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AN INTEGRAL FORMULA FOR COMPLEX AFFINE ALGEBRAIC HYPERSURFACES

YI HE

ABSTRACT. It’s well known that the integral of the top exterior power of the first Chern form over a
closed complex manifold is an integer, called a Chern number, which is the Euler number χ in the case
of complex dimension one. Now we show that its integral over an irreducible algebraic hypersurface
of degree d in complex Euclidean space Cn+1 is also an integer, with absolute value between 0 and
d(d − 1)n; and the upper bound is reached by an affine hypersurface whose projective completion is
nonsingular and transverse to the hyperplane at infinity. In particular, the total Gauss curvature of a
general smooth affine plane curve is equal to 2π(χ −1−

√
1−χ).

1. Introduction

There is a way of establishing Gauss-Bonnet theorem for hypersurfaces in Euclidean space in terms of
the degree of the Gauss map. We also have a notion of degree of a rational map between algebraic
varieties. In light of these, consider a complex algebraic hypersurface

V = { f (z0, · · · ,zn) = 0, f prime} ⊂Cn+1

and its rational Gauss map
Φ : V 0 → Pn, z → [ f,0(z) : · · · : f,n(z)]

where V 0 = {∇ f = ( f,0, · · · , f,n) ̸= 0}∩V is the smooth locus of V . Coincidentally, the Kahler form η

of the Fubini–Study metric of Pn pulls back to −1 times the first Chern form c1 of V 0 with the induced
metric from ambient Euclidean space (Lemma 2.1). By Wirtinger Theorem, the volume form is pulled
back as

Φ∗(dPn) = Φ∗(ηn
/

n!) = Φ∗(η)n/n! = (−1)n

n! cn
1 .

If Φ is dominant with degree m, then there is a nonempty Zariski open subset U ⊂ Pn such that Φ

restricts to a m-sheeted smooth covering map, which is proper, from Zariski open subset Φ−1(U)⊂V 0

onto U connected. By virtue of the relation between degree of proper maps and integration of top
forms (Theorem 2.3), ∫

Φ−1(U)
Φ

∗(dPn) = m
∫

U
dPn ,

provided the latter integral exists. Since a nowhere dense analytic subset of a complex manifold has
measure zero (Proposition 2.4, Remark 2.5), which does not affect integrability or the value of integral,∫

V 0
Φ

∗(dPn) = m
∫

Pn
dPn .
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AN INTEGRAL FORMULA 2

Substituting 1
/

n! for the volume of Pn ([6], page 297), we obtain the formula (Theorem 2.9)

(1)
∫

V 0
c1

n = (−1)n deg(Φ),

which can be interpreted as the first Chern number of V . We will show that (Theorem 2.7)

m ≤ d(d −1)n where d = deg f ,

and the upper bound is almost always reached (Theorem 3.4). Because

(2) KdV = 2πc1 K : Gauss (sectional) curvature

for a Hermitian Riemann surface, we develop the Gauss-Bonnet formula for affine plane curves under
some additional assumptions (Theorem 4.3).

2. For arbitrary affine hypersurfaces

The following observation first appeared in ([1], prop 3, page 819), as far as I know. However, I give
another proof, which also provides an expression (3) for the first Chern form of a hypersurface in
complex Euclidean space without using the metric.

Lemma 2.1. Suppose a hypersurface M is the zero locus of a holomorphic function f defined in an open
subset of Euclidean space Cn+1 whose gradient vanishes nowhere on M. Let η be the Kahler form of Pn,
whose homogeneous coordinate representation (i.e., pull back via the projection π : Cn+1\{0}→ Pn) is
π∗η =(2π)−1i∂ ∂̄ log(|W0|2+· · ·+|Wn|2), then η pulls back to minus the first Chern form c1 associated
with the induced metric of M via the holomorphic Gauss map Φ : M → Pn, z → [ f,0(z) : · · · : f,n(z)].

