
AN OBSERVATION CONCERNING HIGHLY RAMIFIED
ε-FACTORS
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Abstract. In this note we prove a quantitative stability result for the ε-factors
associated to generic irreducible representations of GLn(F ) under twists by
highly ramified characters, where F is a non-archimedean local field.

1. Introduction

Let F be a non-archimedian local field equipped with a non-trivial additive
character ψ. Given a complex irreducible smooth admissible representation π of
GLn(F ) we can attach L- and ε-factors L(s, π) and ε(s, π, ψ), for s ∈ C. These
were constructed in [GJ], see also [GH], and are known to satisfy a set of nice
properties one of them being the following stability result:
Stability of Local Factors. Let π1 and π2 be two complex irreducible smooth
admissible representation π of GLn(F ) with the same central character. Then we
have

ε(s, χ⊗ π1, ψ) = ε(s, χ⊗ π2, ψ), (1)

for all sufficiently ramified quasi-characters χ : F× → C×.
A proof of this in the present context is given in [JS2]. As stated this phe-

nomenon is only the initial case of a more general notion of stability of γ-factors.
Such stability results are by now established in great generality and play a key
role in the proofs of many known instances of Langlands functoriality. We refer
to [CST,Sh] and the references within for a more detailed discussion.

An immediate caveat of the formulation given above is the vaguely defined notion
sufficiently ramified. More precisely one can formulate stability of local factors as
follows. There is a constant N = N(π1, π2) ∈ N depending on π1 and π2 such that
(1) holds for all quasi-characters χ with exponent conductor a(χ) larger than N .
This raises the immediate question of what can be said about N . The answer is
certainly well known to experts, who often point to [De]. However, to the best of

Date: 16th September 2024.
2020 Mathematics Subject Classification. Primary: 22E50, 11F70, 11L05.
Key words and phrases. Local factors, stability, Voronöı summation.
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our knowledge a clean answer is not yet well recorded in the literature. We rectify
this here:

Theorem 1.1. Let π be a complex generic irreducible smooth admissible represen-
tation π of GLn(F ) with central character ω and exponent conductor a(π). Then,
for every quasi-character χ with a(χ) ≥ a(π) we have

ε(s, χ⊗ π, ψ) = ε(s, ωχ, ψ) · ε(s, χ, ψ)n−1. (2)

Corollary 1.2. Let π1 and π2 be two complex generic irreducible smooth admissible
representations π of GLn(F ) with the same central character. Then (1) holds for
all quasi-characters χ with a(χ) ≥ max(a(π1), a(π2)).

Such quantitative stability results have applications in analytic number theory.
For example, it was observed by Duke and Iwaniec in [DI, (7)] that hyper Kloost-
erman sums can be expressed as a sum involving powers of GL1 ε-factors. To
illustrate this we will use our stability result to express certain local Bessel trans-
forms in terms of hyper Kloosterman sums. To do so let O be the ring of integers
in F , let p = ($) be its unique maximal ideal and put q = ]O/p. Further, assume
that ψ is trivial on O but non-trivial on p−1. The Bessel transform associated to
a representation π has been defined in [IT, Co2] and we denote it by Φ 7→ BπΦ.
See (16) below for the usual characterization. We have the following result:

Corollary 1.3. Let π be a complex generic irreducible smooth admissible repre-
sentation π of GLn(F ) with trivial central character and a(π) > 1. Let

Φ(x) = ψ(xz0$
−t)1O×(x),

for t ≥ a(π) and z0 ∈ O×. Then we have

[BπΦ](y0 ·$−nt) = 1O×(y0) ·
q
t
2
(n−4)(n−2)

(1− q−1)n−1

·
∑

x1,...,xn−2∈(O/pt)×
ψ

(
$−t

[
x1 + . . .+ xn−2 +

y0z
−1
0

x1 · · ·xn−2

])
.

This corollary is related to computations in [Co2, Section 4] and can be inserted
directly in the Voronöı summation formula given in [Co2, Theorem 1.1]. In par-
ticular, at places where the additive twist is highly ramified, we find (n− 1)-hyper
Kloosterman sums as expected.

