ON S-NOETHERIAN MODULES AND S-STRONG MORI
MODULES

HYUNGTAE BAEK AND JUNG WOOK LIM

ABSTRACT. In this paper, we study some properties of S-Noetherian modules
and S-strong Mori modules. Among other things, we prove the Hilbert basis
theorem for S-Noetherian modules and S-strong Mori modules.

1. INTRODUCTION

In this paper, R always denotes a commutative ring with identity, S is a (not
necessarily saturated) multiplicative subset of R and M stands for a unitary R-
module. (For the sake of avoiding the confusion, we use D instead of R when R is
an integral domain.)

Recall that M is a Noetherian module if every submodule of M is finitely gener-
ated (or equivalently, the ascending chain condition on submodules of M holds) and
R is a Noetherian ring if R is a Noetherian R-module. In [19], Wang and McCasland
introduced new algebraic objects whose classes contain those with Noetherian prop-
erty. They defined a w-module M to be a strong Mori module (SM-module) if M
satisfies the ascending chain condition on w-submodules of M (or equivalently, each
w-submodule of M is w-finite), where w denotes the so-called w-operation on M.
(Recall that a w-module M is w-finite if there exists a finitely generated submod-
ule F of M such that M = F,.) Also, D is said to be a strong Mori domain
(SM-domain) if D is an SM-module as a D-module.

In [1], Anderson and Dumitrescu generalized the concepts of the Noetherian
rings and the Noetherian modules using multiplicative sets. Authors defined a
submodule N of M to be S-finite if there exist an s € S and a finitely generated
submodule F' of M such that Ns C F C N, while an ideal I of R is S-finite if T
is S-finite as an R-module. Also, M is S-Noetherian if every submodule of M is
S-finite, while R is an S-Noetherian ring if R is S-Noetherian as an R-module. The
readers can refer to [1, 7, 12, 13, 14, 15] for S-Noetherian rings and S-Noetherian
modules. In [11], Kim, Kim and Lim generalized the concepts of SM-domains and
SM-modules using multiplicative sets. They defined a submodule N of M to be
S-w-finite if there exist an s € S and a finitely generated submodule F' of M such
that Ns C F,, C N,, while an ideal I of D is S-w-finite if I is S-w-finite as a D-
module. Also, a w-module M is an S-strong Mori module (S-SM-module) if every
w-submodule of M is S-w-finite; and D is an S-strong Mori domain (S-SM-domain)
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2 H. BAEK AND J.W. LIM

if D is an S-SM-module over D. The readers can refer to [5, 6, 8, 11, 18, 19] for
(S-)SM-domains and (.S-)SM-modules.

Recall that R is a Noetherian ring if and only if R[X] is a Noetherian ring; and
M is Noetherian if and only if M[X] is Noetherian [4, Theorem 7.5 and Chapter
7, Exercise 10]. This is well known as Hilbert basis theorem. In [1], Anderson and
Dumitrescu proved the Hilbert basis theorem for S-Noetherian rings, which states
that if S is an anti-Archimedean subset of R, then R is an S-Noetherian ring if
and only if R[X] is an S-Noetherian ring [1, Proposition 9]. Also, Chang proved
the Hilbert basis theorem for SM-domains and SM-modules in [5, 6]; that is, D
is an SM-domain if and only if D[X] is an SM-domain [5, Theorem 2.2]; and for
w-module M, M is an SM-module over D if and only if M[X] is an SM-module over
D[X] [6, Theorem 2.5]. In [11], the authors proved the Hilbert basis theorem for
S-SM-domain, which states that if S is an anti-Archimedean subset of D, then D
is an S-SM-domain if and only if D[X] is an S-SM-domain [11, Theorem 2.8]. The
main purpose of this paper is to prove the Hilbert basis theorem for S-Noetherian
modules and S-SM-modules. To summarize, we present the following diagram.

Hilbert basis theorem - Hilbert basis theorem
for S-Noetherian rings ” | for S-Noetherian modules

Hilbert
. Hilbert basis theorem
basis

for SM-modules
theorem
Hilbert basis theorem Hilbert basis theorem
for SM-domains \ / for S-SM-modules
Hilbert basis theorem

for S-SM-domains

This paper consists of three sections including introduction. In Section 2, we
investigate some basic properties of quotient modules and S-Noetherian modules.
We define a module which has finite character and show that if M is a locally S-
Noetherian module which has finite character, then M is an S-Noetherian module
(Proposition 2.4). We also show that the Hilbert basis theorem for S-Noetherian
module when S is an anti-Archimedean subset of R, i.e., M is an S-Noetherian R-
module if and only if M[X] is an S-Noetherian R[X]-module if and only if M[X]y
is an S-Noetherian R[X]y-module (Theorem 2.6). In Section 3, we study some
properties of w-submodules and S-SM-modules. Also, we define a module which
has finite w-character and then we show that if M is an S-SM-module, then M
is a w-locally S-Noetherian module; and if M is a w-locally S-Noetherian module
which has finite w-character, then M is an S-SM-module (Proposition 3.6). Finally,
we show that the Hilbert basis theorem for S-SM-modules when S is an anti-
Archimedean subset of D, i.e., M is an S-SM-module over D if and only if M[X] is
an S-SM-module over D[X] if and only if M [X]y, is an S-SM-module over D[X]y,
if and only if M[X]y, is an S-Noetherian D[X]y,-module (Theorem 3.8).