Proof. Because Φ is the composition

Φ : M →Cn+1 → Pn

z → ∇ f (z)→ [ f,0(z) : · · · : f,n(z)],

and pull back by a holomorphic map commutes with ∂ ,∂ ; η is first pulled back to

(2π)−1i∂ ∂̄ log(|W0|2 + · · ·+ |Wn|2)

on Cn+1\{0} and then to
(2π)−1i∂ ∂̄ log(| f,0|2 + · · ·+ | f,n|2) = ω

on a neighborhood of M. Locally M is the graph of a holomorphic function, say, z0 = h(z1, ...,zn), and

ϕ(z1, ...,zn) = (h(z1, ...,zn),z1, ...,zn)

is a coordinate patch of M with Jacobian matrix

Dϕ =


h,1 · · · h,n
1 · · · 0
...

. . .
...

0 · · · 1

 .
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AN INTEGRAL FORMULA 3

Let b j ( j = 0, ...,n) be the determinant of the submatrix of Dϕ obtained by deleting the jth row.
Suppose the induced metric on M has Hermitian components [gkl]n×n, then

det[gkl] = |DϕT Dϕ| (up to a constant factor)

=
n
∑
j=0

b jb j = 1+
n
∑

i=1
|h,i|2 (Cauchy−Binet formula)

= 1+
n
∑

i=1
| f,i

/
f,0|2 = |∇ f |2

/
| f,0|2 .

So ω|M has coordinate representation

(2π)−1i∂ ∂̄ log(| f,0 ◦ϕ|2 + · · ·+ | f,n ◦ϕ|2).

Since c1 =−(2π)−1i∂ ∂̄ logdet[gkl], we see that

(3) ω|M =−c1

□

Proposition 2.2. In the same setting as above, the top form c1
n vanishes at a point of M if and only if∣∣∣∣ 0 f,l

f,k f,kl

∣∣∣∣= 0 (k, l = 0, ...,n) at that point.

Proof. In the notation of the previous proposition, on the graph of the holomorphic function z0 =
h(z1, ...,zn), the Kahler form

λ = ig jkdz j ∧dzk ( j,k = 1, ...,n)

satisfies Wirtinger Theorem (here z j = z j and repeated indices are summed over)

λ
n = n!dV 0 = n!in|g jk|dz1 ∧dz1 ∧·· ·∧dzn ∧dzn .

Likewise, the Ricci form

ℜ = (2π)c1 = iR jkdz j ∧dzk = i∂∂ log |gkl|= i∂∂ loga

where ak = f,k(h(z1, ...,zn),z1, ...,zn), a =
n
∑

k=0
|ak|2 ,satisfies

ℜ
n = n!in|ℜ jk|dz1 ∧dz1 ∧·· ·∧dzn ∧dzn .

We calculate that
|−R jk|= |(loga),k j|= a−2n det[a,k ja−a,ka, j]

= a−2n

∣∣∣∣∣∣∣
a,11a−a,1a,1 · · · a,1na−a,1a,n

...
. . .

...
a,n1a−a,na,1 · · · a,nna−a,na,n

∣∣∣∣∣∣∣
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AN INTEGRAL FORMULA 4

= a−2n(

∣∣∣∣∣∣∣
a,11a · · · a,1na

...
. . .

...
a,n1a · · · a,nna

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
−a,1a,1 a,12a · · · a,1na

...
...

. . .
...

−a,na,1 a,n2a · · · a,nna

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
a,11a −a,1a,2 · · · a,1na

...
...

. . .
...

a,n1a −a,na,2 · · · a,nna

∣∣∣∣∣∣∣+ ...+

∣∣∣∣∣∣∣
a,11a · · · a,1n−1a −a,1a,n

...
. . .

...
...

a,n1a · · · a,nn−1a −a,na,n

∣∣∣∣∣∣∣)

= a−2nan−1(a

∣∣∣∣∣∣∣
a,11 · · · a,1n

...
. . .

...
a,n1 · · · a,nn

∣∣∣∣∣∣∣−a,1

∣∣∣∣∣∣∣
a,1 a,12 · · · a,1n
...

...
. . .

...
a,n a,n2 · · · a,nn

∣∣∣∣∣∣∣
+a,2

∣∣∣∣∣∣∣
a,11 −a,1 · · · a,1n

...
...

. . .
...

a,n1 −a,n · · · a,nn

∣∣∣∣∣∣∣− ...+a,n

∣∣∣∣∣∣∣
a,11 · · · a,1n−1 −a,1

...
. . .

