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Abstract. We introduce the concept of ACP-Baer rings, and in-
vestigate its properties. We say a ring R is right ACP-Baer if the
right annihilator of every cyclic projective right R-module in R is
pure as a right ideal. This class of rings generalizes the class of right
APP-rings (Z. Liu and R. Zhao, A generalization of PP-rings and
p.q.-Baer rings, Glasg. Math. J., 48(2) (2006)), and right cP-Baer
rings (G. F. Birkenmeier and B. J. Heider, Annihilators and ex-
tensions of idempotent generated ideals, Commun. Algebra, 47(3)
(2019)), and is closed under direct products and forming upper tri-
angular matrix rings. It is shown that the ACP-Baer property is
inherited by the polynomial and power series ring extensions. Con-
nections to related classes of rings are also considered as well as
relevant examples are included to illustrate and delimit the theory.

1. Introduction and Motivation

Throughout this paper, all rings are assumed to be associative with
unity and all modules are assumed to be unital right R-modules unless
explicitly stated otherwise. A ring R is said to be reduced if it does not
have a non-zero nilpotent element. A ring R is called abelian if every
idempotent in R is central (e.g., commutative rings, rings with no non-
trivial idempotents and reduced rings). Let S be a non-empty subset of
R. We denote

rR(S) = {a ∈ R | sa = 0, ∀s ∈ S} ,
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and it is referred to as the right annihilator of S in R. Likewise,

ℓR(S) = {a ∈ R | as = 0,∀s ∈ S}

denotes the left annihilator of S in R.
Recall from [15] and [18] that R is a Baer (resp., right Rickart or

also called right p.p.) ring if the right annihilator of every non-empty
(resp., singleton) subset of R is generated by an idempotent. In [15]
Kaplansky introduced Baer rings in order to view various properties
of AW ∗-algebras and von Neumann algebras. Note that the class of
Baer rings includes the von Neumann algebras. In [12] Clark gave a
generalization of the notion of a Baer ring – in fact, Clark defined the
concept of a quasi-Baer ring as the ring in which the right annihilator
of an ideal is generated by an idempotent as a right ideal.

In the same vein, Birkenmeier, Kim and Park introduced in [8] a right
principally quasi-Baer ring (or simply right p.q.-Baer ring) as the ring
in which the right annihilator of a principal right ideal is generated by
an idempotent as a right ideal. Equivalently, R is right p.q.-Baer if R
modulo the right annihilator of any principal right ideal is projective.
Moreover, some examples were given in [8] to show that the class of left
p.q.-Baer rings is not contained in the class of right p.p.-rings and the
class of right p.p.-rings is not contained in the class of left p.q.-Baer
rings.

On the other hand, following Tominaga [27], a right ideal I of a ring R
is said to be left s-unital if, for each a ∈ I, there exists an element x ∈ I
such that xa = a. According to Liu and Zhao [17], a ring R is called right
APP if the right annihilator rR(aR) is left s-unital as an ideal of R for
any element a ∈ R. As a common generalization of left and right p.q.-
Baer rings, the authors in [19] introduced the concept of weakly p.q.-Baer
rings thus: a ring R is weakly p.q.-Baer if, for each a ∈ R, there exists
a non-empty subset E of left semi-central idempotents of R such that
rR(aR) =

∪
e∈E eR, where rR(−) denotes the right annihilator of (−)

in R. This implies that R modulo the right annihilator of any principal
right ideal is flat. The class of weakly p.q.-Baer rings is a natural subclass
of the class of APP rings and includes both left p.q.-Baer rings and
right p.q.-Baer rings. Besides, Birkenmeier and LeBlanc [6] call a right
R-module M s.Baer (resp., s.Rickart) if the right annihilator in R of a
non-empty (resp., singleton) subset of M is generated by an idempotent
of R.
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These rings have a rich structure theory, because of the abundance of
their idempotents. Moreover, these rings appear naturally not only in
Ring Theory (e.g., right Noetherian right semi-hereditary rings are Baer
rings), but too in other areas of Mathematics such as Operator Theory
(e.g., von Neumann algebras are Baer rings and local multiplier algebras
are quasi-Baer rings).

In [4], as a generalization of right p.q.-Baer rings, Birkenmeier and
Heider define right cP-Baer rings as those rings in which every right
annihilator of a cyclic projective right R-module is generated by an
idempotent as a right ideal and show that every semi-prime ring has
a cP-Baer hull. Among other important results, they also investigate
the behavior of right cP-Baer rings with respect to the polynomial and
formal power series ring extensions as well as to the generalized upper
triangular matrix ring extensions.

