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Abstract

In this paper, we consider two variant types of fractional Sturm-Liouville problems (FSLP). For a

regular FSLP, we represent some elementary properties of eigenvalues and eigenfunctions. We also use

a fixed point theorem to give a sufficient condition on eigenvalues for the existence and uniqueness of

the associated eigenfunctions. Next, we consider a non-self-adjoint two-term FSLP. Employing a recent

and significant result related to the analysis of Mittag-Leffler functions, we investigate the existence and

asymptotic behaviour of the real eigenvalues for this problem.

1 Introduction

Fractional calculus is the emerging mathematical field devoted to study convoluting-type pseudo-differential

operators, specifically integrals and derivatives of any arbitrary real or complex order. The major difference

between fractional and ordinary derivatives lies in the global nature of the former and to the local nature of

the latter. Thus to get information on the fractional derivative of a function at a given point one needs to

have a knowledge of the original function on a semi-interval. The ordinary circular trigonometric functions

that occur in the classical theory are replaced by Mittag-Leffler functions. In most of the fractional Sturm-

Liouville formulations presented recently, the ordinary derivatives are replaced with fractional derivatives,

and the resulting problems are solved by using some numerical schemes [1, 2, 3]. Indeed, the basic case with

zero potential function has been dealt rarely. Of note here is the work of Klimek et al. [9, 10]. The authors
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considered the self-adjoint fractional Sturm-Liouville eigenvalue problems. They showed the existence of real

eigenvalues and the orthogonal property of eigenfunctions as in the classical case. They also derived many

general properties by using the variational principle. More recently, Mingarelli et al. [6, 7] provided exis-

tence and uniqueness results for the initial value problems associated with mixed Riemann-Liouville/Caputo

differential equations in the real domain. The authors also investigated the spectral and oscillation theory

for a class of fractional differential equations subject to specific boundary conditions.

Next, the following results are more relevant to our work. Dehghan and Mingarelli [4] considered two-

term fractional Sturm-Liouville eigenvalue problems (FSLP). The authors investigated the operator is a

composition of a left Riemann-Liouville fractional derivative with a left Caputo fractional derivative coupled

with a Dirichlet-type boundary conditions. For the fractional order 1/2 < α < 1, the authors showed

that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, and that the

number of such real eigenvalues grows without bound as α → 1−. By an analysis of the generalized Mittag-

Leffer function E2α,2(−λ), the authors also derived the existence and asymptotic distribution of the real

eigenvalues. In 2022, the authors [5] continued the study of similar issues on a non-self-adjoint fractional

three-term Sturm-Loiuville boundary value problem. Next, we also mention a work of Klimek, Odzijewicz

and Malinowska [10]. The authors considered a different form of fractional differential equations (cf. (1.1)

below). The authors presented an interesting application of fractional variational calculus, namely, using the

fact that the fractional Sturm–Liouville eigenvalue problem can be remodeled as a fractional isoperimetric

variational problem. They showed that an increasing sequence of eigenvalues and a corresponding sequence

of eigenfunctions exist, for which the fractional Sturm–Liouville equation is satisfied. Motivated by the

above results, we plan to deal with two variant types of fractional Sturm-Liouville operators as in [4, 5, 10].

Specifically, we first consider the following regular fractional Sturm-Loiuville equation

[Dc,α
b− Dc,α

a+ + q(x)]y(x) = λω(x)y(x) on (a, b), (1.1)

subject to the Dirichlet-Neumann type boundary conditions

y(a) = Dc,α
a+y(x)|x=b = 0, (1.2)

where the right and left Caputo fractional derivatives are denoted by Dc,α
b− and Dc,α

a+ , respectively. Here we

also assume q, ω ∈ C[a, b] with ω > 0. Observe that in the case α = 1 we have Dc,1
a+y = y′ and Dc,1

b−y = −y′,

hence (1.1) is consistent with the classical Sturm-Liouville equation. Here we mention a work as in [11]. The

author considered a so-called q-fractional Sturm– Liouville problem and applied a fixed point theory to give

a sufficient condition on the parameter λ to guarantee the existence and uniqueness of solutions. For the

FSLP (1.1)-(1.2), we plan to deduce the exact form of solutions (cf. Lemma 4.1) and employ a fixed point
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theory to develop the similar result as in [11] (cf. Theorem 4.3). Also, a fractional version of Wronskian

associated with this problem is defined (cf. Theorem 4.4). This part about the Wronskian also parallels the

results in [11, Section 4]. Next, we turn to consider the following non-self-adjoint FSLP

−Dα
0+D

c,α
0+ y(x) = λy(x), 1/2 < α < 1, 0 < x < 1, (1.3)

with boundary conditions

y(0) = 0 and I2−2α
0+ y(x)|x=1 = 0, (1.4)

where the left Riemann-Liouville fractional derivative and the left Riemann-Liouville fractional integral are

denoted by Dα
0+ and I2−2α

0+ , respectively. Employing a recent result in [4, 5], we have the following result

related to the existence and asymptotic behaviour of the real eigenvalues.