...
...

a,n1 · · · a,nn−1 −a,n

∣∣∣∣∣∣∣)

= a−(n+1)

∣∣∣∣∣∣∣∣∣
a a,1 · · · a,n

a,1 a,11 · · · a,1n
...

...
. . .

...
a,n a,n1 · · · a,nn

∣∣∣∣∣∣∣∣∣

= a−(n+1)

∣∣∣∣∣∣∣∣∣
a0 a1 · · · an

a0,1 a1,1 an,1
...

. . .
a0,n a1,n an,n

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣

a0 a0,1 · · · a0,n
a1 a1,1 a1,n
...

. . .
an an,1 an,n

∣∣∣∣∣∣∣∣∣ ;

and

∣∣∣∣∣∣∣∣∣
a0 a0,1 · · · a0,n
a1 a1,1 a1,n
...

. . .
an an,1 an,n

∣∣∣∣∣∣∣∣∣=
∣∣ ak ak, j

∣∣= ∣∣ f,k f,k j + f,k0h, j
∣∣ (k = 0, ...,n, j = 1, ...,n)

=

∣∣∣∣∣∣∣∣∣
f,0 f,01 + f,00h,1 · · · f,0n + f,00h,n
f,1 f,11 + f,10h,1 · · · f,1n + f,10h,n
...

...
. . .

...
f,n f,n1 + f,n0h,1 · · · f,nn + f,n0h,n

∣∣∣∣∣∣∣∣∣
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AN INTEGRAL FORMULA 5

= (

∣∣∣∣∣∣∣∣∣
f,0 f,01 · · · f,0n
f,1 f,11 · · · f,1n
...

...
. . .

...
f,n f,n1 · · · f,nn

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣

f,0 f,00h,1 f,02 · · · f,0n
f,1 f,10h,1 f,12 · · · f,1n
...

...
...

. . .
...

f,n f,n0h,1 f,n2 · · · f,nn

∣∣∣∣∣∣∣∣∣+

...+

∣∣∣∣∣∣∣∣∣
f,0 f,01 · · · f,0(n−1) f,00h,n
f,1 f,11 · · · f,1(n−1) f,10h,n
...

...
. . .

...
...

f,n f,n1 · · · f,n(n−1) f,n0h,n

∣∣∣∣∣∣∣∣∣)

=− 1
f,0

∣∣∣∣∣∣∣∣∣
0 f,0 · · · f,n
f,0 f,00 · · · f,0n
...

...
. . .

...
f,n f,n0 · · · f,nn

∣∣∣∣∣∣∣∣∣ (expand according to the 0th row and use h, j =− f, j
f,0
) .

□

Recall that the degree of a proper smooth map f : M → N between oriented boundaryless manifolds
with N connected is the integer

deg( f ) = ∑
f (p)=q

sgn(d fp) (0 if f−1(q) = /0)

for any regular value q ∈ N. Given a compactly supported differential form ω on N, if M is also
connected, we know that

(4)
∫

M
f ∗ω = deg( f )

∫
N

ω,

which can be proved using de Rham cohomology ([4], Theorem 2.3, page 105). Now we generalize it
to integration of forms with closed support.

Theorem 2.3. Let f : M → N be a proper smooth map of oriented boundaryless manifolds with N
connected, ω a top form on N. Assume further that the number of preimage points of any regular value
is bounded above by the same positive integer. If ω is integrable on N then f ∗ω is integrable on M,
and Equation (4) holds.

Proof. The regular values of f with nonempty preimage constitute an open set Q ⊂ N, and f restricts
to a finite sheeted smooth covering map from f−1(Q) onto Q, with the number of sheets bounded
above by l. Every point q ∈ Q has a neighborhood Vq ⊂ Q whose preimage is a finite disjoint union
of open sets Uiq

′s in M and the restriction of f on each is a diffeomorphism. All such open sets Vq
′s

cover Q, and there is a partition of unity {φ j} subordinate to the cover, with suppφ j ⊆Vj. Since φ jω is
compactly supported in Vj, and f is diffeomorphic on Ui j, we have∫

Ui j

| f ∗(φ jω)|=
∫

V j

|φ jω|
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AN INTEGRAL FORMULA 6

and summing over i,∫
f−1(Q)

| f ∗(φ jω)|=
∫

f−1(V j)
| f ∗(φ jω)| ≤ l

∫
V j

|φ jω|= l
∫

Q
|φ jω|.