In the present article, we introduce and study the notion of ACP-Baer
rings. In fact, we say that a ring R is right ACP-Baer if, for each cyclic
projective right R-module P , the right annihilator rR(P ) is left s-unital.
We know that, if P is a cyclic projective right R-module, then P ∼= eR,
where e = e2 ∈ R. Hence,

rR(P ) = rR(eR) = rR(ReR) = rR(tr(P )),

where tr(−) designates the trace of (−) in R. Therefore, R is a right
ACP-Baer ring if, for each e = e2 ∈ R, rR(eR) is left s-unital. Thus, the
class of ACP-Baer rings (properly) includes right APP rings, cP-Baer
rings and weakly p.q.-Baer rings, and hence Abelian rings, semi-simple
Artinian rings, local rings, bi-regular rings, prime rings, and both right
p.q.-Baer rings and left p.q.-Baer rings.

The remainder of the paper is organized as follows: In Section 2, we
explore right ACP-Baer rings and provide several basic results for them.
In Section 3, we examine the transfer of the right ACP-Baer property
between the ring R, the polynomial ring R[x] and the power series ring
R[[x]]. Next, in Section 4, we study matrix extensions. Concretely, a
complete characterization of when a 2-by-2 generalized upper triangular
matrix ring is right ACP-Baer is given. Using this result, it is established
that the n-by-n upper triangular matrix ring over R is right ACP-Baer
if, and only if, R is right ACP-Baer.
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For more detailed information and examples of Baer and quasi-Baer
rings we refer the interested reader to the valuable sources [3], [5], [7],
[9], [10], [14], [20], [22], [21], [23] and [24], respectively.

2. Basic Results and Examples

An idempotent e ∈ R is called left (resp., right) semi-central if re =
ere (resp., er = ere), for all r ∈ R. The set of all left (right) semi-
central idempotents of R are denoted by Sl(R) (resp., Sr(R)). Define
B(R) = Sl(R) ∩ Sr(R) as the set of all central idempotents and if R is
a semi-prime ring, then Sl(R) = B(R) = Sr(R).

Our key instrument for the successful presentation is the following.

Definition 2.1. We say that an ideal I of R is left s-unital if, for every
a ∈ I, xa = a holds for some x ∈ I. The right mode is defined similarly.

It follows from [27, Theorem 1] that I is left s-unital if, and only if, for
any finite set of elements a1, a2, . . . , an ∈ I, there exists an element x ∈ I
such that ai = xai, i = 1, 2, . . . , n. A submodule N of a right R-module
M is called a pure submodule if LR⊗N −→ LR⊗M is a monomorphism
for every right R-module L. By virtue of [26, Proposition 11.3.13], an
ideal I is left s-unital if, and only if, R/I is flat as a right R-module if,
and only if, I is pure as a right ideal of R.

For completeness of the exposition, we recall once again the following.

Definition 2.2. A ring R is called a right ACP-Baer ring (resp., a left
ACP-Baer ring) if, for any cyclic projective right (resp., left) R-module
P , the right annihilator rR(P ) (resp., the left annihilator ℓR(P )) is left
(resp., right) s-unital. Accordingly, the ring R is called ACP-Baer if R
is both right and left ACP-Baer.

The next technicalities are worthwhile.

Lemma 2.3. If I1, . . . , In are left s-unital for some positive integer n,
then so is I = ∩n

i=1In.

Proof. Let a ∈ I =
∩n

i=1 In. Thus, a ∈ Ii for each 1 ≤ i ≤ n. By
hypothesis, there exists xi ∈ Ii such that xia = a. Setting x := x1 · · ·xn,
then x ∈

∩n
i=1 In and xa = a. □

Proposition 2.4. The following conditions are equivalent:
(i) R is a right ACP-Baer ring;
(ii) rR(eR) is left s-unital for each e = e2 ∈ R;
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(iii) For any finitely many idempotent elements e1, . . . , en ∈ R,
rR(

∑n
i=1 eiR) is left s-unital.

Proof. (i) ⇒ (ii). Assume that R is right ACP-Baer and e = e2 ∈ R. As
eR is a cyclic projective right R-module, then rR(eR) is left s-unital.
(ii) ⇒ (iii). As ei is an idempotent element of R for 1 ≤ i ≤ n, then, by
part (ii), rR(eiR) is left s-unital. We know that

rR(
n∑

i=1

eiR) = ∩n
i=1rR(eiR)

so rR(
∑n

i=1 eiR) is left s-unital, as per Lemma 2.3.
(iii) ⇒ (i). Letting P be a cyclic projective right R-module, then there
exists e = e2 ∈ R such that P ∼= eR. Therefore, by (iii), rR(P ) is left
s-unital, as required. □
Proposition 2.5. For any ring, we have the following implications:

(i) right APP ⇒ right ACP-Baer.
(ii) weakly p.q.-Baer ⇒ right ACP-Baer.
(iii) right cP-Baer ⇒ right ACP-Baer.

Proof. It follows immediately from the corresponding definitions. □
Examples of rings that are of the type “right ACP-Baer rings include

right cP-Baer rings”, whence abelian rings, semi-simple Artinian rings,
local rings, bi-regular rings and prime rings, will be constructed in the
sequel. Indeed, it is clear that each right APP ring, and so weakly p.q.-
Baer ring, is also a right (resp., left) ACP-Baer. As a result, the class of
right (resp., left) ACP-Baer rings includes both left p.q.-Baer and right
p.q.-Baer rings as shown in the diagram below.