The plan of this paper is the following. We start by recalling common notation
and some preliminary results in Section 2 below. The proof of Theorem 1.1 is
contained in Section 3. Classification results allow us to reduce to the case of
supercuspidal representations. The latter can be treated by combining the Jacquet-
Langlands correspondence with the theory of non-abelian Gauß sums developed
by Bushnell and Fröhlich. Finally, in Section 4 we apply Theorem 1.1 to compute
certain Bessel transforms. The main result here is Proposition 4.2, which directly
implies Corollary 1.3.
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2. Notation and preliminaries

Throughout let F be a non-archimedean local field with ring of integers O. We
denote the unique maximal ideal by p and write q for the residual characteristic
(i.e. q = ]O/p). Once and for all we fix a uniformizer $ ∈ F× and normalize the
valuation v of F by v($) = 1. The corresponding absolute value on F is given by
|x| = q−v(x). Finally, we normalize the Haar measure on F such that Vol(O) = 1.

We pick a non-trivial additive character ψ : F → S1. For a ∈ F×, we define

ψa(x) = ψ(ax) for x ∈ F.
The conductor n(ψ) of ψ is given by n(ψ) = min{n ∈ Z : ψ|pn ≡ 1}. Observe that
n(ψa) = n(ψ)− v(a).

Further, we will encounter a finite dimensional central division algebra D of
dimension n2 over F . Let OD be the maximal order in D with maximal ideal PD.
The surjective valuation is denoted by vD : D× → Z and we write kD = OD/PD. In
the multiplicative group D× we define a filtration of subgroups by setting UD(0) =
O×D and UD(m) = 1 + Pm

D .
We write Nrd(·) and Trd(·) for the reduced norm and trace respectively. The

trace is used to lift the additive character ψ on F to D by setting

ψD(x) = ψ(Trd(x)), for x ∈ D.
This character can be used in the usual way to identify D with its Pontrjagin dual

D̂.

2.1. Multiplicative characters. A (multiplicative) quasi-character is a homo-
morphism χ : F× → C×. Let X denote the set of characters ξ satisfying χ($) = 1.
These are uniquely determined by their restriction to O× and are of finite order.
Every quasi-character is of the form

x 7→ χ(x)|x|s,
for χ ∈ X and s ∈ C. Given a quasi-character χ we define the conductor exponent
a(χ) by a(χ) = 0 if χ|O× = 1 and by

a(χ) = min{a ∈ N : χ|1+pa ≡ 1}. (3)

If a(χ) = 0, we call χ unramified. In this case χ = |·|s for some s ∈ C.
Let χ be a quasi-character of F×. In this situation the local L- and ε-factors

were defined in [Ta1], see also [Ta3]. We will recall basic properties of these in
Section 2.3 below.

We will not recall the general construction of ε-factors. However, it will be
useful to record their relation to classical Gauß sums. To see this we assume that
n(ψ) = 0 and take χ ∈ X. Recall that the classical Gauß sum is defined by

τ(χ) =
∑

x∈O×/(1+pa(χ))

χ(x)ψ(x$−a(χ)) = qa(χ)
∫
O×

χ(x)ψ(x$−a(χ))dx.
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The root number W (χ) is then given by

W (χ) = χ(−1)τ(χ)q−
a(χ)
2 = τ(χ−1)q−

a(χ)
2

= ε(
1

2
, χ, ψ). (4)

Recall that for every χ ∈ X there is vχ ∈ O× such that

χ(1 + u$d
a(χ)
2
e) = ψ(uvχ$

n(ψ)−ba(χ)
2
c) (5)

for all u ∈ O. (We hide the dependence of vχ on ψ in the notation, because we
view the additive character as fixed.) With this notation at hand we can recall
the following important result, which can be seen as seed for the general stability
results:

Lemma 2.1 (Section 1 Corollary 2, [Ta2]). Let µ, χ ∈ X be characters such that
2a(µ) ≤ a(χ). Then

ε(
1

2
, µχ, ψ) = µ(vχ)ε(

1

2
, χ, ψ),

for vχ as defined in (5).

We turn towards characters of D×. If ξ is a character of D×, then we define its
conductor exponent by

aD(χ) = min{n ∈ Z≥0 : ξ|UD(n) ≡ 1}.

