] for A(z) = C(r)A with a
‘g bounded linear operator C(-), in [35] for A(z) = div(B(¢,-)D) with coefficient matrix B(z,-) and first
‘9 order partial derivative operator D, and in [20] for A(r) = L(¢) with a general second order uniform
10 elliptic operator of the main part form Zﬁ j—1Di(ai j(t,-)D;). In particular, closer to this current work,
11 the existence of solution for fractional Lowner-Kufarev equation

- 60fx(1,2) = 2F (1,2)x:(1,2), o} “x(0,2) =x0(z), @€ (0,1),

14 was obtained on Hilbert space with a unit disk by Bajlekova [4], where éDf‘ is the Riemann-Liouville
15 fractional derivative of order o € (0,1), oJ/~% is the Riemann-Liouville fractional integral of order
16 1 — a, (see Definitions 7-8), and F(t,z), xo(z) are analytic functions. More recently, Mahdi [25]
17 proved maximal LP-regularity results in the context of Hilbert spaces. He and Zhou [12] established
18 the existence and uniqueness of solutions for a non-autonomous fractional evolution equation of order
19 & € (1,2) in a more general Banach space.We also remark that there are several excellent works
20 on time-variable coefficient parabolic partial differential equations. Kim et al. [19] proved unique
21 solvability for the following evolution equations with the Caputo fractional derivative

z% —0%u+a;j(t,2)Diju+bi(t,2)Diu+c(t,2)u = f(t,z,u), t>0, z€RY.

24 Here o € (0,2), the indices i, j move from 1 to d, D;,D;; are the derivatives respect to z. The co-
25 efficients a; ;(t,2) are piecewise continuous in ¢ and uniformly continuous in z, and the lower order
26 coefficients b; and ¢ are only bounded measurable functions. Dong and Kim [8] generalized the re-
27 sults in [19] associated with the coefficients g, ;(t,z) satisfying the uniform ellipticity condition and
28 having no regularity in the time variable for the parabolic regime o € (0,1), as well as the weighted
29 mixed-norm estimates and solvability in non-divergence form in [9]. Dong and Liu [10] improved
30 the weighted mixed-norm estimate and solvability in non-divergence form under the coefficients with
3t locally small mean oscillations.

32 Inspired by the above works, we are interested in the solvability of Cauchy problem for the follow-
33 ing non-autonomous fractional evolution equation

() EDEX(1) + A(0)x(0) = £(1), I} Ox(s) = x,, 1€ (5T,

BE where operator A(t) generates an analytic semigroup 7;(¢), ¢ > 0, for each ¢ € [s,T] with s > 0, non-
37 homogeneous function f : (s,7] — X is Holder continuous, and X is usual Banach space. To derive
38 the main results, we will separate the Cauchy problem into its homogeneous and non-homogeneous
39 components. These results exhibit novelties in three distinct aspects.

40 (a) We discuss the structure of solutions, introducing two distinct concepts: fundamental solutions
41 and classical solutions. Specifically, this is the first time the concept of fundamental solutions has
42 been considered for the current problem. While these two concepts may appear different, they are, in
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fact, compatible. Through careful analysis, we observe that fundamental solutions exhibit a singular
value at the initial time. This situation can pose significant challenges in finding a solution.

(b) In the context of first order non-autonomous evolution equations, the evolution operator U (¢, s)
plays a crucial role in representing solutions. This operator also possesses a generalized semigroup
property, namely U(t,s) = U(t,r)U(r,s) for s < r <t. Leveraging this property, we can delve into
the solvability and stability of solutions. Notably, in a specific scenario, the evolution operator U (¢, s)
can degenerate into a one parameter semigroup 7 (¢) within the framework of an autonomous setting.
s However, we find that fundamental solution does not possess the generalized semigroup property
9 of evolution operator. Fortunately, the fundamental solution can degenerate into a solution operator
10 Ty(t) corresponding to the autonomous fractional evolution equations, as seen in Remark 26, notably,
11 even this solution operator Ty(7) does not possess a semigroup property. Relied on time-variable
12 operator A(t), the solution exhibits several new characteristics. For instance, a solution admits uniform
13 continuity but displays a weak singularity at the initial time. Furthermore, the representation of formal
14 solutions bears a stronger resemblance to that of first-order evolution equations or fractional-order
15 evolution equations.

16 (c) If considered Q by a bounded open subset of R¢ with regular boundary 9, problem (1) can be

17 regarded as an abstract version of parabolic type partial differential equation

18

o Dx(1,2) +A(1,2,D)x(t,2) = f(1,2), for (1,2) € (5,T] x Q,

Sfofa|afe]m]-

2 inLP (Q), where A(t,z,D) is a linear uniform strongly elliptic operator with coefficients depending on

21 te[s,T] and z € Q, satisfying
22

23 A(I7Z7D): Z aﬁ(t7Z)Dﬁ7

o 1B1<2m

25 and there is a constant ¢ > 0, for every z € Q, ¢ € [5,T] and & € R¢ such that
26

27 (—1)"Re Z aﬁ(t,x)§BZC\§\2m,

28 |Bl=2m

29 _
5o Where the coefficients ag(t,z) (|B| < 2m) are smooth functions of variable z in € for every 1 € [s,T]

o and satisfy for some constants C > 0and 0 < ¥ <1

% lag(t,z) —ap(t,2)| <Clt—1|°, z€Q, T,1€[s,T].

34 Although the requirements of coefficients ag(t,z) are somewhat stricter than those considered in [8,
35 19, 20], where the authors considered piecewise continuous or merely measurable coefficients, the
36 Holder continuity of the coefficients ag(t,z) is advantageous for analyzing the existence of solutions
37 to an abstract problem. However, the results we obtained may be more applicable to practical issues,
38 ot just in terms of the solvability of fractional parabolic problem, but also in regards to the regularity
39 of solutions. Taking these factors into account, we shall address the solvability to problem (1) using
40 the operator A(t) that generates an analytic semigroup 7;(g), for ¢ > 0. Additionally, if the function
41 f is Holder continuous, the current parabolic-type partial differential equation with initial value x €
42 LP(Q) is solvable, and it possesses a unique classical solution.
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The remaining part of the paper is organized as follows. In Sect. 2 we give a brief overview of
the preliminaries of fractional derivatives, we summarize some properties of Riemann-Liouville frac-
tional derivative and two special functions. In Sect. 3, we first establish the existence of solutions for
linear bounded operators. Subsequently, we construct a solution operator for linear unbounded oper-
ators. Furthermore, we provide a thorough analysis of pertinent properties. Leveraging the concept
of fundamental solutions, we demonstrate their existence and provide a solvability result for classical
solutions in the homogeneous case. In Sect. 4, we prove the existence of classical solutions for the
Cauchy problem (1). In Sect. 5, an application is presented to illustrate the main results.

jele|~]o]a]s]e]m]-

2. Preliminaries

—_
o

"' The purpose of this section is to briefly introduce some notations, definitions, and preliminary facts
"2 including fractional derivative and integral, two special functions, for more details, we refer to see
'3 118, 32, 41]. We set X by a Banach space equipped with the norm || - ||, D(A) C X stands for the
' domain of the operator A with the graph norm ||x||4 = ||x|| + ||Ax|| for all x € D(A). Denote %(X)

> by the Banach space of all linear bounded operators from X to X equipped with norm Il - || of the

'® uniform operator topology. Throughout this paper, we set C > 0 by some genetic constant.

7 Let % denote the convolution for functions f,g € L (0,T;X) as follows

18

o (r+8)0) = [ fu—Dg(@az. 10,

20
o1 Let go(+) be the Riemann-Liouville fractional kernel of order ot € R, defined by gq(t) =t*~!/T(a),

> for t > 0, where I'(+) is the usual Gamma function. By a simple calculation, for any a,¢ > 0, it
23 follows that (g * gc)(t —5) = gauc(t —s), fort > 5 >0, ie.,

2i 1 ! o=l N1 _ 1 o Jo+s—1
. @ EYe / (=0 (= s ) s
26

= Let us recall the Mittag-Leffler function E¢ s (-) for & > 0, 6 € R.
27

os Definition 1. An entire function Eq 5 (-) : C — C is called a Mittag-Leffler function for a >0, o € R,

o9 given by

- o k

0. Eqo(d) =Y = z€C.
- a.o(2) ,{; T(ak+o) °

82 Noting that for 0 < ot <2, 0 € R, /2 < @ < min(zw,anw), N > 1, Podlubny [32, pp.32-34]

% proved the asymptotic expansion of Eq 5(z) as z — o by
34

aE 1-o =

® —z @ &% 4 g4 45(z), if |argz] < @

% Eqo(z)=1 o a.o(2), if Jargz| < o,
57 €a.6(2), if w<lJargz|] <m,
sg where

39 N-1 ka .

10 & =- ———~ +O0(|z]” as 7 — oo,
0 a,G(Z) ]; F(G— Olk) + (‘Z‘ ), 7 —> oo

‘E By this asymptotic expansion, the following two properties hold, see Podlubny [32, Theorem 1.5 and
42 Theorem 1.6].