However, the following two examples unambiguously show that all of
the converses in Proposition 2.5 do not hold in general.

Example 2.6. We use the Dorroh extension [16, Example 1(1)]. To
that goal, let S0 = Z2, the ring of integers modulo 2, S1 = Z2 ∗Z2, S2 =
S1 ∗ Z2, . . . , Sn = Sn−1 ∗ Z2, . . ., where the operations on Sn are as the
following: for (a, b̄), (c, d̄) ∈ Sn with a, c ∈ Sn−1, put

(a, b̄) + (c, d̄) = (a+ c, ¯b+ d) and (a, b̄)(c, d̄) = (ac+ bc+ da, b̄d),

where n = 1, 2, . . .. Then, each Sn is apparently a commutative ring
of characteristic 2. Even more, each Sn is a Boolean ring, and so is
commutative von Neumann regular.
In view of the ring-monomorphism f : Sn−1 −→ Sn, defined by f(x) =
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Figure 1. Venn diagram of subclasses of right ACP-
Baer rings

(x, 0̄), we can consider any Sn−1 as a subring of Sn. We, thereby, can
obtain a direct product S =

∏∞
n=1 Sn with S1 ⊂ S2 ⊂ S3 ⊂ . . .. Now,

we consider the ring

R =

⟨ ∞⊕
n=1

Sn, 1S

⟩
,

as a Z2-subalgebra of S, generated by
⊕∞

n=1 Sn and 1S , where

1S = ((0, 1̄), ((0, 0̄), 1̄), (((0, 0̄), 0̄), 1̄), . . .).

Notice, by a simple inspection that, (a, b̄) ∈ S1, (a, b̄) = ((a, b̄), 0̄) ∈
S2, (a, b̄) = (((a, b̄), 0̄), 0̄)
∈ S3, etc., and R is a Boolean ring (hence it is commutative, reduced,
abelian and a cP-Baer ring). Set T = R[[x]]. Thus, owing to [4], T is
cP-Baer and so it is a ACP-Baer ring.

Suppose now in a way of contradiction that T is an APP-ring. Assume
also that

f(x) = f0 + f1x+ f2x
2 + · · · ∈ T,

with f0 = (1S1 , 0, 0, . . .), f1 = (1S1 , 0, 1S3 , 0, . . .), f2 = (1S1 , 0, 1S3 , 0, 1S5 , 0,
. . .), . . .. Letting

g(x) = g0 + g1x+ g2x
2 + · · · ∈ T,

where g0 = (0, 1S2 , 0, 0, . . .), g1 = (0, 1S2 , 0, 1S4 , 0, . . .),
g2 = (0, 1S2 , 0, 1S4 , 0, 1S6 , 0, . . .), . . ., we thus derive g(x) ∈ rT (f(x)T )
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and so there exists

h(x) = h0 + h1x+ h2x
2 + · · · ∈ rT (f(x)T )

such that g(x) = h(x)g(x). Taking into account that f(x)h(x) = 0
and with [1, p. 2269] at hand, we infer that fihl = 0 for all in-
dices i and l. Hence, there exists ml ∈ N such that hl has the form
(al1, 0, al3, 0, . . . , al(2ml+1), 0, 0, . . .), where alk ∈ Sk and l = 1, 2, . . ..

On the other hand, (1T − h(x))g(x) = 0 ensures that (1T − h0)gj = 0
and hlgj = 0 for all indexes j and l ≥ 1. So, there exists nl ∈ N such that
hl has the form (0, al2, 0, al4, 0, . . . , al(2nl), 0, 0, . . .), where alk ∈ Sk and
l = 1, 2, . . .. Thus, h1 = h2 = . . ., and so h(x) = h0. This contradicts
gj = h0gj , j = 0, 1, . . .. Consequently, T is not APP, concluding the
claim.

Example 2.7. (1) [5, Example 2.3]. For a given field F , let

R =
{
(an)

∞
n=1 ∈

∞∏
n=1

Fn | an is eventually constant
}
,

which is obviously a subring of
∏∞

n=1 Fn, where F := Fn for
n ∈ N. Thus, R is a commutative von Neumann regular ring
(whence reduced). Hence, R is a cP-Baer ring. However, by [4,
Theorem 4.6], R[[x]] is a cP-Baer ring, which shows that it is
right ACP-Baer ring. Also, invoking [17, Example 2.4], R[[x]] is
not a weakly p.q.-Baer ring, as required.

(2) [8, Example 3.13]. For an integer k > 1, let W be the kth Weyl
algebra over a field of characteristic zero. Then, W is simple, but
neither right nor left hereditary. From [8], there exists a positive
integer m such that the full m×m matrix ring Mm(W ) over W
is neither right nor left PP. Assume now that

S =
{
(an)

∞
n=1 ∈

∞∏
m=1

Mm(W ) | an is eventually constant
}
.