Note that all characters of D× have the form χ◦Nrd, where χ is a quasi-character
of F×. Thus, we will need a brief dictionary translating between properties of χ
and χ◦Nrd. First, we compare conductor exponents. These are related as follows:

aD(χ ◦ Nrd) + n− 1 = na(χ)

This is for example spelled out in [Co1, Lemma 3.3] or can be deduced from [BF,
Proposition 4.1.2]. Second, we need to lift (5) through the norm. The desired
statement is given in [BF, Proposition 4.1.3] and we record it in the form

χ(Nrd(x)) = ψD(xvχ$
n(ψ)−ba(χ)

2
c), (6)

where vχ is as in (5). Finally, we define the root number by

W (χ ◦ Nrd) = W (χ)n. (7)

This definition will be justified in Remark 2.4 below once we have introduced more
general root numbers.
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2.2. Representations and conductors. We now briefly recall some relevant
aspects of the representation theory of GLn(F ) and D×. All our representations
π will be smooth admissible and irreducible acting on some complex vector space.
See for example [BZ, GH] for an introduction to these notions in the context of
GLn(F ) and [BF, Section 2.1] for the relevant definitions over D×. An irreducible
representation comes with a central character denoted by ωπ. We always view this
as quasi-character of F×.

2.2.1. The GLn(F ) case. We continue with some more discussion on representa-
tions π of GLn(F ). For a quasi-character χ we will write χ · π = χ ⊗ π for the
twist of π by χ. The action is explicitly given by [χ · π](g) = χ(det(g)) · π(g). We
obviously have ωχ·π = ωπχ

n.
A representation π of GLn(F ) is said to be unramified (or spherical) if its re-

striction to GLn(O) contains the trivial representation. Further, we say that π is
(essentially) square integrable if there is s ∈ R such that | · |s · π is unitary and
has square integrable matrix coefficients. Similarly we call π (essentially) super-
cuspidal if, up to unramified twist, it has compactly supported matrix coefficients.
Finally, we say that π is generic, if it features a non-trivial Whittaker functional.

Finally, given a generic representation π we associate the conductor exponent
a(π) as in [JPSS,Ja]. More precisely, if

K0(n) = {k = (ki,j)1≤i,j≤n ∈ GLn(O) : (kn,j)1≤j≤n ≡ (0, . . . , 0, 1) mod pn}

denotes the Hecke congruence subgroup of K0(0) = GLn(O) as defined in [JPSS,
p.211], then we have

a(π) = min{n ∈ Z≥0 : π|K0(n) contains the trivial representation}.

This is a natural extension of (3). Note that, if π is unramified and generic, then
a(π) = 0. For later reference we recall that for essentially square integrable π we
have the useful inequality

a(ωπ) ≤ a(π)

n
. (8)

This is for example stated in [Co1, Proposition 2.4].

2.2.2. The D× case. We move on to the discussion of representations σ of D×.
Write AD(ω) for the collection of (equivalence classes of) smooth admissible irre-
ducible representations of D× with central character ω.

Given σ ∈ AD(ω) we define the conductor exponent aD(σ) to be the minima of
all non-negative integers k such that σ is trivial on UD(k).1 If aD(σ) = 0 we call
σ unramified. By [BF, Proposition 2.1.6] all unramified representations of D× are
of the form | · |sD for some s ∈ C.

1In [BF] the conductor is denoted by f(σ). It is related to the conductor exponent defined

here via the formula f(σ) = P
aD(σ)
D .
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Remark 2.2. Suppose that ω ∈ X, then our assumption ω($) = 1 ensures that ω
has finite order. As a consequence all elements in AD(ω) are finite. This is [BF,
Exercise 2.1.9].

2.3. Local factors. The local factors associated to smooth admissible irreducible
representations π of GLn(F ) or D× have been defined in [GJ]. We will take this
definition for granted and only record some important properties of the ε-factors.

We start with the case when π is a representation of GLn(F ). Here the ε-factors
have the following nice properties:

ε(s, π, ψ) = 1 if π is unramified,

ε(s, π, ψa) = ωπ(a)|a|n(s−
1
2
)ε(s, π, ψ) for a ∈ F×,

ε(s, |·|s′π, ψ) = ε(s+ s′, π, ψ) for s, s′ ∈ C and

ε(s, π, ψ)ε(1− s, π̃, ψ) = ωπ(−1).