10 Feb 2024 08:57:32 PST
230130-Zhou Version 4 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 5

Lemma?2. [f0<a<2and o €R, ta/2 < ® < min(7w, o), then
C
1+]z|’
Lemma3. [f0<a<2and o € R, na/2 < @ < min(xw, wx), then

|Eq6(2)] <

z€C, o< |argz| < .

1-o é
Eao(2)] < C(1+12])' & e(B%) 4 2€C, farez] < 0.

14 z|’

[~[ofo]a]e]o]~

8 Remark 4. In particular, from the asymptotic expansion of Eq.6(2), it follows that Eq 5(2) = €4.6(2)
2 for < |argz| < T as 7 — oo, taking N = 2 in €4.5(-), it yields

0 1
11 <

v R )

E It is notice that if 6 —a. = —n, (n =0,1,2,--+), and taking into account the well-known property of

14 the Gamma function
15 1

+0(|z2]72), asz— oo

— ——=0 =0,1,2,---

E F(—n) ? n P ] J

17 then there holds c

8 Eucs(z)] < , z€C, o< |argz| <.
19 ‘ 05-,0( )|— 1+|Z|2 —‘ g |—

20 See [22, Remark 2.2] for example.

2l An entire function closely associated with Mittag-Leffler function is the Wright type function.

22
23 Definition 5. An entire function {y(-) : C — C is called a Wright type function for o € (0,1), given

o by
25 o (=
ol C"‘<Z)_,§bn!r(1—a(n+1))’ et

27
og  From the definition of Wright type function, the following properties hold.

?° Lemma 6. [41] For any o € (0,1), there hold
D0 Ca(v) 2 0, where v €[0,0):

32 (ii): /0 Ca(V)e *Pdv = Eq1(—2), 2€C;
oG [ avGa(v)e dy = Faa(—2), 1€ C
0

35 (iv): for —1 < 8 < oo, it yields
36 °° I'(1+34)
i 9]
dv=———-.
:i A v Ca(v) v F(l—l—OC(S)
38
o We mention that the following two identities from Lemma 6 (iv) will be useful throughout this
Lo baper.
e oo o0 1
3 / v)dv =1, /ow V)dv = ——.
o ( ) 0 CO‘( ) 0 COC( ) F((X)
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i Definition 7. Let o > 0. For any 0 < s <t < T, a function x € L' (s,T;X) denotes the Riemann-
o Liowville fractional integral of order . by

It is obvious that (J¥x(t) = x(t) as a — 0 as well as LD%x(1) = ¥(¢) as o — 1. We recall that the
.5 definition of Caputo’s fractional derivative of order & € (0,2), that is, for a function x € C"([s,T],X)

" and (J;' % € WI(s,T;X), n =[] + 1, where W™! (s, T;X) stands for the space of functions x such

n—1
15 that x") € L!(s,T;X), the derivative is given by 9%x(t) = LD¥ (x(t) - Y xkk(,s) (r— s)k), in which d%x
16 k=0~

3 1

S o _ a—1

B I = F / (t— 1) x(t)dT, 1>
5

" Definition 8. Let ot > 0. Forany 0 <s <t <T, a function x € L (s,T;X) with J! %x € Wnl(s,T;X)
-, is called the Riemann-Liouville fractional derivative of order o by

8 d"

: D) = o), >,

E where n =[] + 1, [&t] means the integer part of o.

11

12

— and LD%x are equivalent if x*)(s) = 0 for k = 0,--- ,[a]. Using the properties of fractional calculus
;5 and taking the Mittag-Leffler functions of item by item integration for o € (0,1), w € C, we have
o (=) Ea a0 =5)")) =Ea1 (0t —5)%), 1>,
20 (4

> Dt —5)* TEqq(0(t—5)%) =0(t —5)* 'Eq q(0(t —5)%), t >s.

22 3. A linear problem

23
24 In this section, we discuss some properties for a linear problem of (1). Next, we get an existence
25 result of problem (1) when operator A(+) € %(X). In particular, there is no assumption on the density
26 of the domain of A(¢) for all t € [0,T].

% Lemma 9. The Cauchy problem (1) is equivalent to the integral equation

29 5) x(t) = ga(t —5)xs +tha(t —1)(—A(7)x(7) + f(7))d7

30
31 for 0 <s <t <T provided that (5) exists.

2 Proof. Similarly to [41, Theorem 4.1], the proof is easy to check, so we omit it here. (]
33

34 Definition 10. An X-valued function x is called a classical solution of problem (1) if x is continuous
g on (s,T] withtD%x € C((s,T],X), and it belongs to D(A(t)) for every t € [s,T] satisfying problem (1).

36
- 3.1. Linear bounded operator. Based on Lemma 9, we have an immediate result associated with the

—— linear bounded operator A(-). For this purpose, we introduce a Banach space Cy([s,T],X) that is the

38
2 — weighted continuous function space defined by

40 Co([s,T],X) := {x eC((s,T],X): lgrg(t — 5)17%||x(z)|| exists and is ﬁnite},

41
g equipped with the norm |[|x||¢ = sup;c[ 7(f — $)1=%|x(2)]|.
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1 Theorem 11. Let X be a Banach space and let A(t) be a bounded linear operator on X for every
2 s<t<T.IffeC([sT],X) and the map t — A(t) is continuous in the uniform operator topology,
‘3 then for every xo € X, problem (1) has a unique classical solution x in Cq([s,T],X).

* Proof Clearly, Cy([s,T],X) is a subset of C((s, T],X), it suffices to check the conclusion in Cy([s, 7], X).
> We will use the Picard method to establish this result. Let pa =sup{||A(t)|| =, t € [s,T]} and define a
% mapping .7 on Cy([s,T],X) by

-— t

 (6) (Tx)(t) = galt =)+ [ galt = D)(-AD(T) + f(D)dx
9 K

E We first check that .7 maps Cy([s,T],X) into itself. For x € Cy(]s,T],X), one has

11 t

iz (7 [(7x)(@)]] Sga(t—S)HstﬂL/s ga(t =) (pa(t = )% xlla + [ £(7))dT
% Using (2), we deduce that

15 pal’(a) (T —s)

° 175l <l + B T =)l o=

7 where || fl| = sup{||f(®)||, ¢ € [s,T]} is the norm of C([s,T];X), and then || 7 x|/ < eo. Moreover,
8 we know that g (7 — s)x; belongs to x € Cy([s,T],X), by the boundedness of operator A(+), it is easy
9 to verify that 7x € Cy([s,T],X). Additionally, by induction from (2) and (6) we have

20
01 n n pXF((X) (n+1)o—1
2 T"))— (T < =24———(— —
il (70 = (TN < Far 1y = e
o3 therefore,
24 pal(a)
T"x—T" <A (T—5)"*x=Y|a-
z% Since there exists a positive integer 72 enough large such that
2? PXF(OC) o p}fl“(oc) o
— (- <A (T- <1,
20 farna’ " Srarng’ Y

%0 by a well known generalization of the Banach contraction principle, .7 has a unique fixed point x* in
31 Cq([s,T],X) for which
32

- t

33 (8) xX*(t) = ga(t —8)xs +/ ga(t —T)(—A(7)x"(7) + f(7))dT

34 $

g Since x* is continuous, from Lemma 9, (J! ~%x* exists and we obtain that J!~%x* is absolutely con-
s6 tinuous. Thus +J1~%x* is differentiable, and taking its derivative yields

o DX (1) + A" (1) = £ ().

38
30 Moreover, (J! ~%x*(1) = xy as t — s, and it is easy to derive that 'D%x* € C((s, T],X) and x* € D(A(t))
40 forallt € [s,T] for every x; € X by the same arguments. Hence, x* is a classical solution of the Cauchy
41 problem (1). Since every solution of (1) is also a solution of (8), the solution of (1) is unique. Thus, we
42 getthat x* € Cy([s,T],X) is a unique classical solution to problem (1). The proof is completed.  [J
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1 3.2. Linear unbounded operators. In this subsection, we shall discuss the case of linear unbounded
2 operator, where —A(¢) is an infinitesimal generator of analytic semigroup 7;(¢) on the Banach space
3 X forall ¢ >0 and every ¢ € [0,T]. To achieve to our goals, we will need the following assumptions,
4 seee.g. [1]:

E (P1): the domain D(A(r)) = 2(</) of A(t), 0 <t < T is dense in X, and it is independent of 7;
6 (P2): fort € [0,T], the resolvent R(A;A(r)) of A(r) exists for all A with ReA < 0 and there is a
7 constant C > 0 such that

8

2 C

10

" (P3): (Acquistapace-Terremi’s condition) there exist two constants L > 0 and 0 < ¥ < 1 such
12 that

© (10) 1(A(t) = A(2)A(r) |l < LIt —1|°,  for 7,2, € [0,T].