Then, S is bi-regular (hence p.q.-Baer) and so it is weakly p.q.-
Baer. Now, if we consider R as in point (1), then in accordance
with Proposition 2.13 the direct sum R

⊕
S is a ACP-Baer ring,

but it is not weakly p.q.-Baer bearing in mind [19, Theorem
2.22], as required.

This completes the example.
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Proposition 2.8. Suppose that R is a regular ring. Then, the following
conditions are equivalent:

(1) R is a right ACP-Baer ring.
(2) R is a right APP ring.
(3) R is a weakly p.q.-Baer ring.

Proof. These equivalencies follow immediately from [13, Theorem 1.1]
combined with the corresponding definitions. □
Example 2.9. [8, Example 1.6]. For a field F , let us set

R =

(∏∞
n=1 Fn ⊕∞

n=1Fn

⊕∞
n=1Fn ⟨⊕∞

n=1Fn, 1⟩

)
,

where Fn := F for n = 1, 2, . . . and ⟨⊕∞
n=1Fn, 1⟩ is the subalgebra of∏∞

n=1 Fn generated by ⊕∞
n=1Fn and 1 ∈

∏∞
n=1 Fn. Thus, it follows from

[8] that R is a regular ring (hence, p.p.) and so it is a ACP-Baer ring
but manifestly not cP-Baer utilizing [4]. This concludes the example.

We continue our further work with a series of useful technicalities.

Proposition 2.10. Suppose that R satisfies the ACC property on prin-
cipal right ideals. Then R is right ACP-Baer if and only if R is right
cP-Baer.

Proof. Assume that R is a right ACP-Baer ring and e = e2 ∈ R. We
will prove that rR(eR) = cR for some c = c2 ∈ R. To this target,
let aR be the maximal principal right ideals contained in rR(eR). As
a ∈ rR(eR), we haveca = a for some c ∈ rR(eR). Thus, a ∈ cR and
so aR ⊆ cR ⊆ rR(eR). Therefore, the maximality of aR implies that
aR = cR. Hence, c ∈ aR and thus there exists r ∈ R such that c = ar.
We now deduce ara = ca = a and, therefore, c2 = arar = ar = c.
Evidently,

rR(eR) = crR(eR) + (1− c)rR(eR).

We claim that (1− c)rR(eR) = {0}. Indeed, if x ∈ (1− c)rR(eR), then
cR ⊆ (c+ x− cx)R ⊆ rR(eR).

That is why, cR = (c+ x− cx)R in virtue of the maximality of cR.
On the other hand, cR∩(x−cx)R = {0} so that x−cx = 0. However,

(cx)2 = 0 forcing x2 = 0. But, for every u ∈ (1 − c)rR(eR), we write
u = lu for some l ∈ rR(eR). Thus, u = (1−c)lu. Set w := (1−c)l which
allows us to deduce that w ∈ (1− c)rR(eR) and w2 = 0. Now, we have,
u = wu = w2u = 0 so that (1−c)rR(eR) = {0}. Consequently, rR(eR) =
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cR and we finally conclude that R is right cP-Baer, as asserted. The
converse implication is clear. □
Proposition 2.11. If R is a right ACP-Baer ring, then eRe is a right
ACP-Baer ring for every idempotent e ∈ R.

Proof. Let e = e2 ∈ R be a non-zero element. Also, let x ∈ eRe be an
arbitrary idempotent. We shall prove that reRe(x(eRe)) is left s-unital.
To that purpose, as R is a right ACP-Baer ring, we know by definition
that rR(xR) is left s-unital. Assume now that a ∈ reRe(x(eRe)) is an
arbitrary element. Since a = eae, x = exe and x(eRe)a = 0, one sees
that xRa = 0. So, by hypothesis, a = fa for some f ∈ rR(xR). Set
f ′ := efe ∈ eRe Clearly, a = f ′a. Hence, it is enough to show that
f ′ ∈ reRe(x(eRe)). Letting ere ∈ eRe be an arbitrary element, we
derive

x(eRe)f ′ = x(eRe)fe = xRfe = 0,

which insures that eRe is a right ACP-Baer ring, as claimed. □
Proposition 2.12. Let I be an index set, and Ri a ring for each i ∈ I.
Then, the ring R =

∏
i∈I Ri is right ACP-Baer ring if, and only if, Ri

is right ACP-Baer ring for every i ∈ I.

Proof. (⇒). Assume that R =
∏

i∈I Ri is right ACP-Baer ring and
ei = e2i ∈ Ri for some i ∈ I. We will prove that rRi(eiRi) is left s-unital.
To that aim, suppose ci ∈ rRi(eiRi). Set e := ιi(ei). By our hypothesis,
rR(eR) is left s-unital. Put c := ιi(ci) and so, for an arbitrary element
r, we have

cre = ιi(ci)rιi(ei) = 0.

Thus, by definition, there exists f ∈ rR(eR) such that fc = c. Obviously,
fici = ci. Letting ri ∈ Ri be an arbitrary element, if we set r := ιi(ri),
then

0 = ref = ιi(ri)ιi(ei)f.