Furthermore, there is f(π) ∈ Z≥0 such that

ε(s, |·|s′π, ψ) = q(n·n(ψ)−f(π))s
′
ε(s, π, ψ). (9)

If n = 1, then we always have f(χ) = a(χ). This remains true for n > 1 when
restricting to generic representations. Indeed, it is shown in [JPSS] that for generic
π we have a(π) = f(π).

Remark 2.3. Note that according to the properties postulated it suffices to define
ε(1

2
, π, ψ) for ψ with n(ψ) = 0. In particular, for n = 1 the identity (4) for χ ∈ X

is sufficient to completely determine all GL1 ε-factors.

We turn towards the local factors associated to representations σ ∈ AD(ω).
These were also defined in [GJ] and satisfy the same properties. In particular,
we can use (the analogous version of) (9) to define f(σ). According to [Co1,
Lemma 3.2] we have the relation

f(σ) = aD(σ) + n− 1. (10)

For representations of D× we can now generalize the root number construction
from (4). This is done as follows. Given σ ∈ AD(ω) we first associate the non-
abelian congruence Gauß sum τ(σ) as in [BF, Proposition 2.2.4]. Note that one
can show

|τ(σ)|2 = qn·aD(σ).

This naturally leads to the definition of the root number

W (σ) = (−1)n+1ω(−1)τ(σ)q−
n
2
aD(σ)

as in [BF, (2.4.8)].

Remark 2.4. If σ = χ◦Nrd for a quasi-character χ of F×, then [BF, Theorem 4.1.5]
implies

W (σ) = W (χ)n.
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This justifies the definition for characters made in (7).

Before we turn towards the relation between root numbers and ε-factors we
record the following important result, which can be thought of as a vast general-
ization of Lemma 2.1:

Lemma 2.5 (Corollary 2.5.11, [BF]). Let σ ∈ AD(ω) and let ξ be a character of
D×. Suppose that 0 < 2aD(σ) ≤ aD(ξ) and that there is c ∈ F× with

ξ(1 + x) = ψD(c · y) for x ∈ P
a(ξ)−a(σ)
D . (11)

Then we have

W (ξ ⊗ σ) = ω(cξ) ·W (ξ).

Finally, we can express the ε-factors for σ ∈ AD(ω) in terms of root numbers.
According to [BF, Theorem 3.2.11] we have

ε(s, σ, ψ) = q(s−
1
2
)[n·n(ψ)−n+1−aD(σ)]W (σ), for σ ∈ AD(ω). (12)

We are now ready to state the following key lemma:

Lemma 2.6. Let ω ∈ X and σ ∈ AD(ω) ramified. If χ be a quasi-character of F×

satisfying

na(χ)− n+ 1 ≥ 2aD(σ),

then we have

ε(
1

2
, (χ ◦ Nrd)⊗ σ, ψ) = ω(vχ) · ε(1

2
, χ, ψ)n

where vχ depends only on χ (and ψ).

Proof. Our assumption ensures that we can apply Lemma 2.5 with c = vχ$
n(ψ)−ba(χ)

2
c

for vχ ∈ O× as in (6). We obtain

ε(
1

2
, (χ ◦ Nrd)⊗ σ, ψ) = W ((χ ◦ Nrd)⊗ σ) = ω(vχ) ·W (χ ◦ Nrd).

We conclude by applying (7) and recalling (4). �

3. The main proof

We are now ready to prove Theorem 1.1. We will do so in three steps. First,
we consider supercuspidal representations. Here we will employ the Jacquet-
Langlands correspondence to reduce to the division algebra case. Second we
upgrade this to (essentially) square integrable representations using their classifi-
cation. We conclude by treating the general case of generic representation using
parabolic induction.
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3.1. The supercuspidal case. Recall that supercuspidal representations are al-
ways generic. Thus, in this section our goal is to prove the following:

Proposition 3.1. Suppose π is a supercuspidal representation of GLn(F ) with
n ≥ 2. Then we have

ε(s, χ · π, ψ) = ωπ(vχ$
a(χ)−n(ψ)) · ε(s, χ, ψ)n, (13)

for every quasi character χ : F× → C× satisfying

a(χ) ≥ 2a(π) + 1

n
− 1.

Here vχ is as in (5).