Theorem 1.1. The following distribution of real eigenvalues of the FSLP (1.3)-(1.4) is valid.

(i) For fixed 1/2 < α < 1, there exists N∗ ∈ N such that for each n = 0, 1, 2, 3, · · · , N∗ − 1 the interval

In(α) :=

((
(2n+ 1

2 + 1
2α )π

sin( π
2α )

)2α

,

(
(2n+ 3

2 + 1
2α )π

sin( π
2α )

)2α
)
, (1.5)

contains two real eigenvalues.

(ii) Furthermore, if the first of two real eigenvalues in In(α) is denoted by λn(α), (1.5) also gives the

a-priori estimate (
(2n+ 1

2 + 1
2α )π

sin( π
2α )

)2α

≤ λn(α) ≤
(
(2n+ 3

2 + 1
2α )π

sin( π
2α )

)2α

. (1.6)

Our plan of this paper is as follows. In Section 2, we recall some definitions and known properties of

fractional calculus and deduce the general solutions of several two-term fractional differential equations.

Then, the proof of Theorem 1.1 will be given in Section 3. Next, the issues related to the FSLP (1.1)-(1.2)

will be discussed in Section 4. Finally, we give a short section to conclude the result of this paper.

2 Preliminary and general solutions of fractional differential equa-

tions

We start with some definitions and preliminary properties of fractional calculus and refer the reader to

some known results [4, 8, 13] for the details.

Definition 2.1. Let 0 < α < 1.
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(i) The left and right Riemann-Liouville fractional integrals Iαa+ and Iαb− of order α are defined by

Iαa+f(x) :=
1

Γ(α)

∫ x

a

f(t)dt

(x− t)1−α
, x ∈ (a, b],

and

Iαb−f(x) :=
1

Γ(α)

∫ b

x

f(t)dt

(t− x)1−α
, x ∈ [a, b),

respectively. Here Γ(α) =
∫∞
0

xα−1e−xdx denotes Euler’s gamma function.

(ii) The left and right Riemann-Liouville fractional derivatives Dα
a+ and Dα

b− are defined by

Dα
a+f(x) := DI1−α

a+ f(x), x > a,

and

Dα
b−f(x) := −DI1−α

b− f(x), x < b,

respectively, where D = d
dx and f is sufficiently differentiable.

(iii) The left and right Caputo fractional derivatives Dc,α
a+ and Dc,α

b− are defined by

Dc,α
a+f(x) = Dα

a+[f(x)− f(a)] = I1−α
a+ Df(x), x > a,

and

Dc,α
b− f(x) = Dα

b−[f(x)− f(b)] = −I1−α
b− Df(x), x < b,

respectively, where f is sufficiently differentiable.

Property 2.2. Let 0 < α < 1.

(i) If f ∈ Lp(a, b), then

Dα
a+I

α
a+f(x) = f(x),

Dα
b−I

α
b−f(x) = f(x)

for almost all x ∈ [a, b].

(ii) If f ∈ L1(a, b) and I1−α
a+ f, I1−α

b− f ∈ AC[a, b]. Then,

Iαa+(D
α
a+f(x)) = f(x)− (x− a)α−1

Γ(α)
I1−α
a+ f(x)|x=a,

Iαb−(D
α
b−f(x)) = f(x)− (b− x)α−1

Γ(α)
I1−α
b− f(x)|x=b.
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(iii) If f ∈ C[a, b], then

Dc,α
a+ Iαa+f(x) = f(x),

Dc,α
b− Iαb−f(x) = f(x).

(iv) If f ∈ AC[a, b], then

Iαa+(D
c,α
a+f(x)) = f(x)− f(a),

Iαb−(D
c,α
b− f(x)) = f(x)− f(b).