Therefore, rieifi = 0 which guarantees that fi ∈ rRi(eiRi).

(⇐). Let Ri be a right ACP-Baer ring for any i ∈ I and e = e2 ∈ R.
Thus, ei = πi(e) remains an idempotent for every i ∈ I. Since Ri is
a right ACP-Baer ring, rRi(eiRi) is left s-unital for all i ∈ I. Choose
c ∈ rR(eR) to be an arbitrary element. Hence, ci = πi(c) ∈ Ri and
ci ∈ rRi(eiRi) for each i ∈ I. By definition, there exists fi ∈ rRi(eiRi)
such that fici = ci for every i ∈ I. Setting f := (fi)i∈I , it is easy to
verify that fc = c and f ∈ rR(eR), as desired. □
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Proposition 2.13. Let R = ⊕i∈IRi (we emphasize that, when I is an
infinite index set, R is a ring without identity), where Ri is a ring for
each i ∈ I. Then, R is a right ACP-Baer ring if, and only if, Ri is a
right ACP-Baer ring for each i ∈ I.

Proof. A proof similar to that of Proposition 2.12 can successfully be
applied to get the statement. □

Let A be a ring, let B ≤ A be a unitary subring (so it contains the
same unity 1A of A), let {Ai}∞i=1 be a countable set of copies of A,
let D be the direct product of all rings Ai, and let R := R(A,B) be
the subring of D generated by the ideal

⊕∞
i=1Ai and by the subring

{(b, b, . . .) | b ∈ B} (see, for instance, [28]).
We now arrive at the following assertion.

Proposition 2.14. If A is an Abelian ring, then the ring R(A,B) is a
right ACP-Baer ring if, and only if, both A and B are right ACP-Baer
rings.

Proof. Choosing R := R(A,B) as a right ACP-Baer ring, then it is
readily checked that A and B are both right ACP-Baer rings.

For the converse, assume that (ei)
∞
i=1 ∈ R is an idempotent and

(ai)
∞
i=1 ∈ rR((ei)

∞
i=1R). So, ei is an idempotent in A for each i. Also, by

definition, there exists a positive integer n such that en = en+1 = . . . ∈ B
and an = an+1 = . . . ∈ B. As A is Abelian, we have that eiAai = {0}
for all 1 ≤ i ≤ n. Since A is a right ACP-Baer ring, there is bi ∈ rA(eiA)
such that ai = biai for any 1 ≤ i ≤ n − 1. Moreover, since B is a right
ACP-Baer ring, there is bn ∈ rB(enB) such that an = bnan. But as A is
Abelian and B ⊆ A is a unitary subring, we obtain that bn ∈ rA(enA).
Hence,

(b1, b2, . . . , bn−1, bn, bn, . . .) ∈ rR((ei)
∞
i=1R)

and, consequently,
(ei)

∞
i=1 = (b1, b2, . . . , bn−1, bn, bn, . . .)(ei)

∞
i=1.

Therefore, R(A,B) is a right ACP-Baer ring, as expected. □

As a consequence, we yield:

Corollary 2.15. Let A be a right ACP-Baer ring. If rB(eA) = 0 for
every 0 ̸= e = e2 ∈ B, then R(A,B) is a right ACP-Baer ring.

Proof. In the proof of Proposition 2.14, the following two cases occur:
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(1) If 0 = en = en+1 = . . . ∈ B, then rB(enB) = B. Take bn = 1 ∈
B.

(2) If 0 ̸= en = en+1 = . . . ∈ B, then rB(enA) = 0 by assumption.
Thus, an = 0. Take bn = 0 ∈ B.

In both cases, we have an = bnan and enAbn = 0. So,
(ei)

∞
i=1 = (b1, b2, . . . , bn−1, bn, bn, . . .)(ei)

∞
i=1

and
(ei)

∞
i=1R(b1, b2, . . . , bn−1, bn, bn, . . .) = 0.

Hence, R is a right ACP-Baer ring, as promised. □

3. Polynomial Extensions of ACP-Baer Rings

In this section, we will examine the polynomial and power series rings
in relation to the right ACP-Baer condition. We start with the following
plain but useful claim.

Lemma 3.1. [2, Lemma 4.1] Let R be a ring. If e(x) =
∑m

i=0 eix
i ∈

R[x] (resp., e(x) =
∑∞

i=0 eix
i ∈ R[[x]]) is an idempotent, then ei ∈ Re0R

for any i ≥ 0.

We are now in a position to establish the next two chief results.

Theorem 3.2. For an arbitrary ring R, the following two conditions
are equivalent:

(i) R is a right ACP-Baer ring.
(ii) R[x] is a right ACP-Baer ring.