Proof. We start by making some reductions. Recall from [Co1, Proposition 2.2]

that, if a(χ) > a(π)
n

, then we have a(χ · π) = n · a(χ). Furthermore, we write

π = | · |sπ · π′

such that π′ has central character ωπ′ ∈ X. Similarly we write χ = | · |sχ · χ′ with

χ′ ∈ X. As soon as a(χ) > a(π)
n

we have

ε(s, χ · π, ψ) = qn((ψ)−a(χ))(s+sπ+sχ−
1
2
)ε(

1

2
, χ′ · π′, ψ).

On the other hand we have

ωπ(vχ$
a(χ)−n(ψ))ε(s, χ, ψ)n = ωπ′(vχ)ε(

1

2
, χ′, ψ)n · qn((ψ)−a(χ))(s+sπ+sχ−

1
2
)

We conclude that it is sufficient to prove (13) for s = 1
2
, χ ∈ X and π with central

character in X.
We will now use the Jacquet-Langlands correspondence between supercuspidal

representations of GLn(F ) and representations of D×. In our case this is essen-
tially due to Rogawski in [Ro]. However, all the properties we need are very
conveniently stated in [ABPS, Theorem 2.2]. Recall that the Jacquet-Langlands
correspondence allows us to take our supercuspidal representation π and associate
a ramified representation

JL(π) ∈ AD(ωπ).

This assignment has many nice properties. Most importantly

JL(χ · π) = (χ ◦ Nrd)⊗ JL(π)

and
ε(s, π, ψ) = ε(s, JL(π), ψ).

In particular f(π) = f(JL(π)), so that by (10) we have

aD(JL(π)) = a(π)− n+ 1.

The assumption of our theorem is set-up such that na(χ) − n + 1 ≥ 2aD(JL(π)).
An application of Lemma 2.6 with σ = JL(π) concludes the proof. �
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3.2. Square integrable representations. Essentially square integrable repre-
sentations have been classified in [Ze, Theorem 9.3] for example. They are all
generic. To state this classification we introduce the special representation St(τ, d)
as the unique irreducible submodule of the induced representation

Ind
GLn(F )
P (F ) (|·|

d−1
2 · τ ⊗ . . .⊗ |·|−

d−1
2 · τ),

where d | n, τ is an essentially supercuspidal representation of GLn
d
(F ) and P is

the parabolic subgroup associated to the partition (n
d
, . . . , n

d
) of n. We observe

that τ = St(τ, 1) is essentially supercuspidal. Furthermore, if n = 1, then τ = χ
is a quasi-character and St(τ, n) = χ · Stn is (a twist of) the usual Steinberg
representation, explaining the notation. The classification now states that any
essentially square integrable representation π is isomorphic to St(τ, d) for some
d | n and some essentially supercuspidal representation τ of GLn

d
(F ). Thus the

following result covers all essentially square integrable representations:

Proposition 3.2. Let d | n and let τ be an essentially supercuspidal representation
of GLn

d
(F ). If χ is a ramified quasi-character of F× with

a(χ) ≥ 2da(τ) + d

n
− 1,

then we have

ε(s, χ · St(τ, d), ψ) = ωSt(τ,d)(vχ$
a(χ)−n(ψ)) · ε(s, χ, ψ)n.

Proof. If d = 1, then St(τ, d) = τ is supercuspidal and the result follows from
Proposition 3.1.

Next we assume that 1 < d < n. Then we have a(St(τ, d)) = d·a(τ), ωSt(τ,d) = ωdτ
and

ε(s, χ · St(τ, d), ψ) = ε(s, St(χ · τ, d), ψ) = ε(s, χ · τ)d.

In particular, if a(χ) ≥ a(τ)+1
n/d

− 1, then Proposition 3.1 implies

ε(s, χ · St(τ, d), ψ) = [ωτ (vχ$
a(χ)−n(ψ))ε(s, χ, ψ)

n
d ]d.