Property 2.3. Let 0 < α < 1. The following identities hold:

Iαa+C =
(x− a)α

Γ(α+ 1)
C,

Iαa+(x− a)α−1 =
Γ(α)

Γ(2α)
(x− a)2α−1,

Iαa+(b− x)α−1 =
(b− x)2α−1

Γ(α)

(
B(

b− a

b− x
;α, α)−B(1;α, α)

)
,

where C is a constant and B(z;α, β) is the ”incomplete Beta function” defined by

B(z;α, β) =

∫ z

0

uα−1(1− u)β−1du.

Property 2.4. (Integration by parts) The operators Iαa+, Iαb−, Dα
a+, Dα

b−, Dc,α
a+ , and Dc,α

b− satisfy the

following:

∫ b

a

f(x)Iαa+g(x)dx =

∫ b

a

g(x)Iαb−f(x)dx,∫ b

a

f(x)Dα
a+g(x)dx =

∫ b

a

g(x)Dc,α
b− f(x)dx+ f(x)I1−α

a+ g(x)|x=b
x=a,∫ b

a

f(x)Dα
b−g(x)dx =

∫ b

a

g(x)Dc,α
a+f(x)dx− f(x)I1−α

b− g(x)|x=b
x=a.

Now, we recall the definition and some known properties for the Mittag-Leffler function. For more details,

we refer the reader to [4, 8, 13]. The function Eδ(z) defined by

Eδ(z) :=

∞∑
k=0

zk

Γ(δk + 1)
, (z ∈ C, R(δ) > 0), (2.1)
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was introduced by Mittag-Leffler [12]. And the generalized Mittag-Leffler function Eδ,θ(z) is defined by

Eδ,θ(z) :=

∞∑
k=0

zk

Γ(δk + θ)
, (z, θ ∈ C, R(δ) > 0). (2.2)

In particular, when δ = 1 and δ = 2, one has

E1(z) = ez, E2(z) = cosh(
√
z).

Two other particular cases of (2.2) are as follows:

E1,2(z) =
ez − 1

z
, E2,2(z) =

sinh(
√
z)√

z
.

Next, we quote two results related to the Laplace transform.

Property 2.5. ([4]) For R(q) > −1, then

L{tq} =
Γ(q + 1)

sq+1
and L−1{sq} =

1

tq+1Γ(q)
.

Property 2.6. ([4, 13]) For R(δ) > 0 and θ ∈ C, then

L−1{ sδ−θ

sδ + λ
} = tθ−1Eδ,θ(−λtδ).

The following two results are related to the analysis of the generalized Mittag-Leffer function. They are

crucial to the proof of Theorem 1.1.

Proposition 2.7. For β, ν > 0, the following formula for the generalized Mittag-Leffler function is valid,

1

Γ(ν)

∫ x

0

(x− t)ν−1Eα,β(λt
α)tβ−1dt = xβ+ν−1Eα,β+ν(λx

α).

Note that the above can be obtained by the fractional-order term-by-term integration of (2.2) (the

definition of Eα,β(z)) and also be found in [13, p.25].

Theorem 2.8. ([4]) The distribution of real zeros of E2α,2(−λ) has the following. Let 1/2 < α < 1 be fixed.

There exists N∗ ∈ N such that for each n = 0, 1, 2, 3, · · · , N∗ − 1 the interval

In(α) :=

((
(2n+ 1

2 + 1
2α )π

sin( π
2α )

)2α

,

(
(2n+ 3

2 + 1
2α )π

sin( π
2α )

)2α
)
, (2.3)

contains two real zeros of E2α,2(−λ).
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Before to solve the fractional differential equations, we mention a recent result. In 2020, Dehghan

and Mingarelli [4] applied the properties of fractional calculus and Laplace transform to derive the general

solutions to three two-term fractional differential equations:

Dc,α
b− Dα

a+y(x) = 0, Dα
b−D

c,α
a+y(x) = 0, Dc,α

0+Dα
0+y(x) + λy(x) = 0.

The authors also analyzed the Mittag-Leffler function to develop some properties related to real eigenvalues

of the above third problem coupled with the Dirichlet type boundary conditions. Motivated by the above, we

consider several features of differently defined fractional Sturm-Liouville operators, and deduce the general

solutions.