Proof. (i) ⇒ (ii). Let R be a right ACP-Baer ring and e(x) ∈ R[x]
an arbitrary idempotent such that e(x) =

∑m
i=0 eix

i. Consulting with
Lemma 3.1, e0 = e20 ∈ R. We will demonstrate that rR[x](e(x)R[x]) is left
s-unital. To that aim, assume that f(x) =

∑n
j=0 ajx

j ∈ rR[x](e(x)R[x])

is an arbitrary element. Thus, e(x)R[x]f(x) = 0. First, we shall prove
that e0Raj = 0 for each 0 ≤ j ≤ n. We work by induction on j. In fact,
since e(x)Rf(x) = 0, we have

0 = e(x)rf(x) =
m∑
i=0

(
n∑

j=0

eiraj)x
i+j

for any r ∈ R. If j = 0, then 0 = e0ra0. Hence, a0 ∈ rR(e0R). Now,
assume that the result is true for all 1 ≤ t < j. So, e0Rat = 0 for each
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1 ≤ t < j. We write
0 = e0raj + e1raj−1 + · · ·+ ejra0.

Multiplying by e0 from the left-hand side of the above equality, we obtain
0 = e0raj + e0e1raj−1 + · · ·+ e0ejra0.

Next, with the aid of the induction hypothesis, we must have e0Raj = 0.
Therefore, aj ∈ rR(e0R) for any 0 ≤ j ≤ n. By hypothesis, rR(e0R) is
left s-unital, and so there exists c ∈ rR(e0R) such that caj = aj for all
j. That is why,

cf(x) =

n∑
j=0

cajx
j = f(x).

On the other hand, Lemma 3.1 tells us that ei ∈ Re0R for all 0 ≤
i ≤ m, so we derive eiRc = 0. Letting g(x) =

∑r
l=0 blx

l ∈ R[x] is an
arbitrary element, we may write

e(x)g(x)c = (
m∑
i=0

eix
i)(

r∑
l=0

blx
l)c =

m+r∑
k=0

(
∑
i+l=k

eiblc)x
k = 0.

Consequently, c ∈ rR[x](e(x)R[x]), as needed.
(ii) ⇒ (i). Assume that R[x] is a right ACP-Baer ring and c = c2 ∈ R.
Let a ∈ rR(cR). Thus, a ∈ rR[x](cR[x]), so there is g(x) =

∑n
j=0 bjx

j ∈
rR[x](cR[x]) such that g(x)a = a. Then, b0a = a. As cRg(x) = 0, it
must be that cRb0 = 0. So, b0 ∈ rR(cR) and, therefore, rR(cR) is left
s-unital leading to R is a right ACP-Baer ring, as required. □

Theorem 3.3. Let R be a ring satisfying descending chain condition
on left annihilators. Then, R is a right ACP-Baer ring if, and only if,
R[[x]] is a right ACP-Baer ring.

Proof. (⇒). Let R be right ACP-Baer. Assume that e(x) =
∑∞

i=0 eix
i ∈

R[[x]] is an idempotent and

f(x) =

∞∑
j=0

ajx
j ∈ rR[[x]](e(x)R[[x]]).

The utilization of Lemma 3.1 gives that e0 = e20 ∈ R. Moreover,
e(x)R[[x]]f(x) = 0 whence e(x)rf(x) = 0 for every r ∈ R. Hence,∑∞

i=0(
∑∞

j=0 eiraj)x
i+j = 0 and we get

e0ra0 = 0 (1)
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e0ra1 + e1ra0 = 0 (2)

...
e0ram + e1ram−1 + · · ·+ emra0 = 0 (3)

...
Furthermore, since e0ra0 = 0, one has that a0 ∈ rR(e0R). Multiplying
the equation (2) on the left side by e0, we infer e0ra1 + e0e1ra0 = 0
and using (1) we get e0ra1 = 0. So, a1 ∈ rR(e0R). If, however, we
multiply equation (3) on the left side by e0, then by the same argument
we conclude that am ∈ rR(e0R). This process can be continued to
extract that aj ∈ rR(e0R) for all j ≥ 0.

On the other hand, we consider the descending chain of left annihila-
tors as follows:

ℓR(a0) ⊇ ℓR(a0, a1) ⊇ ℓR(a0, a1, a2) ⊇ · · · .
So, there exists n such that

ℓR(a0, a1, . . . , an) = ℓR(a0, a1, . . . , an, an+1) = · · · .
Since a0, a1, . . . , an ∈ rR(e0R), by our assumption there is c ∈ rR(e0R)
such that aj = caj for 0 ≤ j ≤ n. Therefore, 1 − c ∈ ℓR(a0, a1, . . . , an)
and so 1−c ∈ ℓR(a0, a1, . . . , an, . . . , al) for any l ≥ n. Hence, al = cal for
any l ≥ n. Moreover, it is routinely inspected that c ∈ rR[[x]](e(x)R[[x]])
and f(x) = cf(x). Finally, R[[X]] is a right ACP-Baer ring, as stated.
(⇐). Arguing as in the implication (ii) ⇒ (i) of Theorem 3.2, we are
done. □

4. Characterizations of Right ACP-Baer Rings of
Generalized Triangular Matrix Rings

We begin here with the following well-known technicality.