This is precisely the statement we are after.
Finally, we treat the case d = n, so that τ is a quasi-character of F . The usual

reduction shows that it is sufficient to consider τ, χ ∈ X. Since we are assuming χ
to be ramified we have

ε(s, χ · St(τ, d), ψ) = ε(s, χτ, ψ)n

and our condition on the conductor reduces to 2a(τ) ≤ a(χ). We conclude by an
application of Lemma 2.1. �

Remark 3.3. Note that Proposition 3.2 also applies to the case n = 1, where it
reduces essentially to Lemma 2.1.
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3.3. The general case. By the Langlands classification, all smooth admissible
irreducible representations can be described through induced representations. Let
P (F ) be a standard parabolic subgroup associated to the partition (n1, . . . , nr) of
n and let π1, . . . , πr be essentially supercuspidal representations of GLni(F ), then
the representation

Ind
GLn(F )
P (F ) (|·|a1π1 ⊗ . . .⊗ |·|arπr)

obtained by normalized parabolic induction has a unique irreducible quotient de-
noted by J(|·|a1π1, . . . , |·|arπr) and called the Langlands quotient. It can be shown,
see [Ze, Theorem 6.1], that every smooth irreducible admissible representation of
GLn(F ) is isomorphic to J(|·|a1π1, . . . , |·|arπr) for a uniquely determined multiset
{|·|a1π1, . . . , |·|arπr}. Note that in this notation

St(τ, d) = J(|·|−
d−1
2 · τ ⊗ . . .⊗ |·|

d−1
2 · τ).

About generic representations more can be said. First we introduce so called
representations of Langlands type. These are induced representations

Ind
GLn(F )
P (F ) (|·|a1π1 ⊗ . . .⊗ |·|arπr)

as above with the condition that the representations π1, . . . , πr are irreducible uni-
tary and tempered and the exponents a1, . . . ar are real and satisfy a1 ≥ a2 ≥
. . . ≥ ar. We can specialize these induced further, to so called representations of
Whittaker type, by requiring that the representations π1, . . . , πr are quasi square
integrable. Note that representations of Whittaker type are not necessarily irre-
ducible, but it is well understood by [Ze, Theorem 9.7] when they are. The same
theorem, establishes that every generic irreducible admissible smooth represen-
tation π of GLn(F ) is isomorphic to an irreducible representation of Whittaker
type:

π ∼= Ind
GLn(F )
P (F ) (|·|a1π1 ⊗ . . .⊗ |·|arπr),

for square integrable representations π1, . . . , πr and real numbers a1 ≥ . . . ≥ ar.
The multiset {|·|a1π1, . . . , |·|arπr} is uniquely determined by π.

We are ready to prove the following central result:

Proposition 3.4. Let π = Ind
GLn(F )
P (F ) (|·|a1π1 ⊗ . . .⊗ |·|arπr) be a representation of

Whittaker type and suppose that πi = Sp(τi, di). If χ is a quasi-character of F×

with

a(χ) ≥ max
i

2d1a(τi) + di
ni

− 1,

then we have
ε(s, χ · π, ψ) = ωπ(vχ$

a(χ)−n(ψ)) · ε(s, χ, ψ)n.

Proof. We observe that

ε(s, χ · π, ψ) =
∏
i

ε(s, | · |aiχ · πi, ψ).
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Our assumption on the conductor exponent of χ ensures that we can apply Propo-
sition 3.2 for each i. Since n1 + . . .+ nr = n we have

ε(s, χ · π, ψ) =

(∏
i

ωπi(vχ$
a(χ)−n(ψ))|$a(χ)−n(ψ)|ai

)
ε(s, χ, ψ)n.

Recognizing the remaining product as the central character ωπ of π evaluated at
vχ$

a(χ)−n(ψ) completes the proof. �

Proof of Theorem 1.1. Suppose π is generic and let χ be a quasi-character of F×

with a(χ) ≥ a(π). According to our classification above we can write

π = Ind
GLn(F )
P (F ) (π1 ⊗ . . .⊗ πr),

for essentially square integrable representations πi.
First we suppose that

a(χ) ≥ 2

ni
a(πi) (14)

for all i. Then we can apply Proposition 3.2 to find

ε(s, χ · πi, ψ) = ωπi(vχ$
a(χ)−n(ψ))ε(s, χ, ψ)ni .

In particular, taking the product over all i yields

ε(s, π, ψ) = ωπ(vχ$
a(χ)−n(ψ))ε(s, χ, ψ)n = ε(s, ωπχ, ψ) · ε(s, χ, ψ)n−1.

In the last step we have applied Lemma 2.1 and (9).
It remains to consider the possibility that (14) fails for some i ∈ {1, . . . , r}.