15 Note that, (P2) and the density of Z(.<7) in X imply that for every 7 € [0, T], —A() is the infinitesimal
16 generator of a uniformly bounded analytic semigroup 7;(g), ¢ > 0, satisfying

17
o I17:(5)

E From (P2), it also yields that there exists an angle 6 € (0,7/2) such that
20

— p(A(t)) DXE={A € C\{0}: 6 < |argA| < m}U{0},

21
22 and (9) holds as

23 C
o R A,,A e < ,
o IRG:AW s < (37
25 ~

-6 possibly with a different constant C > 0.

-7 Without losing generality, from the results of [31] the representation of semigroup in a Dunford
g 1ntegral form is given by

2<Cg7 !, for¢>0.

#<C, forg>0, and |[A(t)T;(c)

forA €X, t€0,T],

1

29 T :7/ “9R(z;A(t))dz,
= (€)= 5 [ e FREGAW)E

ii where ¢ is a smooth path in £ connecting +ooe ™% to +o0e’® for some 6 € (0, 7/ 2).

32 For0 <t <T, we introduce two operators
33

s @@a[@mmwwmganwwzw{[m@wmwmma>o

35
35 The two operators we introduced here will indeed be instrumental in constructing fundamental solu-

5, tions. We will directly discuss some properties of ¢ (g) and y;(¢) that are frequently used throughout
a5 this paper.

% Lemma 12. Let (P1)-(P2) be satisfied, for each t € [0,T], operator families {;(g)}c>0, {Wi(¢)}c>0

40 are linear and bounded, i.e.,

41

7 19:(s)

#<C, for ¢>0, and |[w(g)

# < Cgalg), for ¢>0.
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1 Proof. Since —A(t) is the infinitesimal generator of an analytic semigroup 7;(¢), ¢ > 0, the operator
> families {(S) }re(o,7],c0, 1W(S) }refo,1),¢ >0 are linear clearly. Moreover, for any x € X, from (3) and
3 (11), we have

= [0)]1 < [ Cal0)T(s ) v <€ [ alv)av, ¢ >0.

5 From the same arguments, we get

; V() <s™ " [ o0 Ca(o)Tis v) |wdv < cs* ! [ avla(v)dv, 5 >0,

% Thus, the desired results are satisfied. 0
E Lemma 13. Let (P1)-(P2) be satisfied, for eacht € [0, T, there hold on #(X)

0(6) s [ Eur(~26REA0ME, 620

. i (s) :g‘“zlm. [g Ega(~26")R(z:A(t))dz, ¢ >0.

16
17 Proof. From the Dunford integral of 7;(-), it follows that

18

o 0(9) = [ G v = [ [" e = R@Aw)avd:

19

20 Tt is clear from Lemma 12, by virtue of Lemma 6 (ii), the Fibini theorem shows that
21

a3 i | G = R dva = o [ Eul-zsMR(@AW)z

23
ot Therefore, the first identity is proved. On the other hand, for ¢ > 0, a similar way is employed to
s check that

. i )
= () =¢*! // avly(v)e * R(z;A(t))dvdz

27 2Ti

28 1

= :GOHT ./Ea,a(—zg“)R(z;A(t))dz.

29 T J¥

30 Hence, the another identity is obtained. The proof is completed. 0

°" Remark 14. Let X = LP[a,b], 1 < p < oo, for some constant k > 1, let A(t) be a multiplication
2 operator defined by
33

— A(t)x(s) = —|s — 1] *x(s).

4
2? From [17], the assumptions (P1)-(P3) hold, and therefore —A(t) is an infinitesimal generator of an-
26 alytic semigroup T;(g) = e (¢ > 0,t € [a,b]) of bounded linear operators on X. Hence, from
4, the properties of Wright-type function, operators ¢;(-), W;(-) can be expressed as the corresponding
ss Mittag-Leffler functions by Lemma 6 (ii)-(iii), i.e.,

o ) = [ Calw)e s PN aw = By (~5°A(),

o wi(g) =g /0 O‘véa(v)e‘g“”A(’)dv =1 " Eq o(—6"Alt)).
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Lemma 15. Let (P1)-(P2) be satisfied, for eacht € [0, T, there hold on #(X)

s
2 d

3 O(r=s)=o; " “Wi(r=s), re [Tk —o(r)=-AO)W(r), re (0,7].

4

5 Proof. Lemma 13 implies that (J! =%y, (r —s) is bounded on %(X), by Fubini’s theorem, it is equal
6 tO

- s [ =0 ) Bl et ) RGA®) ded

s T(1—a) 27 Jo Jy Vo ReelmAE T RS “

9

1o By virtue of identity in Lemma 4, one has

S o =5)" " Eqa(~2(r—5)%) =Ea1(~2(r—5)%),
12

13 which implies
14 1

E SJi}ia%(r_s) 277:1
16

17 On the other hand, by the differentiability of analytic semigroup, namely %T,(r) = —A(t)T,(r) for
18 >0, we have

57 || Bal=2r=9)" REAW)dz = 0l =s).

19

20 *‘Pt / Ca(v Tt r v)dv

21

o LS /O a0 Lo (V)AW)T (% 0)dv = —A(1) yi ().

23

o2 The proof is completed. O]

% Lemma 16. Let (P1)-(P3) be satisfied, the following statements are true

? (i) forn € (0,T), 611,12 € [0,T), there holds

28 C

oy [(A(t1) —A(R2))we(n)]|2 < Elfl —n|”;
Z% (ii) forn € (0,T), t,61,6 € [0,T], there holds

32 C

. 1A(0) (g, (1) = Wy (M) ]2 < 5\@1—9‘2!”;
Z% (iii) forO<my <M <T, ¢ €[0,T], there holds

36 C

7 [A(S) (We(m2) — we(mi)llz < W\le—m\,
Z% @iv) for 0 <ny < < T, there holds

% lwe(m2) — we(m)lls < Clng~' =),

%Mmover, A(t)ye(n) € Z(X) forn € (0,T], 1,6 €[0,T] and |A(1)y(n)l|5 < Cn~" form € (0,T).
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Proof. From (3), (10) and (11), we have
1(A(1) = A()we (M) |2 <[[(A(1) — A(12))A() "

2llAG) v ()|l

o
2
s o0
L <Ll —leﬂna_l/o v (0)[[A(6)T;(n%V) || mdv
5

3 <Cltn —n|"n~",

_”_ which proves the first inequality.

8 Note that from (P2) it follows that ||A(t)R(A;A(t))]| < C+1for 0 <t < T. Since 0 € p(A(g))
9 for g € [0,T], from (10) and the trigonometric inequality, it yields

10

1 IANA(S) 12 < (A1) —A(6)A(S) |l +1 <LTP+1, for0<:<T,

2 therefore, we have

e (12) IA() (R(A:A(61)) = R(2:A(22)) 2 < Ligi — 6|,

' where L = (LT? +1)(C+1)2L > 0. From Lemma 13 we get the following representation

16

. Vel (1) = V() =% | Faa(-en®) (RA (@) ~ RE@A(G)dz

18

—_

19 Noting that % is a smooth path in ¥ running from e~ to 4™ for some 6 € (0,7/2), and the

20 following relation also holds

21

s -m*e{zeC: o< |argz] < w}U{0},

EE substituting @ € (ow/2,7/2) in Lemma 2. From the analyticity of Mittag-Leffler function and the
24 resolvent in ¢, by the Cauchy integral theorem, Let § =11~ % > 0, we may shift the path of integration
25 € to €' =% U% U%; by

26 . . .

5 (13) G ={re, r>8}, o={8%, 0 <|o|<m}, G={re® r>38}.
28 Firstly, in view of (12) we get

2i

30 ‘

smi |, Eeal—nADREAG) ~ RizA(e)ds

31 4

2 <Clsi-ol” [ |Eaa(-m®)]dz].

33 Z18 A

ez This means from Remark 4 that

35 C

. Boalanllds [ —Cjaq

5 /M\ wal—an®)del < | sl

7 Note that

9& 1 oo 1 oo 1

39 —  _|dz g/ - dr+ ——dr
E [ﬁU%”g 1+‘ZTIO‘|2| | 5 1_,_‘,@917(1’2 S 1—|—|re*’91‘[0“2
il - 2

41

4 = ——dr.