To help readers better understanding this paper, we review some definitions
and notations related to star-operations. Let D be an integral domain with quo-
tient field K, F(D) the set of nonzero fractional ideals of D and T(D) the set of
nonzero torsion-free D-modules. For an I € F(D), set I~ ! := {a € K |al C D}.
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S-NOETHERIAN MODULES AND S-STRONG MORI MODULES 3

The mapping on F(D) defined by I ~ I, := (I"!)7! is called the v-operation,
and the mapping on F(D) defined by I — I, := (J{J,|J is a nonzero finitely
generated fractional subideal of I} is called the t-operation. An ideal I of D is
a v-ideal (respectively, t-ideal) if I, = I (respectively, I; = I). An ideal J of
D is a Glaz—Vasconcelos ideal (GV-ideal), and denoted by J € GV(D) if J is
finitely generated and J, = D. For each M € T(D), w-envelop of M is the set
My, ={r e M®K |xzJ C M for some J € GV(D)}. If there is no confusion, we
simply write w for wp. The mapping on T(D) defined by M — M, is called the
w-operation. An element M € T(D) is a w-module if M,, = M, while an ideal I of
D is a w-ideal if I is a w-module as a D-module. Let * be the t-operation or the
w-operation on D. Then a proper ideal I of D is said to be a mazximal *-ideal of D
if there does not exist a proper *-ideal which properly contains I. Let x-Max(D) be
the set of maximal *-ideals of D. Then it is easy to see that if D is not a field, then
x-Max(D) # (). The useful facts in this paper, t-Max(D) = w-Max(D) [2, Theorem
2.16] and M,, = ﬂmet-MaX(D) M, for all nonzero D-modules M [2, Theorem 4.3].
The readers can refer to [2, 10, 17] for star-operations.

2. S-NOETHERIAN MODULES

Let R be a commutative ring with identity and let S and T be multiplicative
subsets of R. Then St = {{|s € S and t € T} is a multiplicative subset of Rr.
We start this section with simple results for a submodule of quotient modules and
a quotient module of S-Noetherian modules.

Lemma 2.1. Let R be a commutative ring with identity and let S and T' be multi-
plicative subsets of R. Let M be a unitary R-module. Then the following assertions
hold.

(1) If A is an Ry-submodule of My, then A = Lt for some R-submodule L of
M.

(2) If M is an S-Noetherian R-module, then My is an St-Noetherian Rp-
module. Furthermore, if T' consists of reqular elements of R, then My is
an S-Noetherian Rr-module.

Proof. (1) Suppose that A is an Rr-submodule of My and let ¢ be any element of T'.
Note that My is an R-module and the map ¢; : M — My given by ¢;(m) = mTt is
an R-module homomorphism. Let L = ¢; *(A). Then L is an R-submodule of M.
Let £ € Ly, where £ € L and v € T. Then ¢,(¢) € A, s0 £ = 2L = (0)L € A.
Hence L7 C A. For the reverse containment, let £ € M and v € T with % c A.
Then ¢ (¢) = % = %%’ € A, so L € ;' (A) = L. This implies that £ € Ly. Hence
A C Ly, and thus A = L.

(2) Let A be an Rp-submodule of Mr. Then by (1), A = Lr for some R-
submodule L of M. Since M is an S-Noetherian R-module, there exist s € S and

l1,...,¢, € L such that
Ls CliR+ -+ /4,R.

Fix an element ¢ € T'. Note that (Ls)r = Lr$ and ({xR)r = %RT foralll1 <k <
n, so we have
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4 H. BAEK AND J.W. LIM

A2 =Lp3 = (Ls)r C (LR+ -+l R)p =% Rp+-- + %Ry C Ly = A.

Hence A is an Sp-finite Rp-submodule of Mp, which means that My is an Sp-
Noetherian Rpr-module.

Note that if T consists of regular elements of R, then R can be naturally embed-
ded in Rp. Hence we may assume that S is a multiplicative subset of Rp. Thus
the second argument holds. |

Let R be a commutative ring with identity and let P be a prime ideal of R.
Then S := R\ P is a (saturated) multiplicative subset of R. Let M be a unitary R-
module. We say that M is P-finite if M is S-finite; and M is a P-Noetherian module
if M is an S-Noetherian module. For an element r € R and an R-submodule L of
M, weset L:r={x € M|xre L}. Tt is easy to see that L : r is an R-submodule
of M containing L.

Proposition 2.2. Let R be a commutative ring with identity, m a maximal ideal
of R and M a torsion-free unitary R-module. Then the following assertions are
equivalent.

(1) M is an m-Noetherian module.