Note that, since a(χ) ≥ a(π) ≥ a(πi) this can only happen if ni = 1. Next we
claim that this can only happen for at most one 1 ≤ i ≤ r. Indeed, suppose that
a(χ) ≤ 2a(πi) and a(χ) ≤ 2a(πj) with i 6= j. Then

a(χ) ≤ a(πi) + a(πj) ≤ a(π).

This is a contradiction. Without loss of generality we assume that n1 = 1,
a(χ) < 2a(π1) and a(χ) ≥ 2

ni
a(πi) for i = 2, . . . , r. Put ω′ =

∏r
i=2 ωπi . Using

Proposition 3.2 once again allows us to write

ε(s, χ · π, ψ) = ω′(vχ$
a(χ)−n(ψ))ε(s, χ · π1, ψ) · ε(s, χ, ψ)n−1.

If πi is ramified for at least one i ∈ {2, . . . , r}, then we claim that

2a(ω′) ≤ a(χ · π1). (15)

Indeed, if this is the case, then an application of Lemma 2.1 yields

ω′(vχ$
a(χ)−n(ψ))ε(s, χ · π1, ψ) = ε(s, ωπχ, ψ)

and we are done.
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To see (15) we argue as follows. We first observe that the assumption ensures
that a(χ) ≥ a(π) > a(π1) so that a(χ · π1) = a(χ). On the other hand, we can use
(8) to find

a(ω′) ≤ max
j=2,...,r

a(ωπj) ≤ max
j=2,...,r

a(πj)

nj
≤ a(χ)

2
.

This establishes the claim.
The slightly exceptional case when π2, . . . , πr are all unramified is easily treated

by hand. This completes the proof. �

4. An explicit Bessel transform

In this section we indicate how the stability result can be used to compute
certain Bessel transforms. We will start by summarizing the assumptions we will
make. Throughout we will let π be a complex generic irreducible admissible smooth
representation of GLn(F ) such that

max(1, a(ωπ)) < a(π).

We further assume that ωπ ∈ X and n(ψ) = 0.
Recall from [IT, Lemma 5.2] or [Co2, Propositon 3.1] that the Bessel transform
BπΦ of Φ ∈ C∞c (F×) is defined by the duality relations∫

F×
[BπΦ](y)χ(y)−1|y|s−

n−1
2 d×y

= χ(−1)n−1ε(1− s, χπ, ψ)
L(s, χ−1π̃)

L(1− s, χπ)

∫
F×

χ(x)Φ(x)|x|1−s−
n−1
2 d×x. (16)

This can be Mellin inverted and we obtain the exact formula

[BπΦ](y) =
log(q)

2π

∑
χ∈X

χ(−1)n−1χ(y)

∫ σ+i π
log(q)

σ−i π
log(q)

ε(1−s, χπ, ψ)
L(s, χ−1π̃)

L(1− s, χπ)
|y|

n−1
2
−s

·
∫
F×

Φ(x)χ(x)|x|1−s−
n−1
2 d×xds

as in [Co2, (34)]. Note that here we normalize d×x such that O× has volume 1.
We define the function

Φz(x) = ψ(zx) · 1O×(x) for z ∈ F× with v(z) ≤ −a(π). (17)

In this case the x-integral above is a simple Gauß sum which we can evaluate
using [Co2, Lemma 4.5] for example. We record the following result in spirit
of [Co2, Proposition 4.7]:
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Lemma 4.1. Let π be as above and let Φz be as in (17). Then [BπΦz](y) = 0
unless v(y) = nv(z) in which case

[BπΦz](y) = |y|
(n−1)2

2n · |z|
−1

1− q−1
∑
χ∈X,

a(χ)=−v(z)

χ((−1)n−1yz−1)ε(
1

2
, χ−1, ψ)ε(

1

2
, χ · π, ψ).

Proof. We first note that∫
F×

Φz(x)χ(x)|x|1−s−
n−1
2 d×x =

∫
O×

ψ(zx)χ(x)d×x

= δa(χ)=−v(z)
1

1− q−1
|z|−

1
2χ(z)−1ε(

1

2
, χ−1, ψ).

Here we note that our assumptions imply −v(z) ≥ a(π) ≥ 2, so that there is no
contribution from the trivial character.