42 5 14rin2 §
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By a simple calculation, due to the integral / T dz = m/2, it yields

o

2

3 oo

— E | |dz| <Cn~* dr<Cn~ %

B L etz iz <cn~ | ooar<cn

5

> 0o L 1

6 Secondly, we check the integral in 5. Since e/ (=8 )@ _ peos((m-9)/@)84n by virtue of Lemma
7 2 and Lemma 3, we see that

T [Eaa(—en®)| <C(1 4 f3ne) Feneormatn €< oplifey &
i( ) a,a n 1+ ]ona] = e 7
10

1 for z = 8e'? and 0 < || < 7 with § = 7% > 0. Hence, it follows from (12) and (14) that

‘ o | Baal-anA0R@AS)) - R@AG)z

13

e 27i Je, B
5 <Ll ol [ 1Eaa(-—<n®)/ld

6

17 <Cle — (/ +/ )Sdfp

18

19 §C|gl—gz|ﬁn*

5, We thus imply that

3m7 |, Exal = A0 (REA(G) ~REA(S)d:

27i Jw

23

<Clg1—o|"n*

2 ‘
B

24
- Consequently, we have

2 IA()we, (M) — A e, (M)]|l% < Clei — "1 !
27

8 Let us check (ii1). By Lemma 13, for 0 < n; < 1> < T, we have

29 1

o ve(m) — we(m) =5 / (13 Eaa(=n%) =0 Ea.a(=2n{))R(z:A(6))dz.

~~ Using the identity & (0% 'Eq a(~2n%)) = 1% *Eqq-1(~n%), it yields

33

a A A =g [ [0 e (e AREA()Jnds

35
% Hence, in view of the analyticity of Mittag-Liffler function, we imply that

38

37 ‘

| Eaari(n®A@REAQ)|  <C [ [Eqami(~n)dzl.
4 B ¢

i% By the similar proof that of (ii), one can check that

o | JEaami(=an®)liddl = [ |Eaa-(-m®lldz <Cn
42 ¢’ G1UGUG
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which implies that

<cn
B

| Eaa-1(=n™AG)REA())d

Therefore, we have

M2
JA(€)¥e(m) = A€ Ys (1) <C [0 = o=l
1

Let us check (iv). From (iii), it follows that

-
=[3lele|~]ofa]a|e]|r]-

1 o
velm) = we(m) =5 [ [0 Eaa i (-n*)RA(S) dndz
1

— Letn >0and 6 =n~%> 0 be fixed, by the same way in (14), we get |[Eq o—1(—2n%)| < C, for z € 6.
-~ In view of the Cauchy integral theorem and the analyticity of Mittag-Liffler functlon similarly to the
= proof of (ii), by Lemma 2, we have

14

s /rE o/l < [ arve ([T [ )
; o (Paa—1(=20 dlaet= s r(1+rm%) ' o Jn

———dz=1In2, it yields

—_

— Due to the integral

18 1 1+z)

19

) | JEaa-i(=n®)|/|z|ldz] <2Cn2-+2C(x—6).

21 This deduces that

22 M 5 1 1
23 lwe(m2) — we(m)llz <C . n*“dn=Cny" —n.
o 1

24

o= Since T;(n) is an analytic semigroup for 1 > 0, it follows that A(¢)7;(n) also is a bounded linear

2 operator fort,g €[0,7T],n € (0,T]. From (11) and Lemma 6 (iv), A(t)y:(n) € %(X) is obvious for

»» N €(0,T],t,¢ €[0,T]. The proof is completed. O
28 Lemma 17. Let (P1)-(P3) be satisfied, for eacht € [0,T], there holds on #(X)

29 '

% —/A(t)l;/,(t—'c)drz(pt(t—g)—l.

aq S

31
32 Proof. For every € > 0, since T;(7) is an analytic semigroup on X, we see that 7;(0) = 1. Hence, by
33 (3), we get that ¢,(0) = I. By Lemma 15, integrating on term %(ﬁt(r) from O to t — ¢ we have

34 —g

35 A I (T)dT = ¢y(t — ) — ¢:(0) = d(t —g) — 1.
z% On the other hand, by Lemma 15 again we have

— t—¢ t—¢

3 dep(T)dt=— [ A(t)yi(1)dr,

39 0 0

40 Which means that

il -

. - [T aow@dr =6t —c) - 1.

42 0

10 Feb 2024 08:57:32 PST
230130-Zhou Version 4 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 14

1 We thus get the desired result. O
% Lemma 18. Assume that
= ) : 1 ) ) :
0 (P4): A function &(-,s) € L' (s,T; B(X))NC((s,T); B(X)) such that the integral

3 t _

i Hﬁ(twg) ::/ Hé( ,S) é(%@”@dr,
5 s t—71
e exists on Ry fort € [s+¢€,T| with any € > 0.
% Then, there holds
— t t
o Df [yl =D& (T 9)dT = E(t5) — [ AWl - DE(E T, 1€ (5.T)
11 s s
E Proof. Let

13

o We (t,s) := /st ye(t—1)€(T,5)dT, t>5.

14

E Then we is well-defined on (s,T]. In fact, from the assumption of & and by Lemma 12, we have
16

T gl < [ sl = E @) - e+ [ Iyl DE@)pde
o <C [ galt=D)§(5.0) ~ £ 5 dT+C [ galt =) |8 a7

21 < (CHg (1,5) +ClIE(1,5) ]| ) (t —5)%,

%2 which belongs to L!'(s,T;R,). Hence, the integral thlfo‘wé exists in view of the definition of
23 Riemann-Liouville fractional integral for almost every ¢ € [s,T], (see e.g. [7, Theorem 2.1]), and

24 SJ,I*“wé itself is also an element in L' (s, T;R ;). Then, from Fubini’s theorem, we have
25

zj /Stgl—a(t—T)Wé(f,S)dT:/st/srgla(t—’r)l//v(f—v)é(v,s)dvdf
Z: :/st/vtgl—a(f—T)Wu(f—v)é(v,s)d‘rdv.

:E Lemma 15 implies
31

o thlawé(t,s):/sz(pv(t—v)é(v,s)dv,

32

PE which means that
34

N D [(weli— e nar =1 [ 0,0-0)Ew.s)av.

%1t suffices to show that
37

38 vé(t):/tq)v(t—v)é(v,s)dv, 0<s<t<T,

39
10 1s differentiable in 7. Let 2 > 0, by a direct calculation we have

: Vg(l‘—l—h)—Vg(l‘
42 A

4

iy

L ™ e h=0)E 9w+ L [ (0041 ) — (e~ v)E (w5,
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From ¢,(0) =1 and ¢y, (t +h —v)E(v,s) € L' (s,T;%(X)), from [6, Proposition 1.4.29] we have

1
2 1 rtth
B L[ el b= v)E (.Y > G 0)E(s) = E(rs). ash 0,
N t
% in L'(s,T;%(X)). Note that by using Lemma 15 again,
- 1
5 E(¢D(t+—h——v)——¢u(t——v))—+-—A(v)yﬁ(t——v), ash — 0.
7
s Therefore, by virtue of Lebesgue dominated convergence theorem, it remains to check that the inte-
5 grand term A(-)y.(t — )& (-, 5) in L' (5,1, B(X)) for t € (s,T]. We first have
i t t
. - AWt - 0)E .90 = [ A0~ )~ Ayt~ v)E (v,5)dv
N N
15 t
2 4s) - [ Aw(e - v)E(w,s)dv.
N

E The Lemma 16 (i)-(ii) imply that
15

e IA() i (1 — ) = A(V) Yo (1 = V) | 2 < C(t — ),

16
17 therefore the integral

18

19 /:(A(t)y/,(z —V)—A(V)y(t—v))E(v,s)dv, exists on [s,1].

21 In addition, by virtue of Lemma 17 we have
21

[ AW 0)E 90 = [ A0V 0)(E(.9) - ECs)dv+ [ AW V)E )

23

2 —/ Yt — ) (E(v,5) — E(t,5))dv+ (I — 9, (t — ))E(t,5).

25
-6 By the inequality [|A(V)yy (1 — v)|l% < C(t —v) ™", it follows from the assumption of & that

27

B /ZA(t)y/,(t —0)(E(v,5)— E(1,5))dv, exists on [s+£,1],

2 for any € > 0. Moreover, (I — ¢,(t —s))E(t,s) € L' (s, T;8(X)) NC((s,T]; B(X)) due to E(¢,s) €

o L'(s,T;%(X))NC((s,T); #(X)). As a consequence, we get

. d

- D [ yeli= (e )T = ve) = E(1.9)— [ A®)Woi—0)E(v,9)dv.

33 s

34 The proof is completed. 0

% Remark 19. It is notice that Lemma 18 also holds for & € L' (s, T;X)NC((s,T];X), specially if € is

%5 Hélder continuous function with type (7,K), i.e., there exists constants y € (0,1) and K > 0 such that
37

:g ||é(l‘,g)—é(f,g)||§K|t—T|Y, t,TE[S,T],

39 then, (P4) is satisfied immediately. If x € Z(47), the conclusion in Lemma 18 just needs &(-,s)x €
20 LY(s,T;X)NC((s,T); X) without condition (P4). Additionally, suppose that A(-) is a linear bounded
41 operator on B(X ) associated with & (-,s) € L' (s, T; B(X))NC((s,T); B(X)), the conclusion of Lemma
4218 holds without the condition (P4).
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1 Remark 20. The Holder continuity of & is a quite useful assumption for studying the solvability of
o problem (1). It also satisfies assumption (P4). However, we have identified several special cases
3 where the Hélder continuity does not hold assumption (P4) is still met. Specifically, operators such
4 as Ry(t,s) and R(t,s), which are defined further below, can be employed to obtain the fundamental
‘5 solutions of the problem (1) even without Holder continuity.