Lemma 4.1. [11, Lemma 3.1] Let T =

(
S M
0 R

)
be the formal upper

triangular matrix ring, where S,R are rings, and M is an (S,R)-bi-

module and a unitary S-module. If
(
I N
0 L

)
is an ideal of T , then

rT (

(
I N
0 L

)
) =

(
rS(I) rM (I)
0 rR(L) ∩AnnR(N)

)
.

As a consequence, we yield:
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Corollary 4.2. If e =
(
e1 k
0 e2

)
∈ T is an arbitrary idempotent, then

rT (eT ) =

(
rS(e1S) rM (e1S)

0 rR(e2R) ∩ rR(e1M + kR)

)
.

Proof. It follows immediately from Lemma 4.1. □
We are now prepared to prove the following major result.

Theorem 4.3. Let T =

(
S M
0 R

)
, where S and R are rings, and M is

an (S,R)-bi-module. Then, T is right ACP-Baer ring if, and only if, all
of the following conditions are fulfilled:

(1) S and R are right ACP-Baer rings;
(2) For each e = e2 ∈ S, we have:

(2.1) If s ∈ rS(eS) and m ∈ rM (eS), then there exists an element
c ∈ rS(eS) such that cs = s and cm = m;

(2.2) The annihilator rR(eM) is left s-unital.

Proof. (⇒). Assume T is a right ACP-Baer ring. One sees that

(1) S ∼=
(
1s 0
0 0

)
T

(
1s 0
0 0

)
and R ∼=

(
0 0
0 1R

)
T

(
0 0
0 1R

)
, where

both
(
1s 0
0 0

)
and

(
0 0
0 1R

)
are idempotents of T . So, employ-

ing Proposition 2.11, R and S are both right ACP-Baer rings.
(2.1) Let e = e2 ∈ S, s ∈ rS(eS) and m ∈ rM (eS). Thus e′ =(

e 0
0 0

)
∈ T is an idempotent. As e′T =

(
eS eM
0 0

)
, rT (e′T ) =(

rS(eS) rM (eS)
0 0

)
, by Lemma 4.1. Since,

(
s m
0 0

)
∈ rT (e

′T )

we have, (
c n
0 0

)(
s m
0 0

)
=

(
s m
0 0

)
for some

(
c n
0 0

)
∈ rT (e

′T ). Therefore, cs = s, cm = m.

(2.2) Let e = e2 ∈ S. Thus,
(
e 0
0 0

)
∈ T is an idempotent and

so rT (

(
e 0
0 0

)
T ) is left s-unital. We also can easily verify that

rR(eM) is left s-unital.
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(⇐). Suppose that both (1) and (2) are true. Let e =

(
e1 k
0 e2

)
∈

T be an arbitrary idempotent. So, e1 = e21 ∈ S, e2 = e22 ∈ R and
k = e1k + ke2. One observes that it suffices to show that rT (eT ) is left

s-unital. Now since eT =

(
e1S e1M + kR
0 e2R

)
by Lemma 4.1 we have,

rT (eT ) =

(
rS(e1S) rM (e1S)

0 rR(e2R) ∩ rR(e1M + kR)

)
.

In fact, let
a =

(
a1 n
0 a2

)
∈ rT (eT ).

Thus,
a2 ∈ rR(e2R) ∩ rR(e1M + kR)

and so
a2 ∈ rR(e2R) ∩ rR(e1M).

Applying subsequently parts (1) and (2.2), one deduces that both rR(e2R)
and rR(e1M) are left s-unital. Hence, rR(e2R) ∩ rR(e1M) is left s-
unital by referring to Lemma 2.3. Therefore, c2a2 = a2 for some c2 ∈
(rR(e2R) ∩ rR(e1M)). Since a1 ∈ rS(e1S) and n ∈ rM (e1S), there is
c1 ∈ rS(e1S) such that c1a1 = a1, c1n = n in view of property (2.1).

Put c :=

(
c1 0
0 c2

)
. Since

kRc2 = e1kRc2 + ke2Rc2 = e1kRc2 = 0,

one concludes that

eTc =

(
e1Sc1 (e1M + kR)c2
0 e2Rc2

)
= 0.

Consequently, f ∈ rT (eT ). Now, because c1n = n, we obtain ca = a,
finishing the arguments. □

An important assertion which can be deduced is the next one.

Corollary 4.4. Let Tn(R) be the n × n upper triangular matrix ring
over a ring R, where n ≥ 1 is a positive integer. Then, the following
items are equivalent:

(1) R is right ACP-Baer ring.
(2) Tn(R) is right ACP-Baer ring for every positive integer n.
(3) Tk(R) is right ACP-Baer ring for some k > 1.
(4) T2(R) is right ACP-Baer ring.
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Proof. (1) ⇒ (2). Let R be a right ACP-Baer ring. We prove the required
condition using induction on n. Indeed, it is obvious that T1(R) is a
right ACP-Baer ring. Since T2(R) satisfies the requested conditions of
Theorem 4.3, it is necessarily a right ACP-Baer ring. Assume that the
result holds for all 1 ≤ l ≤ n. We will establish now that Tn+1(R) is a
right ACP-Baer ring, as required. In fact, we know that