(2) My, is a Noetherian Ry -module and every nonzero finitely generated R-
submodule L of M, there exists an element s € R\ m such that Ly, N M =
L:s.

Proof. (1) = (2) Let A be a nonzero Ry,-submodule of My,. Then by Lemma 2.1(1),

A = By, for some R-submodule B of M. Since M is an m-Noetherian module, there

exist s € R\ m and by,...,b, € B such that Bs CbjR+ --- + b, R, so we obtain
Bynw = (BS)m

iR+ + bR

Bu.

Hence By, = b1 R + - -+ + b, Rw. Thus M, is a Noetherian R,-module. For the

second argument, let L be a nonzero finitely generated R-submodule of M. Since

Ly N M is an R-submodule of M, there exist w € R\ m and ¢1,...,¢ € Ly N M
such that

NN

LanNM)u CcaR+---+cnR.

For eachi =1,...,m, take an element t; € R\m such that ¢;t; € L. Let t =1 - -ty
and let s = tu. Then (@R + -+ + ¢, R)t C L. Hence we obtain

(LaNM)s C(c1R+ -+ cnR)tC L.

Thus Lo.N"M =1L :s.

(2) = (1) Let L be a nonzero R-submodule of M. Then Ly, is an Ry-submodule
of My,. Since M, is a Noetherian R;-module, Ly, = a1 Rwn + - - - + a, Ry for some
ai,-..,a, € L. Therefore by the assumption, we have

L LanM
= (mBm+ - +aRn)NM
= (mqR+---+ayR):s

N
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S-NOETHERIAN MODULES AND S-STRONG MORI MODULES 5

for some s € R\ m. Hence Ls C a1 R+ - - + a, R, which means that L is m-finite.
Thus M is an m-Noetherian module. O

Proposition 2.3. Let R be a commutative ring with identity and let M be a torsion-
free unitary R-module. Then the following conditions are equivalent.

(1) M is a Noetherian module.
(2) M is a P-Noetherian module for all P € Spec(R).
(3) M is an m-Noetherian module for all m € Max(R).

Proof. (1) = (2) = (3) These implications are obvious.

(3) = (1) Suppose that M is an m-Noetherian module for all m € Max(R) and
let L be an R-submodule of M. Then for each m € Max(R), there exist an element
S$m € R\ m and a finitely generated R-submodule Fy, of L such that Lsy, C Fy.
Let S = {sm|m € Max(R)}. Then S is not contained in any maximal ideal of R,

so there exist Sm,,...,Sm, € S such that (Sm,,...,Sm,) = R. Therefore we obtain
L = L(Smys---s5m,)
g Fm1+'.'+Fm’7l
Cc L.

Hence L = Fyy, + - -+ Fi,,. Note that Fi,, + -+ F},, is finitely generated. Thus
M is a Noetherian module. g

Let D be an integral domain, S a multiplicative subset of D and M a unitary
D-module. We define M to be locally S-Noetherian if for each maximal ideal m
of D, M, is an S-Noetherian D,-module. Let L be a D-submodule of M. Then
it is easy to see that (L : M) = {d € D|Md C L} is an ideal of D. Recall that
D has finite character if every nonzero nonunit in D belongs to only finitely many
maximal ideals of D (equivalently, each nonzero proper ideal of D is contained in
only finitely many maximal ideals of D). This concept can be generalized to the
module version as follows: M has finite character if for each nonzero element a of
M with (aD : M) # D, (aD : M) is contained in only finitely many maximal ideals
of D. It is easy to show that M has finite character if and only if for each nonzero
proper D-submodule L of M, (L : M) is contained in only finitely many maximal
ideals of D.

Proposition 2.4. Let D be an integral domain, S a multiplicative subset of D and
M a torsion-free unitary D-module. Then the following assertions hold.

(1) If M is an S-Noetherian module, then M is a locally S-Noetherian module.
(2) If M is a locally S-Noetherian module which has finite character, then M
is an S-Noetherian module.

Proof. (1) This is an immediate consequence of Lemma 2.1(2).

(2) Let A be a D-submodule of M and let a be a nonzero element of A such
that (aD : M) # D. Since M has finite character, (aD : M) is contained in only
finitely many maximal ideals of D, say my,...,m,. Since My,,..., My, are S-
Noetherian, for each i € {1,...,n}, there exist an element s; € S and a finitely
generated D-submodule F; of A such that Ap,s; € (Fj)m,. Let s = s1---s, and
let F=aD+ F) +---+ F,. Then Ay,s C Fy,, for alli =1,...,n. Let m’ be a
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6 H. BAEK AND J.W. LIM

maximal ideal of D which is distinct from my,...,m,. Then (aD : M) € w’, so
we can pick an element r € (aD : M)\ m’. Therefore 7 = ™ € (aD)y for all
m € M. This shows that (aD)yn = My, which indicates that Ay = My = Fir.

Hence Ay s C Fy, for all maximal ideals m of D. Consequently, we have

As = m An | s

meMax(D)

ﬂ Ans

meMax(D)

< () Fa

meMax(D)
= “F‘7

N

where the equalities follow from [2, Theorem 4.3]. Since F' is a finitely generated
D-submodule of A, A is S-finite. Thus M is an S-Noetherian D-module. d

The next example shows that the converse of Proposition 2.4(1) does not gener-
ally hold.