° Inthe sequel, we start with a formal computation that will lead us to construct the fundamental

— solution. For 0 <s <t < T, assume that operator R(z,s) satisfies (P4), set
8

5 (16) Ua(t,s) =yt —s)+W(t,s),

10 where
11

" W(t,s) = / "ot — DR(z,5)d.

12
13 From Lemma 13 and Lemma 15, we first have

~

14 d _ d [~

W DR = ) = [ GIT (= 9) 0)dv = ~AWw (e —s).
s dt dt Jo

16 On the other hand, in view of Lemma 18, we have

o Lpew (1, 5) = D¢ / Wi — T)R(t,5)dT = R(1,s) — / A(D) Wt — D)R(7, 5)d.

19
5o From the following identity A(1)Uq(t,s) = A(#) ys(t —s) +A(1)W (%, s), one finds that

21 LAYy (t,5) + A()Uq(t,5) = — A(s)ys(t —s) + R(t,5) — /ZA(I) ve(t — T)R(t,5)dT

22
23 +A(t) Wyt — ) +A()W(2,5).

# Let Ri(t,s) = —(A(t) — A(s)) W, (r — 5). We thus obtain

25

N t

26 LDEUG(t,5) +A(t)Uq(t,5) = — Ry (t,5) +R(2,5) —/ Ry (t,7)R(7,s)dT.
27 N

s According to above arguments, if Uy (2, s) is a solution of

29 LpEUy(t,5) +A(t)Uq(t,5) = 0,

30

o then the integral equation

7 t

2 (17) Ri(t,s)+ / Ri(1,7)R(%,5)d7 = R(1,5)

33 N

34 must be satisfied.

z% Remark 21. We obverse that the identity (17) formally corresponds to that in [31, pp150.(6.6)], where
— the author considered the first order non-autonomous evolution equation. However, since the operator
. Y (t — 5) in the fractional setting differs from e~ =AW i the first order evolution operator, there are
— significant differences in their properties. Inspired by the technique of [31], we construct a solution for
o R(t,s) as defined in (17). At the same time, it also proposes a reasonable explanation for constructing
o a fundamental solution Uy (t,s).

42 For this purpose, we next establish some useful properties.
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1 Lemma 22. Let (P1)-(P3) be satisfied, then the operator R (t,s) = —(A(t) —A(s) ) Ws(t —s) is linear
2 bounded on 0 < s <t < T in the following sense,
IR (t,5)]| % < C(t—s)°", for0<s<r<T.

Moreover, operator R|(t,s) is continuous in the uniform operator topology on 0 < s <t—¢e < T for
every € >0, i.e., for every 0 < B < ¥ < 1, there holds

IR1(1,5) = Ri(0.5) || < C(t = 6)P (6 )P,

forall0<s<o<t<T.

-
Slefe|v[ofa]s]e]

1 Proof. The linearity is obvious. From (3) and (11), it follows that

E A=)l <0 =9 [ avla() AT =)0 |adv < Cl—9)

14 and therefore from (11) and

15

6 1A®) = A)A) 2 IAES) Wt =)z < Cle —5)°,
17 we obtain the desired inequality

18

. IRy (1,5)l2 < |(A(1) = A())Ws(t =) .2 < C(1 —5)° !, for0O<s<r<T.

20 Clearly, the R (t,5) — Ri(0,s) is equal to
21

2 —(A@t) —A(0))ys(t —5) — (A(0) —A(s5)) (Ws(t —5) — Ws(0 —5)).

23 From (i) in Lemma 16 one has

24

25 1(A(r) = A(0)) wis(t = 9) || 2 <C(t — 0)” (6 —5) "

26 By using (P3) and (iii) in Lemma 16, we obverse that

27

28 1(A(0) = A()) (Wt = 5) = y5(0 = 5)) || <C(0 —5)° (1 — 0).

29 Additionally, by using (11), we also get that

30

31 1(A(0) = A()) (W5t —5) — Y5(0 —9)) |5 <2LC(0 —5)" .

%2 Therefore, in view of the interpolation of ¥ € (0, 1], we have

33

— » 1-9
“ o (A(0) AW (Wt —5) — wi(0—5))llw < (Clo—5)" 2t~ 0)) " (20C(c—5)"")
35

3 <C(o-5)"'(t—0)",

*”_ which implies that ||R, (7,5) — R1(0,s)|| % < C(t — 6)% (0 —s)~ 1.

s On the other hand, we have

39

40 [R(2,5) = Ri(0,5)|2 <[|Ri1(t,5)|| % +|Ri(0,5)] 2

- <c((t=5)""+(0—5)""") <20(c -5,
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for t > o. Interpolating the two estimates for ||R(¢,s) — R (0,s)||# we find

1
2 _\B/® N\ 1-B/®
B IR1(1,5) = Ri(0,5) |5 <C (1= 6)° (0 =5)7) " ((0-5)"")
e <C(t—0o)P(c—s)07P 1.
5
s The proof is completed. 0
7 We begin with solving the integral equation (17) for R(z,s). We know that R (z,s) satisfies Lemma
8 22, then (17) can be solved by successive approximation as follows:
9  Form>1land0<s <t <T,we define inductively
0 t
(1) Rui(t.5) = [ Ri(t,9Ruz.5)d7,
T N
12
— and let
3 oo
“(19) R(t.5)= Y Rult.s).
15 m=1

!° Lemma 23. Let (P1)-(P3) be satisfied, then operator R(t,s) satisfies
17

18 IR(t,5)ll5 < C(t—5)°7", 1€ (s,T].

19 It also is continuous in the uniform operator topology on B(X) forall 0 <s < o <t <T, ie., for

20 every 0 < B < <1, there holds

% IR(t,5) — R(G,5)||z < C(t — 0)P (0 —s5)PP~1,

zE Moreover, R(t,s) is a unique solution of the integral equation (17).

= Proof. By induction, we know that R,,(¢,s) is continuous in the uniform operator topology for 0 <
% S <t <Tand

2?(20) 1R (1,5) ]| < T(m®)
2E We note that the integral defining R+ (,s) is an improper integral whose existence is an immediate
30 consequence of (20). The continuity of Ry, 11 (¢,s) also follows easily from the continuity of R, (¢,s),
31 Ry(t,s) and (20).

32 The estimate (20) implies that the series (19) converges in the uniform operator topology for 0 <
33 s <t—¢&<T and every € > 0. Moreover, using the definition of Mittag-Leffler functions and Lemma
34 3, we first have Ey 9(CT(8)(t —5)?) < C fort € [5,T] and then

(l _ S)mﬁfl )

® - o (CT'(9))" mo—1 B
36 IRl < Y IRm(t,5)]| 2 < Y, Ty 8) =CI(9)Ey »(CL(9)(t—5)")
37 m=1 m=1 (m )

38 <C(t—s)°.

% Asa consequence, from (18), for 0 < s <t < T it follows that

40

_ 0 N t

a1 R(t;5)= Y Ru(t;s) =Ri(t,5)+ Y / Ri(1,7)Ron(T,5)d.

42 m=1 m=1Y"S
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1 The continuity of R,,(,s), m > 1, Lemma 22 and (20) imply that one can interchange the summation
> and integral in (21), and then R(z,s) is a solution of the integral equation (17).
Now, let R(z,s) be a solution of (17), the R(z,s) — R(0,s) is equal to

3 (e
Ri(t,s) —Ri(0,s) +/ Rl(t,r)R(r,s)dr+/ (Ri(t,T) —Ri(0,7))R(7,s)dT.
o s
By virtue of Lemma 22, for 0 < f < ¢ < 1, we get
t
SC/ (t—1)? (-5 ldt
(o2

<C(c—s)?B-1( ﬁ/ )0 Pl (r—5)Baz

o <C(o - )1”“( —o)P,

/tRl(l‘,T)R(T,S)dT

L
|23 ]e|e|~]|o]a]s]e|

—_
N

14 for0<s<o<t<T.(2)and Lemma 22 also imply that

e ‘ / *(Ri(6,7) - Ri (0, D)R(%,5)d
17 ' 7

16
o <C(t—o)P(c—s)P P

SC/G(t —o)Boc—1)? B (r—s5)0 lar

E Together with these estimates, we get the desired inequality

21 t

21 IR(t,5) = R(0,5)|| 5 <R (t,5) = R1(0,5)|| 5+ /Rl(t,T)R(T,S)dT
2 o .
0q c

= + / (Ri(t,7) —R1(0,7))R(7,s)dT

24 s P

= <C(t—0)P(c—s)0 P71

26

o, Let us finally verify the uniqueness of solution. Let R(t s) € B(X) for t > s be any other solution
28 satlsfymg (17) that may have a weak singularity at t = s. Thus, we easily verify that R(z,s) = R(z,s) —
29 oo R(t,s) satisfies

30

5 IR < [ IR D) aIRGE ) < € [ (=17 RG] s,

°2_in which ||R(t,5)||  equals to zero by a generalization Gronwall inequality [38, Theorem 1.28]. Con-
% sequently, R(z,s) is identically zero, i.e., R(f,s) = R(t,s). The proof is completed. O
34

35 Lemma 24. Let (P1)-(P3) be satisfied, then operator Uq(t,s) is linear bounded on (X ) fort € (s, T,
36 Le.,

= Ua(t5)ll < Ct—9)*", 1€ (s,T).