Type 2.1 Consider the following Riemann-Liouville fractional differential equation:

Dα
b−D

α
a+y(x) = 0. (2.4)

Applying the right and left fractional integrals on (2.4) and employing Property 2.2-2.3, one can obtain

the general solution of (2.4) as follows:

y(x) =

(
I1−α
a+ y(x)

)
|x=a

Γ(α)
(x− a)α−1

+

(
I1−α
b− Dα

a+y(x)
)
|x=b

Γ2(α)
(b− x)2α−1

(
B(

b− a

b− x
;α, α)−B(1;α, α)

)
. (2.5)

Type 2.2 Associated to (2.4) is another different composition,

Dα
a+D

c,α
a+y(x) = 0. (2.6)

Applying the similar procedure as the above, one can obtain

y(x) = y(a) +
I1−α
a+

(
Dc,α

a+y(x)
)
|x=a

Γ(α)
Iαa+(x− a)α−1

= y(a) +
I1−α
a+

(
Dc,α

a+y(x)
)
|x=a

Γ(2α)
(x− a)2α−1. (2.7)

Type 2.3 Consider the following fractional Sturm-Liouville equation:

Dc,α
b− p(x)Dα

a+y(x) = 0, (2.8)

where p is a positive and C1 function. Applying the right Riemann-Liouville fractional integral on
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(2.8), one can obtain

p(x)Dα
a+y(x)− p(b)

(
Dα

a+y(x)|x=b

)
= Iαb−(0).

i.e.,

Dα
a+y(x) = [p(b)(Dα

a+y(x)|x=b)]
1

p(x)
.

By Property 2.2, one can obtain

y(x) =
(x− a)α−1

Γ(α)
(I1−α

a+ y(x))|x=a + [p(b)(Dα
a+y(x)|x=b)]I

α
a+

(
1

p(x)

)
. (2.9)

Type 2.4 Consider

Dc,α
b− Dc,α

a+y(x) = 0. (2.10)

By the similar manipulation as in the above, one can obtain

y(x) = y(a) +
(
Dc,α

a+y(x)|x=b

)
Iαa+(1)

= y(a) +
(
Dc,α

a+y(x)|x=b

) (x− a)α

Γ(α+ 1)
. (2.11)

3 Proof of Theorem 1.1

From the known properties and some preparation in the previous section, we are ready to give the proof

of Theorem 1.1. First applying the left fractional integral on (1.3) and employing Property 2.2, one can

obtain

Dc,α
0+ y(x)− xα−1

Γ(α)
(I1−α

0+ Dc,α
0+ y(x))|x=0 = − λ

Γ(α)

∫ x

0

(x− s)α−1y(s)ds. (3.1)

Again, taking the left fractional integral on (3.1) and employing Property 2.3, one can get

y(x) = y(0) +

(
I1−α
0+ Dc,α

0+ y(x)
)
|x=0

Γ(2α)
x2α−1 − λ

Γ2(α)

∫ x

0

(x− t)α−1

(∫ t

0

(t− s)α−1y(s)ds

)
dt

= y(0) +

(
I1−α
0+ Dc,α

0+ y(x)
)
|x=0

Γ(2α)
x2α−1 − λ

Γ2(α)

∫ x

0

y(s)

(∫ x

s

(x− t)α−1(t− s)α−1dt

)
ds

= y(0) +

(
I1−α
0+ Dc,α

0+ y(x)
)
|x=0

Γ(2α)
x2α−1 − λ

Γ2(α)

∫ x

0

y(s)(x− s)2α−1B(α, α)ds

= y(0) +

(
I1−α
0+ Dc,α

0+ y(x)
)
|x=0

Γ(2α)
x2α−1 − λ

Γ(2α)

(
y(x) ∗ x2α−1

)
= c0 + c1

x2α−1

Γ(2α)
− λ

Γ(2α)

(
y(x) ∗ x2α−1

)
, (3.2)
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where c0 = y(0), c1 =
(
I1−α
0+ Dc,α

0+ y(x)
)
|x=0, the beta function B(·, ·) and ” ∗ ” denotes the convolution of the

two functions supported on [0,∞). Next, taking the Laplace transform and applying Property 2.5 on (3.2),

one can obtain

L{y(x)} =
c0
s

+
c1
s2α

− λ

Γ(2α)
L{y(x)}L{x2α−1}.

Then,

L{y(x)} =
c0s

2α−1

s2α + λ
+

c1
s2α + λ

.