Example 2.5. Let Zy be the ring of integers modulo 2 and let R = HiGN L.

(1) Note that Zo x {0} x {0} x -+ C Zo X Zy x {0} x {0} x --- C --- is a strict
ascending chain of ideals of R, so R is not a Noetherian ring.

(2) Note that Max(R) = {[[;cy A: |for each j € N, A; = {0} and A; = Z; for
all i # j}, so for all M € Max(R), Ry has only two elements. Hence R is a locally
Noetherian ring.

Let R be a commutative ring with identity and let M be a unitary R-module.
For an element f € M[X], the content module c¢(f) of f is defined to be the R-
submodule of M generated by the coefficients of f. In particular, if M = R, then
c(f) is called the content ideal of R. Let N = {f € R[X]|c(f) = R}. Then N
is a (saturated) regular multiplicative subset of R[X] [16, page 17] (or [3, page
559]). The quotient module M|[X]y of M[X] by N is usually called the Nagata
module of M. Recall that a multiplicative subset S of R is anti-Archimedean if
Ny>1 8" RN S # 0. Now, we give the main result in this section which involves the
Hilbert basis theorem and the Nagata module extension for S-Noetherian modules.

Theorem 2.6. Let R be a commutative ring with identity, S an anti- Archimedean
subset of R and M a unitary R-module. Then the following statements are equiva-
lent.

(1) M is an S-Noetherian R-module.
(2) M[X] is an S-Noetherian R[X]-module.
(3) M[X]n is an S-Noetherian R[X]y-module.

Proof. (1) = (2) Let A be an R[X]-submodule of M[X]. For each k > 0, let By
be the set consisting of zero and the leading coefficients of the polynomials in A
of degree less than or equal to k and let B = (J,~, Br. Then each By and B are
R-submodules of M such that By, C By for all k > 0. Since M is an S-Noetherian
R-module, there exist t € S and by,...,b, € B such that Bt C byR+ --- + b, R.
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S-NOETHERIAN MODULES AND S-STRONG MORI MODULES 7

Take an integer d so that by,...,b, € Byg. Then Bt CbjR+---+b,R C By. Again,
since M is an S-Noetherian R-module, for each j € {0,...,d}, there exist s; € S
and bj1, ..., bk, € Bj such that Bjs; C bj1 R+ --+bji, R. Let s = s9---s4f. Then
we obtain

BsCbR+---+b,RC By
and for all j € {0,...,d},

BjS g ble + -+ bjij.
For each j € {0,...,d} and £ € {1,...,k;}, let f;; = bju X7+ (lower terms) € A.

Now, we claim that Au C > ;04> <j<, fiyR[X] for some u € S. Let f =

aX™+(lower terms) € A. First, we suppose that m > d + 1. Then a € B, so
as € By, which implies that as®> € by R+ --- + bar,R. Therefore as® = by +
<o+ + bk, Tk, for some ri,...,rp, € R. Let a = fs? — z;gil faereX™~ <. Then
a € A with deg(a) < m — 1. By repeating this process, we have ¢; € N and

g1,- - gk, € R[X] such that 8 := fs® — Y%, fage € A and deg(5) < d. Since

the leading coefficient of  belongs to Baeg(gy, there exist 77, ... ,r;deg(m € R such

that v := Bs — Z];ief(ﬁ) faeg(pyery € A and deg(y) < deg(B) — 1. If we still have
~v # 0, then we repeat the same process. After finitely many steps, we obtain

fs% €3 0cicad <<k JiiRIX]

for some ¢ € N. Second, we suppose that m < d. Then a similar argument as in
the previous case shows that

[s% € X o<icadoa<j<k, Jii RIX]

for some g3 € N. Since S is an anti-Archimedean subset of R, there exists an
element u € [),,~; s"RN.S, so we have

Jué€ Zogigd Zlgjgk,; fi RIX].

Since f was arbitrarily chosen in A, we obtain

Au C 3 o<icq 2a<j<n, Jii RIX].

Hence A is an S-finite R[X]-submodule of M[X]. Thus M[X] is an S-Noetherian
R[X]-module.

(2) = (3) This implication follows directly from Lemma 2.1(2).

(3) = (1) Let A be an R-submodule of M. Then A[X]y is an R[X]y-submodule
of M[X]n. Since M[X]y is an S-Noetherian R[X]y-module, there exist s € S,
fiyooo, fn € A[X] and ¢1,...,9, € N such that

AX]ns € LRIXy + -+ + L2R[X]N.

Let a € A. Then we can find hy,...,h, € R[X] and ay,...,a, € N such that

—fihn 4 fnha =TI .y P . ahy
as = ot + Jrgn%.Letoz—l—[i:lgzalandforeachzf1,...,11,letﬁzfgmi.