Next notice that, since a(ωπ) < a(π) ≤ −v(z) = a(χ), we have a(χπ) = na(χ).
We can thus rewrite the Bessel transform of Φz as

[BπΦz](y) =
1

1− q−1
|z|−

n+1
2 |y|

n−1
2

∑
χ∈X,

a(χ)=−v(z)

χ((−1)n−1yz−1)ε(
1

2
, χ−1, ψ)ε(

1

2
, χ·π, ψ)

· log(q)

2π

∫ σ+i π
log(q)

σ−i π
log(q)

L(s, χ−1π̃)

L(1− s, χπ)
qna(χ)s|y|−sds.

Once again a(ωπ) < a(π) ensures that

L(1− s, χπ) = L(s, χ−1π̃) = 1

for all χ with a(χ) ≥ a(π). Thus we have obtained

[BπΦz](y) =
δnv(z)=v(y)
1− q−1

|z|−
n+1
2 |y|

n−1
2

∑
χ∈X,

a(χ)=−v(z)

χ((−1)n−1yz−1)ε(
1

2
, χ−1, ψ)ε(

1

2
, χ·π, ψ).

Reformulating this slightly gives the desired result. �

Finally, define the (twisted) Hyperkloosterman sum as

KLωπ ,n(y; t) =
∑

x1∈(O/pt)×
· · ·

∑
xn−1∈(Opt)×

ωπ(x1)ψ

(
$−t

[
x1 + . . .+ xn−1 +

y

x1 · · ·xn−1

])
.

Proposition 4.2. Let π be a complex generic irreducible smooth admissible rep-
resentation of GLn(F ) with max(1, a(ωπ)) < a(π). For z ∈ F× with −v(z) ≥ a(π)
and Φz as in (17) we have

[BπΦz](y) =
1

(1− q−1)n−1
|y|

(n−4)(n−1)
2n

{
KLω−1

π ,n−1(a(y, z),−v(z)) if v(y) = nv(z),

0 else
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for a(y, z) = (−1)nyz−1$−(n−1)v(z).

Proof. According to Lemma 4.1 we can assume that v(y) = nv(z). Due to the
assumption a(π) ≤ −v(z) we can apply Theorem 1.1 and obtain

[BπΦz](y) = |y|
(n−1)2

2n · |z|
−1

1− q−1
∑
χ∈X,

a(χ)=−v(z)

χ((−1)nyz−1)ε(
1

2
, χ, ψ)n−2ε(

1

2
, χωπ, ψ).

At this point we can express the ε-factors as Gauß sums as in (4). This gives

[BπΦz](y) = |y|
(n−2)(n−1)

2n · |z|
−1

1− q−1
∑
χ∈X,

a(χ)=−v(z)

χ((−z)−ny)ωπ(z)−1

∫
O×
· · ·
∫
O×

ωπ(x1)
−1χ(x1 · · ·xn−1)−1ψ(z[x1 + . . .+ xn−1])dx1 · · · dxn−1.

Using −v(z) ≥ 2 we can now relax the condition a(χ) = −v(z) to a(χ) ≤ −v(z)
without picking up any extra contribution from the trivial character. Executing
the χ-sum then yields

[BπΦz](y) = |y|
(n−2)(n−1)

2n

∫
O×
· · ·
∫
O×

x1···xn−1(−z)ny−1∈1+$−v(z)O

ωπ(zx1)
−1

· ψ(z[x1 + . . .+ xn−1])dx1 · · · dxn−1.

Here we have used that ]{χ ∈ X : a(χ) ≤ −v(z)} = |z|(1 − q−1). Writing for the
moment z = z0 ·$v(z) and y = y0$

nv(z) allows us to rewrite this as

[BπΦz](y) = |y|
(n−2)(n−1)

2n
|z|−1

1− q−1∫
O×
· · ·
∫
O×

ωπ(x1)
−1ψ

(
$v(z)

[
x1 + . . .+ xn−2 +

(−1)ny0z
−1
0

x1 · · ·xn−2

])
dx1 · · · dxn−2.

Replacing the O×-integrals by the appropriate sums gives the desired result. �

Remark 4.3. The assumptions such as a(π) > max(1, a(ωπ)) is purely of cosmetic
nature. Indeed, removing it requires some more bookkeeping. Since the general
result does not look as clean we have decided to omit the details.
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