39 Moreover, it is continuous in the uniform operator topology on B(X) satisfying

= 1Ual(t,5) = Ua(0,5)|l2 < C(t — 0)® (0 —s)™"",

41
42 where ap = min{1 — a, o}, for all %9 = min{20— 1,9}, 0<s< o<t <T.
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1 Proof. Clearly, Uy(t,s) is a linear operator. Also, Lemma 22 and Lemma 23 show that Ug(t,s) is
> well-defined. From Lemma 12 and Lemma 23 it follows that for 7 € (s, 7]

[efe|~]ofa]s]e

—_

0

11

t
|Ua(t,5)|| 2 <[|ws(t —s) @Jr/ |z (t —7)|| 2||R(T,s)|| 2dT
t
gc@—s)“*wc/ (t—17)% (1—5)" ldr

< <C+C(T—s)19> (1 —5)%!

<C(t—s5)*1.

We next check that y; (¢ — s) is uniformly continuous for 7 € (s,T]. In fact, let0 < s < o <t < T,

o from Lemma 16 (iv) and Lemma 23, we get that

Ua(t,s) — Ua(0,5) |5 <||Ws(t — ) — Ws(0 —3)||. + /c: [z (t — T)R(7,5) || 2dT
+/SG I(wz(0 —7) =yt — 7)R(7,5)

<C|(t—5)%" = (G—s)“1|+C/t(t—r)°‘l(r—s)dldr

2dT

+C/G\(t—r)“1 (o —1)* |(r—s5)?dr.

1 Noting that (r — 7)*"! < (6 — 7)*"!, we have

22

23

24

25

26

27
28

[ le=0 — (00 (r—5) ax
= [((o-0 (=9 = [(-0 (=9 art [- 0% (w9 e

N

=B(o,9)((0 ) = (=) )k [0 o),

29 where B(-,-) is the Beta function. Hence, from the inequality

30

31

=& <(81—&)", 0<5H<Ei<o, 0<Za<l,

5 for (1—s)%"1 < (0 —5)%"!, we have

33

34

35

36

37

38

|Ua(t,5) — Uq(0,5) || <C((6 —)* ' = (t —5)* ") +2C(t — 6)% (5 —5)°!
+C((G _s)a+1971 _ (t _S)(x+1971)

<C(t—0)""%0 —5)** 2 +C(t—0)% (o —5)" ",

we thus get the desired conclusion. The proof is completed. O

39 Remark 25. The operator Uy(t,s) # Uy (t,r)Uqy(1,5), the reason is that the Mittag-Leffler function
s0 Eq.a(z) does not enjoy the semigroup property by Lemma 13, that is Eq o(t +5) # Eq.a(t)Ea.a(s) for
a1 1,s €Ry, o €(0,1), and thus y,(t —s) = W,.(t — r)Ws(r —s) is invalid, this means that Uy (t,s) has
42 not “good” properties to compared with that of the classical evolution operator.
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1 Remark 26. It is worth noticing that if A(t) degenerates to A : D(A) C X — X (independent of t),
o the infinitesimal generator of an analytic semigroup {T (t)};>0, then Uy/(t,s) degenerates to Ty (t —s),
3 which is a resolvent operator (see e.g. [41]) given by

Ta(t):t“_l/ QUM (V)T (t%0)dv, > 0.
0

Additionally, we also see that Tg(t) =t* ' Eq o(—AtY) (see e.g. [5]), where Ty (t+s) # Ty (t) Ta(s) for
% o €(0,1) and it does not possess the semigroup property, this situation is compatible for y;(t —s) #
1yt —r)ys(r—s).

11

2 Lemma 27. Let (P1)-(P3) hold and let
13

14

!
15 ng(t,s) SZ/Ua(l‘,’L')g(T,S)dT, 0<s<r<T,
N

16

17
1s Where g(-,s) satisfies the assumption (P4) with values in X, then g € 2(/) fort € (s,T] and it is a

o solution to

ofe|~[o]o]s]

2i Lo
” D' Mg(t,5) +A(1)Ng(1,5) = g(t,5).

22
o3 Proof. From the assumption of function g, by virtue of Lemma 23, it yields

24

% LDO‘/ v (t —1)g(1,5)dt =g(t,s) /A )y (t — 1)g(t,s)dt.
26
27

t
— Let G(t,s) = / R(t,7)g(7,s)dt, by Lemma 23, it is easy to check that function G(z,s) satisfies the

30 assumptlon (P4) in Lemma 18. Hence, by Fubini’s theorem we get

31
32

t t t

= iof [ Wit )g(rs)de="Df [ [ ylt— )R, Dg(r.5)dvdz
S N T

57 Lo !

- =D / y:(t —7)G(1,s)dT

36 t

o —G(t.5)~ [ ARl —DG(z.5)dz,

38

39 it means that
40

“ Lo !
w (22)  $Dn,(t,s) =g(t,s) /A Yt —1 (T,S)dT—I—G(t,S)—/A(T)Wf(t—T)G(T,S)dT.
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1 Therefore, it suffices to verify that n,(z,s) € (<) on [s+¢€,T| with any € > 0. In fact, by Lemma
2 16 and Lemma 17 it follows that

: | awwto-erste.syae

: <|| [ 20wt~ ot.0ae] | [ a0t istr) - ete0)ae

; + [ A0 w0 - vl —ogles)as

<c+ vl +c [ EEDZEE g e [ oyt e
0 <CHy(1,9) +Clig(e9)],

13 '
12 Which means that / ye(t—17)g(t,5)dt € Z(/) on [s+€,T]. Similarly, we derive that
N

15

6 /’W(t,r)g(r,s)dr € D).

% Hence, 1y € (/). It yields

o AWML(1,5) =AG) [ elo = Dg(.0)dr+AG) [ W05, 9)de
20 23) s s

21

A —A(1) / "alt — D)g(t, s)dT+ A1) / "yt — 7)G(x,5)d.

22

EE Consequently, combined (22) and (23), we have
24

5 D) AN, (0.5) =g(05)— [ ARV - Dg(ms)as

= +G(t,s)—/ZA(T)WT(I—T)G(T,s)dT
F FA®) / "ot — D)g(%,9)dT+ A1) / "welt — 1)G(x,5)de
5 —o(t,s) — / "Ri(t,7)g(t,5)d T+ Glt,5) — / "Ri(1,7)G (5, 5)dr.

32

45 Additionally, it yields

- t t T t t

2 / Ri(1,7)G(7,s)dT — / / Ri(1,7)R(7,v)g(v,s)dvdt — / / Ri(t,0)R(z,v)g(v,s)dTdv.
35 s s Js s Jv

3E Identity (17) shows that

37 t t
o / Ri(1,7)g(t,5)dT + G(t,s) — / Ri(1,7)G(7,5)d7 =0,

%9 Consequently, g is a solution to the desired equation. The proof is completed.

40

il OJ

41
4> Lemma 28. Let R(t,s) be given in (19). There holds D¥wg(-,s)x € C((s,T],X) for any x € X.
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i Proof By Lemma 18, Remark 19, ||A(t)w;(n)||# <Cn~! forn >0, ¢ € [0,T] and the continuity of
- t

2R, it just needs to prove / A(T)y(t —T)R(7,5)xdt € C([s+€,T],X) with any € > 0 and any x € X.
3 N
— Let {tn}‘:Z] suchthat s+ €& <t <t, <T andt, — t as n — oo, we need to verify that

.
Z stnA(r) e (t, — T)R(T,8)xdT — /SIA(‘L') Y (t —T)R(T,s)xdt — 0, ast, —1.