Then as = M, so we have

asoe = fifi 4+ fufBn
€ (c(fr) + - +cfn))[X].
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8 H. BAEK AND J.W. LIM

Since @« € N, as € ¢(f1) + - + c(fn). Therefore As C c(f1) + -+ + c(fn). Note
that ¢(f1) + -+ + ¢(fn) is a finitely generated R-submodule of A. Hence A is an
S-finite R-submodule of M. Thus M is an S-Noetherian R-module. (]

3. S-STRONG MORI MODULES
We start this section with some observations for S-w-finite modules.

Remark 3.1. Let D be an integral domain, S a multiplicative subset of D and M
a torsion-free w-module as a D-module.

(1) Let L be a nonzero D-submodule of M. Then L,, is a w-submodule of M. If
L., is S-w-finite, then there exist an element s € S and a w-finite type submodule
F of L,, such that L,s C F, so Ls C F. Conversely, if there exist an element s € S
and a w-finite type submodule F' of L,, such that Ls C F, then L,,s C F. Hence
we may extend the concept of S-w-finite modules to any nonzero submodule of a
w-module as follows: A nonzero submodule L of M is S-w-finite if there exist an
element s € S and a w-finite type submodule F' of L,, such that Ls C F.

(2) By (1), M is an S-SM-module if and only if every nonzero submodule of M
is S-w-finite.

(3) Suppose that L is an S-w-finite submodule of M. Then we can find s € S
and aq,...,a, € Ly, such that Ls C (a1 D + -+ a, D), so for each i =1,...,n,
there exists an element J; € GV(D) such that a;J; € L. Let J = Jy---J,.
Then J € GV(D) [19, Lemma 1.1] (or [9, Lemma 2.3(3)]) and a;J C L for all
1€ {l,...,n}, so we obtain

(amiD+---+ayD)y = (a1D+---+ap,D)J)y
= (a4 +ap)w,

where the first equality follows from [19, Proposition 2.7]. Hence Ls C (a1J +---+
anJ)w. Note that for all ¢ € {1,...,n}, a;J is a finitely generated submodule of
L. Thus we may assume that ai,...,a, € L by replacing a1D + --- + a, D by
a1J+---+anJ.

Lemma 3.2. Let D be an integral domain and let S be a multiplicative subset
of D. Let M be a torsion-free D-module, w the w-operation on M and w the w-
operation on Mg as a Dg-module. Suppose that M is a w-module. If L is a nonzero
D-submodule of M, then the following assertions hold.

(1) If L is a w-submodule of M, then Lg N M is a w-submodule of M.
(2) If Ls is a w-submodule of Mg, then Lg N M is a w-submodule of M.
(3) (Lw)s € (Ls)w and ((Lw)s)w = (Ls)w.

Proof. (1) Let x € (Ls N M),,. Then zJ C Lg N M for some J € GV(D). Since J
is finitely generated, xsJ C L for some s € S, so xs € L,, = L. Also, z € M,, = M.
Hence x € Lg N M. Thus Lg N M is a w-submodule of M.

(2) Let x € (LsNM)y. Then xJ C LgNM for some J € GV(D),soxJDg C Lg.
Note that JDg € GV(Dg) (cf. [10, Lemma 3.4(1)]), so x € (Lg)w = Lg. Also,
x € M, =M. Hence x € LgN M. Thus Lg N M is a w-submodule of M.

(3) Let # € (Ly)s. Then xs € L, for some s € S, so there exists an element
J € GV(D) such that xsJ C L. Since xJDg C Lg and JDg € GV(Dg), z € (Lg)w-
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S-NOETHERIAN MODULES AND S-STRONG MORI MODULES 9

Hence (Ly)s C (Ls)w- Also, by the previous inclusion, ((Ly)s)w C ((Ls)w)w =
(Ls)w Thus ((Lw)s)w = (Ls)w- O

Let D be an integral domain and let P be a prime ideal of D. Then S := D\ P
is a (saturated) multiplicative subset of D. Let M be a w-module and let L be a
nonzero submodule of M. We say that L is P-w-finite if L is S-w-finite; and M is
a P-strong Mori module (P-SM-module) if M is an S-SM-module.

Proposition 3.3. Let D be an integral domain, m a mazximal w-ideal of D and M a
torsion-free w-module as a D-module. Then the following assertions are equivalent.

(1) M is an m-SM-module.

(2) My, is a Noetherian Dy,-module and for every nonzero finitely generated D-
submodule L of M, there exists an element s € D\m such that (Ly)mNM =
Ly :s.