Applying Property 2.6, one can obtain the general solution of (1.3) as follows:

y(x) = c0E2α,1(−λx2α) + c1x
2α−1E2α,2α(−λx2α), (3.3)

where c0 = y(0), c1 =
(
I1−α
0+ Dc,α

0+ y(x)
)
|x=0. By imposing the boundary conditions (1.4) on (3.3) with(

I1−α
0+ Dc,α

0+ y(x)
)
|x=0 ̸= 0, one can obtain

I2−2α
0+ y(x)|x=1 = c1I

2−2α
0+

(
x2α−1E2α,2α(−λx2α)

)
|x=1 = 0. (3.4)

Now employing Proposition 2.7, one can obtain

I2−2α
0+

(
x2α−1E2α,2α(−λx2α)

)
=

1

Γ(2− 2α)

∫ x

0

(x− t)(2−2α)−1t2α−1E2α,2α(−λt2α)dt

=
1

Γ(2− 2α)
xE2α,2(−λx2α). (3.5)

Hence, the right endpoint boundary condition in (1.4) implies

E2α,2(−λ) = 0, (3.6)

which defines the characteristic equation for the eigenvalues of (1.3)-(1.4). Therefore, Theorem 1.1 is valid

by Theorem 2.8.

4 The FSLP (1.1)-(1.2)

In this section we will develop some elementary properties for the FSLP (1.1)-(1.2). We first present

the general solution for this problem. By a solution of (1.1) is meant a function y ∈ AC[a, b] such that

Dc,α
a+y ∈ AC[a, b]. Set Yy(x) := (q − λω)y(x). Then, one can rewrite (1.1) as

Dc,α
b− Dc,α

a+ [y(·) + Iαa+I
α
b−Yy](x) = 0.
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From (2.11), one can obtain

y(x) + Iαa+I
α
b−Yy(x) = y(a) + [Iαa+I

α
b−Yy](a)

+Dc,α
a+

(
y(·) + Iαa+I

α
b−Yy]

)
(b)

(x− a)α

Γ(α+ 1)

= y(a) + [Iαa+I
α
b−Yy](a)

+[
(
Dc,α

a+y(x)|x=b

)
+
(
Iαb−Yy|x=b

)
]
(x− a)α

Γ(α+ 1)

= y(a) +
(
Dc,α

a+y(x)|x=b

) (x− a)α

Γ(α+ 1)
.

i.e.,

y(x) = y(a) +
(
Dc,α

a+y(x)|x=b

) (x− a)α

Γ(α+ 1)
− Iαa+I

α
b−Yy(x). (4.1)

Note that Dc,α
a+

(
(x−a)α

Γ(α+1)

)
= 1 and Dc,α

a+y(x) = Dc,α
a+y(x)|x=b − Iαb−Yy(x) by (4.1). Now we have the following.

Lemma 4.1. Let Yy(x) := (q − λω)y(x). Then the regular fractional Sturm-Liouville problem (1.1)-(1.2) is

equivalent to

y(x) = −Iαa+I
α
b−Yy(x). (4.2)

By the direct computation, one can obtain the following lemma.

Lemma 4.2. For the Riemann-Loiuville fractional integrals on [a, b], the following estimates are valid:

Iαa+(1) ≤
(b− a)α

Γ(α+ 1)
, Iαb−(1) ≤

bα

Γ(α+ 1)
, Iαa+I

α
b−(1) ≤

bα(b− a)α

Γ2(α+ 1)
.

Later, we have the result related to the existence and uniqueness of solutions.

Theorem 4.3. Let ∥ · ∥ denote the supremum norm on the space C[a, b]. Then, a unique continuous

eigenfunction yλ for (1.1)-(1.2) corresponding to each eigenvalue obeying

∥q − λω∥ <
Γ2(α+ 1)

bα(b− a)α
(4.3)

exists and such an eigenvalue is simple.

Proof. Set CDN [a, b] = {f ∈ C[a, b] : f(a) = Dc,α
a+f(x)|x=b = 0}. Let us note that a solution of (1.1)-(1.2)

can be interpreted as a fixed point of the mapping T : CDN [a, b] → CDN [a, b] defined by

Tf(x) = −Iαa+I
α
b−Yf (x).
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For a pair of arbitrary f, g ∈ CDN [a, b], we calculate the distance between images Tf and Tg. First the

inequality

∥Yf − Yg∥ ≤ ∥q − λω∥ · ∥f − g∥

holds obviously. Also, one can get

|[Iαa+Iαb−Yf ](x)− [Iαa+I
α
b−Yg](x)| ≤ ∥Yf − Yg∥ ·

(
Iαa+I

α
b−(1)

)
≤ bα(b− a)α

Γ2(α+ 1)
∥q − λω∥ · ∥f − g∥. (4.4)

Hence,

∥Tf − Tg∥ ≤
(
bα(b− a)α

Γ2(α+ 1)
∥q − λω∥

)
∥f − g∥ < ∥f − g∥

by the assumption. Thus, a unique fixed point denoted as yλ ∈ C[a, b] exists that solves (1.1) and satisfies

the boundary conditions (1.2), provided (4.3) is fulfilled. Therefore such an eigenvalue is simple.