Tn+1(R) ∼=
(
R M
0 Tn(R)

)
,

where M = (R, . . . , R) (n-tuple). To apply Theorem 4.3, let e = e2 ∈ R,
a ∈ rR(eR) and

(
a1 a2 . . . an

)
∈ rM (eR). Thus,

0 = eR
(
a1 a2 . . . an

)
=

(
eRa1 eRa2 . . . eRan

)
and so ai ∈ rR(eR) for all 1 ≤ i ≤ n. Since rR(eR) is left s-unital, there
is c ∈ rR(eR) such that ca = a and cai = ai for all 1 ≤ i ≤ n.
Further, let e = e2 ∈ R. We will show that rTn(R)(eM) is left s-
unital. In this aspect, assume that A ∈ rTn(R)(eM) such that A =
a11 a12 . . . a1n
0 a22 . . . a2n
...

... . . . ...
0 0 . . . ann

. Letting
(
r1 r2 . . . rn

)
∈ M , we thereby ex-

tract that

e
(
r1 r2 . . . rn

)
A =

(
er1 er2 . . . ern

)

a11 a12 . . . a1n
0 a22 . . . a2n
...

... . . . ...
0 0 . . . ann


=

(
er1a11 er1a12 + er2a22 . . .

∑n
i=1 eriain

)
=

(
0 0 . . . 0

)
.

Now, take r1 ̸= 0 and ri = 0 for all i ̸= 1. Then, a1i ∈ rR(eR) for all
1 ≤ i ≤ n. Similarly, for r2 ̸= 0 and ri = 0 for all i ̸= 2, we receive that
a2i ∈ rR(eR) for 2 ≤ i ≤ n. However, by the induction argument, we
have aij ∈ rR(eR) for all 1 ≤ i, j ≤ n. As rR(eR) is left s-unital, there
exists f ∈ rR(eR) such that faij = aij for all 1 ≤ i, j ≤ n. Put F :=
fIn ∈ Tn(R). It is now elementary that FA = A and F ∈ rTn(R)(eM),
as required.
(2) ⇒ (3). This implication is easy, so we omit its details.
(3) ⇒ (4). Let Tk(R) be a right ACP-Baer ring for some k > 1 and let
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eij ∈ Tk(R) be the matrix with 1 in the (i, j)-position and 0 elsewhere.
Set f := e11 + e22. Then, f = f2 ∈ Tk(R) and T2(R) ∼= fTk(R)f .
Therefore, in virtue of Proposition 2.11, T2(R) is a right ACP-Baer
ring.
(4) ⇒ (1). This implication is analogous to (iii) ⇒ (iv). □

The following statement is an automatic consequence of Theorem 4.3
and provides a rich source of rings which are right ACP-Baer rings.
Specifically, the following is valid:

Corollary 4.5. Let S be a right ACP-Baer ring and R a unitary subring
of S such that rS(eR) = 0 for any 0 ̸= e = e2 ∈ R. Then, the ring

T =

(
S S
0 R

)
is a right ACP-Baer ring.

The next valuable consequence is the following one.

Corollary 4.6. Let T =

(
S̄ S̄
0 S

)
, where S is a right ACP-Baer ring

and S̄ = S/P for a prime ideal P such that rS(eS) ⊈ P , provided
e = e2 ∈ P . Then, T is right ACP-Baer.

Proof. Since S̄ is a prime ring, [8, Lemma 1.2] informs us that S̄ is a
p.q.-Baer ring and so it is right ACP-Baer. Thus, point (1) of Theorem
4.3 is true. Let ē = ē2 ∈ S̄ such that ē = e + P . Consider now the
following two different cases:

(1) If e ∈ P , then ē = P and so rS̄(ēS̄) = S̄ that is left s-unital.
Thus, issue (2.1) of Theorem 4.3 holds. Besides, rS(ēS̄) =
rS(PS̄) = S is left s-unital, too.

(2) If e /∈ P , then rS̄(ēS̄) = P that is left s-unital. So, issue (2.1)
of Theorem 4.3 holds. Besides, rS(ēS̄) = rS(PS̄) = P is left
s-unital as well.

This substantiates our assertion. □

Example 4.7. (1) Assume that D is a domain, R = M2(D) and

S = {
(
a 0
0 a

)
| a ∈ D}. Since D is a domain, R is ACP-Baer.

Also, rR(eS) = 0 for any 0 ̸= e = e2 ∈ S. Then, T =

(
S S
0 R

)
is a ACP-Baer ring just consulting with Corollary 4.5.
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(2) Let F be a field and Fn := F for n = 1, 2, . . .. Set

S =
{
(an)

∞
n=1 ∈

∞∏
n=1

Fn | an is eventually constant
}
,

and
P =

{
(an)

∞
n=1 ∈ S | an = 0 eventually

}
.

Thus, the ring T =

(
S/P S/P
0 S

)
is right ACP-Baer exploiting

Corollary 4.6.
This finishes the example.
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