Proof. (1) = (2) Let A be a nonzero Dy-submodule of My. Then by Lemma
2.1(1), A = By, for some D-submodule B of M. Since M is an m-SM-module,
there exist s € D\ m and by,...,b, € B such that Bs C (4D +---+ b, D)., so we
obtain

B, = (Bs)m

(1D + -+ 4+ b0,D)y)m
b1D + -+ + by Dy
B,

N

N

where the second equality comes from [19, Remark before Proposition 4.6] (or
[2, Theorem 4.3]) since t-Max(D) = w-Max(D) [2, Theorem 2.16]. Hence By =
b1Dwm + -+ + by, Dy. Therefore My, is a Noetherian Dy-module. For the remaining
argument, let L be a nonzero finitely generated D-submodule of M. Then (L )m N
M is a w-submodule of M by Lemma 3.2(1), so there exist t € D\mand ¢y, ..., ¢y €
(Ly)m N M such that

((Lw)mﬂM)tg (ch_|_...+cmD)w
and c1t1,...,Cmtm € Ly for some tq,...,t, € D\ m. Let t/ = t;---t,. Then
(1D + -+ D)yt C Ly,. Therefore
((Lu)m N M)t C (1D + -+ + e D)t’ C Ly,

This fact implies that (Ly)m N M = Ly, : s, where s = tt'.
(2) = (1) Let L be a nonzero D-submodule of M. Then Ly, is a Dy-submodule
of M, so Ly =a1Dy + -+ -+ a, Dy for some aq,...,a, € L. Hence
L C LanM

= (a1Dm+ -+ apnDn)NM

= ((am D+ -+anD)y)m "M

= (amD+---+apD)y:s
for some s € D \ m, where the third equality comes from [19, Remark before

Proposition 4.6], which means that Ls C (a1 D+---+apD)y. Thus L is m-w-finite.
Consequently, M is an m-SM-module. (]
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10 H. BAEK AND J.W. LIM

Proposition 3.4. Let D be an integral domain and let M be a torsion-free w-
module as a D-module. Then the following conditions are equivalent.

(1) M is an SM-module.
(2) M is a P-SM-module for all P € w-Spec(D).
(3) M is an m-SM-module for all m € w-Max(D).

Proof. (1) = (2) = (3) These implications are obvious.

(3) = (1) Suppose that M is an m-SM-module for all m € w-Max(D) and let
L be a w-submodule of M. Then for each m € w-Max(D), there exist an element
sm € D\ m and a finitely generated D-submodule Fy, of L such that Lsy, C (Fp)w.
Let S = {sm|m € w-Max(D)}. Then S is not contained in any maximal w-ideal

of D, so there exist Sm,,...,Sm, € S such that (Smy,...,8m,)w = D. Hence we
obtain
L = (L(Smys---»Sm,)w)w
= (L(Smys---»Sm,))w
g (leJF"'JFan)w
C L.
Thus L = (Fi, + -+ + Fm, )w. Consequently, M is an SM-module. O

Recall that an integral domain D has finite w-character if for each nonzero
nonunit in D belongs to only finitely many maximal w-ideals of D, or equivalently,
for each nonzero proper ideal of D is contained in only finitely many maximal w-
ideals of D. Generalizing this, a finite w-character can be defined in the module
as follows: A D-module M has finite w-character if for each nonzero element a of
M with (aD : M) # D, (aD : M) is contained in only finitely many maximal w-
ideals of D. It is easy to show that M has finite w-character if and only if for each
nonzero proper D-submodule L of M, (L : M) is contained in only finitely many
maximal w-ideals of D. Also, it is easy to show that every commutative ring with
identity which has finite w-character has finite w-character as module. Recall that
a D-module M is a w-locally S-Noetherian D-module if for each maximal w-ideal
m, My, is an S-Noetherian D,-module.

Proposition 3.5. Let D be an integral domain, S a multiplicative subset of D and
M a torsion-free w-module as a D-module. Then the following assertions hold.
(1) If M is an S-SM-module, then M is a w-locally S-Noetherian module.
(2) If M is a w-locally S-Noetherian module which has finite w-character, then
M is an S-SM-module.

Proof. (1) Let m be a maximal w-ideal of D and let A be a Dy,-submodule of My,.
Then by Lemma 2.1(1), A = By, for some D-submodule B of M, so there exist
s€ Sandby,..., b, € Bsuchthat A’s C (byD+ -+ -+ b,D),. Therefore we obtain

AS = BmS Q ((le + -+ an)w)m = lem + -+ anm,

where the last equality comes from [19, Remark before Proposition 4.6]. Hence
A is S-finite. Thus My, is an S-Noetherian Dy,-module for each m € w-Max(D).
Consequently, M is a w-locally S-Noetherian module.
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(2) Suppose that M is a w-locally S-Noetherian module which has finite w-
character and let A be a D-submodule of M. Let a be a nonzero element of A such
that (aD : M) # D. Then (aD : M) is contained in only finitely many maximal
w-ideals of D, say my,..., m,,. Since for each i = 1,...,m, My, is S-Noetherian,
we obtain that there exist s; € S and a finitely generated D-submodule F; of
A such that Am,s; C (Fi)m,- Let s = s1---8,, and F = aD + Fy + -+ + F,.
Then Ay,s C Fy, forall e =1,...,m. Let m’ # m,; for all ¢ = 1,...,m. Then
(aD : M) ¢ w'. Hence there exists € (aD : M) such that ¢ m’; that is,
for all m € M, mz € aD, but x ¢ m’. Hence F = 2% € (aD)n . Therefore
(aD)w = My; that is, Fyyy = My, This fact implies that Ans C Fy, for each
m € w-Max(D), so we have