Remark. Let 1/2 < α < 1. Consider (1.1)-(1.2) where the coefficients are defined by q ≡ 0, ω ≡ 1, and

[a, b] = [0, 1]. For λ = 0, the only solution is the trivial solution by (2.11). For 0 < λ < Γ2(α + 1) < 1, the

integral form of solutions shall be y(x) = λIα0+I
α
1−y(x). For this case, the continuous eigenfunction yλ exists

and such an eigenvalue is simple by the above result.

Next, let us define a fractional version of the Wronskian. For y1 y2 ∈ AC[a, b], the associated Wronskian

is defined by

Wα(y1, y2)(x) = y1(x)I
1−α
b−

(
Dc,α

a+y2
)
(x)− y2(x)I

1−α
b−

(
Dc,α

a+y1
)
(x). (4.5)

For this, we have the following results.

Theorem 4.4. Assume y1 and y2 are two solutions of (1.1)-(1.2). Then, the Wronskian defined as in (4.5)

satisfies

Wα(y1, y2)(a) = Wα(y1, y2)(x)

for all x ∈ [a, b].

Proof. By assumption, one can obtain

y2D
c,α
b− Dc,α

a+y1 + qy1y2 = λωy1y2,

y1D
c,α
b− Dc,α

a+y2 + qy1y2 = λωy1y2.

Then, it implies that

y1D
c,α
b− Dc,α

a+y2 − y2D
c,α
b− Dc,α

a+y1 = 0. (4.6)
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Also,

DWα(y1, y2) = Dy1I
1−α
b−

(
Dc,α

a+y2
)
− y1D

α
b−
(
Dc,α

a+y2
)
−Dy2I

1−α
b−

(
Dc,α

a+y1
)
+ y2D

α
b−
(
Dc,α

a+y1
)

= Dy1I
1−α
b−

(
Dc,α

a+y2
)
− y1D

α
b−
(
Dc,α

a+y2 −Dc,α
a+y2(b)

)
−Dy2I

1−α
b−

(
Dc,α

a+y1
)
+ y2D

α
b−
(
Dc,α

a+y1 −Dc,α
a+y1(b)

)
= Dy1I

1−α
b−

(
Dc,α

a+y2
)
− y1D

c,α
b−
(
Dc,α

a+y2
)
−Dy2I

1−α
b−

(
Dc,α

a+y1
)
+ y2D

c,α
b−
(
Dc,α

a+y1
)

= Dy1I
1−α
b−

(
Dc,α

a+y2
)
−Dy2I

1−α
b−

(
Dc,α

a+y1
)

by Definition 2.1 and (4.6). Then, for x ∈ [a, b]

∫ x

a

DWα(y1, y2)dt =

∫ x

a

Dy1I
1−α
b−

(
Dc,α

a+y2
)
dt−

∫ x

a

Dy2I
1−α
b−

(
Dc,α

a+y1
)
dt

=

∫ x

a

(
Dc,α

a+y2
)
I1−α
a+ (Dy1) dt−

∫ x

a

(
Dc,α

a+y1
)
I1−α
a+ (Dy2) dt

=

∫ x

a

(
Dc,α

a+y2
) (

Dc,α
a+y1

)
dt−

∫ x

a

(
Dc,α

a+y1
) (

Dc,α
a+y2

)
dt

= 0

by Property 2.4 and Definition 2.1. Therefore, this completes the proof.

5 Conclusions

In this article, we first consider a regular fractional Sturm-Loiuville equation (1.1) subject to the Dirichlet-

Neumann type boundary conditions (1.2). We show that the continuous eigenfunction yλ exists and such

an eigenvalue is simple if some certain condition (4.3) holds. Next, we investigate a non-self-adjoint FSLP

(1.3)-(1.4). We derive the existence and asymptotic behaviour of the real eigenvalues by using a known result

related to an analysis of Mittag-Leffler functions.
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