; By Lemma 18, we know that

B ‘ /l " AT (tn — TIR(T, $)xd || < Cltn —1)® + /, " A () Vi (0 — V) (R(0,5) — R{tn,5))xd0
. 0= 6y, (0 — )R 10s5)]

- <Clin =0l +€ [ =)~ (0 —5)? P vl

“ O = 1, (1 — )] (1 — )

. <Cltn— 1)+ Cle = 5)° P (1 — )P ]

7 +CII(I = @y, (ta = )] (1 = 9)° 71 50, asn— oo,

18
o where we have used Lemma 23 and ¢;(0) = I. Moveover, we note that

20 IACT) (We(ta — 7) = Wt = ) (R(T,5) = R(t,5))x]| < C(t = )P~ (2= 5)" P~ ],

s Lt integrable in a.e. [s,¢], and then from the continuity of A(7)y;(r — ) fort € (7, T], we also have

s A(T)y(t, — T)(R(T,5) —R(t,s))x = A(T)y:(t — 7)(R(7,s) — R(t,s))x as n — oo for a.e. T € [s,1]. By
on Lebesgue dominated convergence theorem, we get

ZZ (24) / AT (We(tn — ©) — et — 1)) (R(%,5) — R(t,5))xdT — 0, asn — o

2Z On the other hand, we have
28

v [ AWl =0~ vl DRs)dT = [ (AW, (0~ ) =AW Wil — 2RO, e

30

t
31 v / (K (b0, 7) — K(t,7))R(2,5)xdT = Jy + o,
N

32
55 Where K(t,7) = A(T)y:(t — 7) — A(#) ¥ (t — 7). From Lemma 17, we first have

o, tn n
. J= " At v, (s — DR(, 5)xdTd T + / At (b2 — T)R(t, 8)xd T
t 0

36

® - /0 "A) it — DR(t,s)xdT

37

3 = (@t =) = 0, (ta = 1) — @, (12 — 5) = D)R(z,5)x,

39

4o Which tends to zero as n — eo. In view of K(t,,T)x — K(t,T)x as n — oo for a.e. [s,7] and from Lemma
e 18 we get

2 1K (tn, T)x = K (1, 0)x]| < C((tn =)'+ (= 1) )lIxl| < Cr = )",
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i is L! integrable for a.e. [s,t]. Therefore, by Lebesgue dominated convergence theorem, for any x € X
2 we get

/t(K(tn, )~ K(1,7))xdT = 0, asn — oo,
which means J, — 0 as n — oo, and then
25) /SZA(T)(l//T(tn —T) — Yt — T))R(1,5)xdT — 0, asn — oo,
Together (24) and (25), we obtain the desired result. The proof is completed. O
11 Inparticular, we get the following conclusion.

2 Corollary 29. Let (P1)-(P3) hold. If & is Hélder continuous with type (y,K). There holds Dfwe (-,s)x €
® C((s,T),X) for any x € X.
14

15 In the sequel, we introduce a concept of fundamental solution.

g Definition 30. An operator-valued function Uq(t,s) € C((s,T],A(X)) is called a fundamental solu-

5 tion of equation

19 (26) D% (1) +A()x(t) =0, 0<s<t<T,

20

o

2 (i) the derivative!D*Uy(t,s) exists in B(X), and is also strongly continuous on (s, T).

o3 (ii) the range of Uy(t,s) is included in 2 (/) for 0 <s <t <T.
oa  (iil) foranyy € 9(&f), there hold

% (27 IDEUG(t,8)y+A(t)Uq(t,s)y=0, 0<s<t<T,
26

e (28) SJtl_O‘Ua (t,8)y =y, ast—s.
28

2E Theorem 31. Let (P1)-(P3) be satisfied, then there exists a fundamental solution Uy (t,s) of equation
30 (26). Moreover, for any x; € 9 (<), the problem

31
o 29 Ipex(t) +A(t)x(t) =0, I %x(s) = x4,
?E has a unique classical solution x(t) = Ug(t,s)xs, t € (s,T].

34
45 Proof. By virtue of Lemma 23, we know that R(t,s) : (s,T] — (X)) satisfies the assumption of (P4).
v Hence, we have

7 Lpe / "ol — TRz, $)dT =R(t,5) / ATt — TR(T, 5)dr.

38

%9 In particular, for t € (s,T], we have
40

41

<C(t—s)?7L.

t
sLDf‘/ v (t —1)R(7,5)d7T
R ,@

42
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In fact, from Lemma 23, it suffices to verify the estimate of integrand term.

/t (2)yelt = T)R(z,5)dx
_/ l[/T(t—T> (T N dT+/ A IIIT(I_T) l//t(l‘_ ))R(T,S)dl’
+/ () (t —7)(R(T,5) —R(t,s) dr+/ )y (t—T)R(t,s)dt
=Lh+hL+5L+1.

By virtue of (i), (ii) in Lemma 16 and Lemma 23, we have

L
[R[=[3]e]e|~]o]a]s]e]|r]-~

t
HIiHBB SC/ (l‘—T)ﬁfl(T—s)ﬂfldT < C(t—s)zﬁ*lj
N

" fori= 1,2. Lemma 23 implies that for every 0 < 8 < 9 < 1 we have
14

5 1131l gc/t(t —0)f N r—s)? P ldr < C(r—s)° .

16 5

17 Lemma 17 shows that ||I4]| 5 < C(t —s)®~'. Hence, -D* Uy (1, 5) exists in ZB(X) for t € (s, T] as follows
12 Lpouy(t,5) = —A(s)wy(t —s) +R(t,s) — /SIA(’L')IIIT(I —T)R(1,s)dT.

z% By virtue of (iii) in Lemma 16, Lemma 23 and Lemma 28, we deduce that \D%U (t,s) is strongly

>, continuous on [s+ &,7T] with any € > 0. Thus, the requirement (i) in the sense of Definition 30 is
o5 satisfied.

o, For any y € Z(<7), it follows that A(t)Uy(t,s)y = Uq(t,s)A(t)y commuted with the property
25 A)T(g)y = Ti(g)A(t)y. Since

- AWUalt, )y = AWl —s)y+AW) [ vt DR(E,5)yd

*® by repeating the above proof process, we get the requirement (ii) that the range of Uy (t,s) is included

? in 9() fort € (s,T].
% From the construction of a fundamental solution at the beginning of the this subsection, it is readily

°' seen that (27) holds. Next, for any y € Z(.<7), it suffices to prove (J;'~*Ug(t,s)y — y as t — s. In fact,

%2 Lemma 13 and Lemma 15 show that

33

34 thl_aUa(tas)y:stl_a‘VS( - )Y+le_aW(t s)y

35

o =¢s(r — / / (t—1)"%*ys(1—0)R(0,s)ydtdo
37

® —9,(t—s)y+ / 00t — 0)R(3,5)yd".

9 Furthermore, from Lemma 12 and Lemma 23, it follows that

42

o(t —O)R(0,s)ydt

. ‘ <cC / IR(o,s)ylldT < C(t —s5)?||y].-
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This shows that
JITUG(t,s)y =y, ast—s.

Thus, there exists a fundamental solution in the sense of Definition 30.

Clearly, the solution x(¢) = Ug(t,s)x; is a classical solution in the sense of Definition 10 due to
. Uq(t,s) is a fundamental solution and is uniformly continuous in Lemma 24. So it remains to prove
— the uniqueness of classical solution. Clearly, the above proofs imply that A(t)Uq(t,s) € B(X) for
everyr e (s,T]. This means that x € (/). We now introduce, for every A > 0, the Yosida ap-
o proximation of A(t) by A, (t) = AA(t)(AI +A(t))~'. Obviously, lim,_,.. A, (¢)x(t) = A(t)x(t) for
S XE€ 9 () by the density of Z(<7) in X, it also has ||R(z,A;(¢))||lz < C'/(1+z]), z € £, and

" (A2 (1) = A () (A () < L'l =5,

12

13 Where C',L' > 0 are determined by C and L which are defined as in (9) and (10), respectively. There-

;. fore, one finds that the map 7 — A, (¢) is continuous in the uniform operator topology in view of (P3)

15 and [|A, (1)|| < C'A from £ C p(A(z)). Now, let us consider the approximation problem

g (30) DF (1) + A () (1) =0, I "% (s) = xy
1g Itis readily seen that (30) has a solution x; which is given by x;, (1) = U, 4(t,s)x,, where

1
2
3
4

19
e Upa(t,s) =y st —s5) + Wy (t,s),

1
% is a fundamental solution of the first equation in problem (30) and 7 ,(z) = P / e “R(z;A,(s))dz,
) iJTr

2? 5] t
" Vo) =11 [ a0 Ga0) T (D), Wi(t.5) = [ Wislt—DIR(E. ).
0 ’ s

25
s By repeating the proofs process as in corresponding lemmas, the operators Wy ((f), W (t,s) and
> U o(t,s) enjoy the properties that of y;(z), W(t,s) and Uq(t,s), respectively.

25 Now, let wy () = x(¢) — x3(t), then it satisfies

:2;% 31) Dfwa () +An(Owa(t) = E(r), !~ *wals) =0.