Ays = ( m Am)s

mew-Max(D)
- ﬂ Ans
mew-Max(D)
C N Fa
mew-Max(D)
= Fu)a

where the equalities follow from [17, Theorem 7.3.6]. Since F' is finitely generated
and F' C A, A is S-w-finite type. Thus M is an S-SM-module. O

Let D be an integral domain and let M be a w-module as a D-module. We say
that M is a DW-module if every nonzero D-submodule of M is a w-module. Let
N, = {f € D[X]|c(f)» = D}. Then N, is a (saturated) multiplicative subset of
D[X] [10, Proposition 2.1]; and the quotient module M[X]y, of M[X] by N, is
called the t-Nagata module of M.

Lemma 3.6. Let D be an integral domain and let M be a nonzero D-module. Then
MI[X]n, is a DW-module.

Proof. Suppose that A is a D[X]y,-submodule of M[X]y,. Let f € A,. Then
fJ € A for some J € GV(D[X]n,). Note that GV(D[X]n,) = {D[X]n,} [17,

Theorems 6.3.12 and 6.6.18], so J = D[X]n,. Hence f € A, which indicates that
A, = A. Thus M[X]y, is a DW-module. O

v

Lemma 3.7. (cf. [17, Proposition 6.6.13]) Let D be an integral domain and let M
be a torsion-free D-module. Denote that M [X|w is the w-envelop of a D[ X]-module
MI[X]. Then the following assertions hold.

(1) My[X] = (M[X])w.

(2) If M is a w-module, then M[X] is a w-D[X]-module.

Proof. (1) Let f := ag + a1 X + -+ + ap, X" € M,[X]. Then a; € M, for all
0 < i < mn, so for each 0 < i < n, there exists an element J; € GV(D) such
that a;J; € M. Let J = Jy---J,. Then a;J C M for all 0 < ¢ < n. Hence
(aoD[X]++ - -+a,D[X])JD[X] C M[X]. Since JD[X] € GV(D[X]), agD[X]+ -+
a, D[X] C (M[X])w. It follows that f € (M[X])w. For the reverse containment,
let f € (M[X])w. Then there exists J := (f1,..., fn) € GV(D) such that fJ C
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MX]. Note that for each 1 < i < n, there exists a positive integer m such that
c(fe(fi)m™t = e(ffi)e(f;)™ [17, Theorem 1.7.16]. Hence there exists a positive
integer k such that c(f)c(f;)*T! = c(ffi)e(fi)F for all 1 < i < n. Therefore

(Nl + -+ el fu) ) = e(ff)e(f)" + -+ e(f fa)e(f)* € M.

Since c(f1)* Tt + - + c(fn)*t € GV(D), ¢(f) € M. Thus f € M,[X]. Conse-
quently, M, [X] = (M[X ).
(2) This is an immediate consequence of the previous result. O

Now, we are ready to prove the Hilbert basis theorem and the ¢-Nagata module
extension for S-SM-modules.

Theorem 3.8. Let D be an integral domain, S an anti-Archimedean subset of D,
N, = {f € D[X]|c(f)y = D} and M a torsion-free w-module as a D-module.
Then the following statements are equivalent.

(1) M is an S-SM-module.

(2) M[X] is an S-SM-module.

(3) M[X]n, is an S-SM-module.

(4) M[X]n, is an S-Noetherian module.

Proof. (1) = (2) First, note that M[X] is a W-module by Lemma 3.7(2). Let A
be a w-submodule of M[X] and let B be the set consisting of zero and the leading
coefficients of the polynomials in A. Then B is a D-submodule of M. Since M is
an S-SM-module, B is S-w-finite, so there exist s € S and b4, ..., b,, € B such that
Bs C (byD+---+byD)y. Foreachi € {1,...,m}, write f; = b;X™ + (lower terms)
€ A. Let n = max{ny,...,n,}and let C = fiD[X]+-- -+ f,, D[X]. Let f = aX*+
(lower terms) € A. Thena € B, so as € (byD+---+b,,D),,. Therefore there exists
an element J € GV(D) such that asJ C by D+ - -+b,, D. Let J = (dy,...,d;). Then
for each j € {1,...,t}, asd; = >_i" | b;rj; for some rj1,...,7jm € D. If k > n, then
foreach j € {1,...,t},let g; = fsd;—> i~ fir;iX* ™. Thenforall j € {1,...,t},
g; € A with deg(g;) < k. If we still have some j € {1,...,t} such that deg(g;) > n,
then we repeat the same process. Let b be the leading coefficient of g;. Then b € B,
so bsJ1 C byD+---+b,, D for some J; := (d},...,d,,) € GV(D). Hence for each £ €
{1,..., '}, bsdy = 377" biryy. Let g = gjsdy— 70" fir); X dee(9:)=n:  Then g; € A,
deg(g;) < deg(g;) and g} = (fsd; — Y1 firy XE7m)sdy — S0 forp X deslo)=ne,
After finitely many steps, we get J' € GV(D) and an integer ¢ > 1 such that
fs1J' C (ANL)+C, where L = M&M X @---®dM X"~ 1. Since L is an S-SM-module
[11, Lemma 2.7(2)], (ANL),, is S-w-finite, so there exist t € S and hy, ..., hs € ANL
such that (AN L)yt € (D +---+ hsD)y € (MD[X] + - + hy D[X])w. Let
uw € (N;>; $'DNS. Then we have

futJ’'DIX] C ((ANL)+C)tD[X]
(AN L)tD[X] 4+ CtD[X]
(mD[X]+---+h D X])w + C.