31 where &) (1) = (A (t) —A(2))x(r) and &, € X. Condition (P3) shows that &, (¢) is continuous on (s, T]

s> and it is an L'-integral function, indeed, for x, € 2 (<), from Lemma 24 we have

z% 16 ()] =lIA@) (AR, A(1)) = 1)Ua(t,5)x5]| < C(r = 5)* |[x5]| o)

35 which belongs to L! (s, T;R™).
3  Furthermore, if & () = 0 for every A > 0, then by using (5) and the similar proof of Theorem 11,
37 it follows that Cauchy problem (31) has a unique solution as follows

s (32) )= g [ =0 a2

zz The generalized Gronwall inequality (see e.g. [41]) shows wy (t) = 0. Consequently, we have x(z) =
42 x (t) for all A > 0 and the uniqueness follows.
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1 If &, (r) # 0 for every A > 0, from the boundedness of & (1) and A, (¢), by using the similar proof
> of Theorem 11, we know that w; is the unique solution of Cauchy problem (31) satisfying

e w0 = [ Urale 0 (D)

% Admitting (33) satisfies problem (31) for the moment. Now, let R; ;(z,s) = (A5 (t) —Ax(s))wa (t —
= s), and Ry (¢, s) is the unique solution of variation of parameters formula

— t
° Ria(0:5)+ [ Ray (1. DR, (2,5)dT = Ry (1.9),
9 s

E where we can apply the same way as in constructing R(z,s) to build R (¢,s) and it enjoys the similar
11 properties of R(t,s) as follows

; oo
s Rimir(t:5) = [ Ri(tDR,p (€907 m> 1, and Ry(t5) = ¥ Ryn(t.9)
s m=1

15 By the formal of fundamental solution Uj, ,(t,s) and the boundedness of operator A (¢) for every
16 A >0, Lemma 18, Remark 19 and Lemma 27 show that w; (¢) is the unique solution to [D%w; (¢) +
17 Ap (D)wy (1) = &, (1). Also (J!~%wy (s) = 0 is easy to check.

8 Letus end this proof, from R(z;A4,(-)) = R(z;A(-)) as A — o0 in #(X), we get that y; (1t —s) —
19 yi(t —s) in B(X), and W) (t,5)x — W(t,5)x as A — oo for x € 2 (o). Consequently, Uy 4(t,5)x —
20 Ug(t,s)x, E4(t) — 0, as A — oo, for s+ & <7 < T with every € > 0, we have lim_,,,w; () =0
21 and then limy_,..x; (t) = x(¢) for t € (s,T]. So x(¢) is unique. Lemma 16 shows that A(-)y;(s) €
22 C((s,T];A(X)), Lemma 24 shows that Ug(t,s)x;, is strongly continuous for all # € (s, 7], and then
23 A(t)Uq(t,5)xs is also strongly continuous for ¢ € [s+¢€,T], s € [0,T] for every € > 0, which implies
24 that’D%x belongs to C((s,T],X). Thus, x is a classical solution. The proof is completed.

25 0O

26

27 4. Classical solutions to problem (1)

28
2o In this section, the classical solution of problem (1) is obtained under the properties of fundamental

30 solution and the Holder continuity assumption of f.

31 Theorem 32. Let (P1)-(P3) be satisfied. Assume that f is Hélder continuous with type (§,K). Then

32 the problem (1) has, for every xs € 2(<), a unique classical solution given by
33

3
3 X(t) = Us (£, )%+ / Ua(t,7)f()dx.
35 §

36 Proof. It follows from the pervious arguments that Uy (¢, s)x, is the unique classical solution of the
37 initial value problem !Dfx(1) +A(t)x(r) = 0, oJ;~%x(s) = x,. Put

38 t

o vi(t) = / Ualt,7)f(T)dT, 0<s<t<T.

40 ) ) . :
i It remains to check that v is the unique solution of problem

42 (34) DEX(1)+A@Dx(1) = f(t), oI} %x(s) =0.

10 Feb 2024 08:57:32 PST
230130-Zhou Version 4 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

NON-AUTONOMOUS EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 28

1 Since f is Holder continuous, from Remark 19, it yields that f satisfies (P4) with values in X, we also
> have

3 t
2 Iy < [ 1Ualt. 0 @)l d7 < =)

> which proves vs(s) = 0 and then ,J;'~%v;(s) = 0 is easy to verify. This derives from Lemma 27 that
5y + is a solution of the problem (34), and vy € 7 («7). Moreover, the uniqueness follows the classical
" arguments. From Lemma 23 and the Hélder continuity of £, as the same way in Lemma 28, one can

2 provelD*v; € C((s,T],X). Hence, by Definition 10, v/ is a unique classical solution to problem (34)

9 as well as x is a unique solution to problem (1). The proof is completed. O

10
11 Remark 33. Let us mention that if A(t) degenerates to linear unbounded operator A, we see that the

12 operator Uy (t,0) can be regarded as Ty (t) in Remark 26, and there is an analogous form of classical
13 Ssolution in the setting of autonomous fractional evolution equations given by

E x(1) :t“_lTa(t)xo—k/Oz(t— ) Ty (t — 1) f(t)dt, 1€ (0,T].

6 For more details, see [36, 41].
17

8 5. An application

19
oo Inthis section, we apply the abstract theory developed in this work to a classic parabolic type equation,

-; as an application, we concern a time dependent fractional Schrodinger type equation

22 6D x(t,z) — Ax(t,2) +m(t,2)x(t,2) = f(t,2), t >0, z€ R, (J/"%x(0,2) =0,

23
— where d > 1, the potential m is not bounded, see [29] associated with the case of o = 1. We assume

— that there is a non-negative potential W € Ll1 (R?,dz) such that m satisfies the following properties
25 oc
. (where ¢y, ¢, are positive constants)

27 aW(z) <m(t,z) <c;W(z), ae.z€R? andallze[0,T],

z% im(t,z) —m(t,2)| < caW(2)|t—1|%, a.e.zeRY, andallz,t€[0,T], © € (0,1].
5o Wenow define a sesquilinear form defined on V x V for every fixed ¢ in [0, T] by

31

d
5 a(t,u,v) :,;)/Rd 8ku-8kvdz+/Rdm(t,z)u-vdz,

33

al D(a(t,-,")) = {u e H'(RY), /Rdm(t,z)|u|2dz < oo}.

35
36 Under these arguments, the following spaces are equivalent

::% D(a(t,-,-)) =V =: {u € H'(RY), /RdW(z)]u(z)|2dz < oo}, forallz € [0,T].

39

o The space V endowed with the norm

1/2
a ._ 2 2 2
- lully := [/Rdw dzt [ Pzt [ Wi dz}
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1 is a Hilbert space and V < L?(R9) (see e.g. [29]). Additionally, a(t,-,-) is densely defined and
o satisfies the continuity condition, i.e., there exists a non-negative constant M (independent of 7) such
'3 that

la(t,u,v)| < M||u|lv||v|ly, forallu,veV, andallrel0,T].
Moreover the coercive condition holds, i.e., there exist a 6 > 0 and a real number ¥ such that
Rea(t,u,u) > 8||ul|3 — yHuHiZ(Rd), forallu €V, andallz€|0,T].

Fix v € V and consider the functional

[efe|~]o]o]s

—_

0 o(t,v) =alt,u,v), veV,tel0,T].
11
12 By the continuity condition of a(t,-,-), let us define <7 (t)u = @(¢,-), it is easy to check that <7 (¢) is a
13 continuous operator from V into V' by the following space form

" D(d (1)) := {u €V, 3ge V' sta(tuv)=(gv), We V}, o (tu=g,
15
16 where (-, ) the dualization between V and the dual space V' (i.e. (u,v) denotes the value of u at v for

17 v €V and u € V'). Therefore, it follows that A(t) := —A+m(t,-) is indeed <7 (¢) in V’. This means

18 that

19 D(A(1)={ueD((1)): & (t)ucV'}, and A(t)u= </ (t)u for u € D(A(t)).

20

o Hence, the time-varying parameter fractional Schrodinger type equation can be abstracted as the

. equation (1). On the other hand, one can see that there is a uniform constant M > 0 such that the
s sesquilinear form satisfies

24 la(t,u,v) —a(t,u,v)| < M|t —t|%||ully||v|ly, forallz,te€[0,T], u,veV.

25
o Furthermore, we find that the operator —A(r) generates an analytic semigroup in V'. Hence (P1) and

o, (P2) are valid. By [38, Theorem 1.24], the domain of .27 () coincides with V and so it is independent

og of t, then &7 (t) can commute in A(¢). In addition, by the definition of .&7(-), we have foru € V,veV

o (o (1) — o (2)) (2) ) = (7 ()7 (2) v} — (7 (£)7 (), v)
— =a(t,o (1) 'u,v) —a(t, o (t) tu,v).

31

32 Therefore, the Holder condition on the form implies that
33

34 (e (1) = () (1) uv)| <Mt =72 (2) ully vl

% <Clr—["||ullv[[v]lv.

36

37 Hence, (<7 (t) — /(1)) (t)"'u € V' for u € V. By the density of V in V’, it follows that
38

39 I(A(t) = A(2)A(T) | vy <Clt — 7|7

g We conclude that (P3) is also satisfied. Assume that f is Holder continuous with type ({,K), by
41 Theorem 32, there exists a unique classical solution. In particular, if f = 0, there exists a fundamental
42 solution of present problem by Theorem 30.
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