N
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Since J'D[X] € GV(D[X]), fut € (hD[X]+ -+ hsD[X))w + C)w. Hence we
have

Aut € ((MD[X]+ -+ hsD[Xw + C)w
= (mD[X]+ -+ hD[X]+ C)w.

Thus A is S-w-finite. Consequently, M[X] is an S-SM-module.

(2) = (4) Let A be a nonzero D[X]y,-submodule of M[X]y,. Then by Lemma
2.1(1), A = Ay, for some nonzero D[X]-submodule A" of M[X]. Since 4], is S-
w-finite, there exist s € S and fi,..., f, € A" such that A/ s C (f/1D[X]+ -+
fuD[X])w. Let f € A. Then fg € A’ for some g € N,,, so we have

fgsJ € iD[X] + -+ + fuD[X]

for some J € GV(D[X]). Write J = (h1,...,hy,) for some hq,...,hy, € D[X]
and let h = hy 4 hgXdeg(r)+1 oo g x> gmdeslh)+m=1 Then ¢(h), = D and
fsgh e 1D X]+ .-+ f,D[X]. Since gh € N,,, we obtain

fs € (DX]+ -+ fuDIX]), -

Hence As C (f1 D[X]+- -+ fnD[X])n,. Thus M[X]y, is an S-Noetherian D[X]y,-
module.

(4) = (1) Let A be a w-submodule of M. Then A[X]y, is a D[X]y,-submodule
of M[X]n,. Since M[X]y, is an S-Noetherian module, there exist s € S and
fi,-- -y fn € A[X] such that A[X]|n,s C (fiD[X]+ -+ + fuD[X])n,, so we obtain

AlX]N,s C (e(f1) + -+ c(fa))[X]N, -

Let a € A. Then asg € (c(f1) + -+ + c(fn))[X] for some g € Ny, so asc(g) C
c(fr)+---+c(fn). Since ¢(g) € GV(D), as € (c(f1)+-+-+¢c(fn))w [20, Proposition
3.5] (or [9, Lemma 2.4]). Hence As C (¢(f1) + -+ + ¢(fn))w- Thus A is S-w-finite.
Consequently, M is an S-SM-module.

(3) & (4) This equivalence comes directly from Lemma 3.6. O

The following result has already been proved in [11], but we can prove it in a
different way from the proof in [11] using Theorem 3.8.

Corollary 3.9. ([11, Theorem 2.11(2)]) Let D be an integral domain and let S
be a multiplicative subset of D. Then D is an S-SM-domain if and only if every
S-w-finite torsion-free w-module is an S-SM-module.

Proof. Suppose that D is an S-SM-domain and let M be an S-w-finite torsion-
free w-module as a D-module. Then there exist s € S and a finitely generated
D-submodule L of M such that Ms C Ly, so M[X]|n,s C L,[X]n, = L[ X]n,,
where the equality comes from [6, Lemma 2.4(3)]. Hence M[X]y, is S-finite. Since

v

D[X]n, is an S-Noetherian domain [11, Theorem 2.8], M [X]n, is an S-Noetherian

D[X]n,-module [7, Proposition 2.1]. Thus by Theorem 3.8, M is an S-SM-module.
The converse is obvious. (]

The next result recovers the fact that every surjective endomorphism of an SM-
module is an isomorphism [6, Theorem 2.10].
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14 H. BAEK AND J.W. LIM

Proposition 3.10. Let D be an integral domain, S a multiplicative subset of D
and M a torsion-free w-module as a D-module. If M is an S-SM-module and
w: M — M is a D-module epimorphism, then ¢ is an isomorphism.

Proof. For each n > 2, let o™ = ¢" ! op. Then " is a D-module homomorphism,
so Ker(p™) is a w-submodule of M for all n > 2 [6, Lemma 2.9]. Hence we obtain
an ascending chain Ker(p) C Ker(¢?) C -+ of w-submodules of M. Since M is
an S-SM-module, there exist s € S and k € N such that Ker(¢*)s C Ker(") for
all & > n [8, Theorem 1]. Let z € Ker(p). Since ¢™ is surjective, there exists
an element m € M such that ¢"(m) = z, so "1 (m) = ¢(z) = 0. Therefore
m € Ker(p" 1), which implies that ms € Ker(¢"). Hence ¢"(m)s = ¢"(ms) = 0.
Since M is torsion-free, ¢™(m) = 0. Thus ¢ is an isomorphism. ]
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