Suppose ω is integrable on N hence also on Q,

∑
j

∫
Q
|φ jω|=

∫
Q
|ω|< ∞

by monotone convergence theorem. Therefore

∑
j

∫
f−1(Q)

| f ∗(φ jω)|=
∫

f−1(Q)
| f ∗ω|=

∫
M
| f ∗ω|< ∞

since ∑ j φ j ◦ f = 1 on f−1(Q) and f ∗ω is zero on M\ f−1(Q). That is, f ∗ω is integrable on M.
Now taking orientation into account, ∫

Ui j

f ∗(φ jω) =±
∫

V j

φ jω,

according to whether f is orientation preserving or reversing on Ui j, assuming that Vq
′s are connected.

Summing over i, since all points of Q have the same signed degree m = deg( f ),∫
f−1(Q)

f ∗(φ jω) =
∫

f−1(V j)
f ∗(φ jω) = m

∫
V j

φ jω = m
∫

Q
φ jω .

Assume integrability and sum over j, the right hand side becomes m
∫

Q ω (dominant convergence
theorem), while the left hand side is

∑ j

∫
f−1(Q)

(φ j
◦ f ) f ∗ω =

∫
f−1(Q)

f ∗ω =
∫

M
f ∗ω.

If m ̸= 0, then f is surjective, N\Q is the set of critical values which has measure zero, so∫
M

f ∗ω = m
∫

N
ω.

If m = 0, this equation also holds. □

Proposition 2.4. A nowhere dense analytic subset of a complex manifold has measure zero.

Proof. This is a straightforward consequence of the fact that the zero set of a holomorphic function not
identically zero on a connected open set of Cn has (Lebesgue) measure 0 (Corollary 10, page 9 of [3]),
because a nowhere dense analytic subset A of a complex manifold M can be covered by connected
holomorphic coordinate charts {Uα ,ϕα} such that Uα ∩A is the common zeros of a finite number of
holomorphic functions not identically zero on Uα . □

Remark 2.5. If M is equiped with a volume density which induces a positive regular Borel measure µ

on M by Riesz representation theorem, then A also has µ measure 0.

Proposition 2.6. The dominance and degree of the rational Gauss map of an affine hypersurface is
invariant under nonsingular affine transformations.
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AN INTEGRAL FORMULA 7

Proof. Given an affine transformation

φ(x) = Ax+b, x,b ∈ Kn, A invertible

and a hypersurface { f = 0} ⊂ Kn, let g(x) = f ◦φ(x), then the hypersurface {g = 0} ⊂ Kn is mapped
by φ isomorphically onto { f = 0}, in such a way that their gradient vectors at corresponding points
are related by

(g,1(x), ...,g,n) = ( f,1(φ(x)), ..., f,n)A.

If there is a Zariski open set Q ⊂ Pn−1 such that each q ∈ Q has exactly D preimage points in { f = 0}
under the map x→ [ f,1(x) : · · · : f,n], then the Zariski open set QA= {qA|q∈Q}⊂Pn−1 has the property
that each qA ∈ QA has precisely D preimage points in {g = 0} under the map x → [g,1(x) : · · · : g,n].
That is, their Gauss maps have the same degree. □

Theorem 2.7. If the Gauss map Φ of a hypersurface V = { f (z0, ...,zn) = 0, f prime with degree d} ⊂
Cn+1 is dominant, then deg(Φ)≤ d(d −1)n.

Proof. The image of the dominant rational map Φ contains a nonempty Zariski open set whose points
have precisely m = deg(Φ) preimage points in V 0. Since critical values have measure zero, one of
them, say q ∈ Pn, must be a regular value. After an affine transformation which does not change the
degree by the proposition above, we may assume q = [1 : 0 : · · · : 0]. Each of the m points satisfies the
system of equations

{ f = 0, f, j = 0, j = 1, ...,n}.

By Proposition 2.2, the following determinants are nonzero at these regular points∣∣∣∣ 0 f,k
f, j f, jk

∣∣∣∣ ( j,k = 0, ...,n) =

∣∣∣∣∣∣
0 f,0 0
f,0 f,00 f,0k
0 f, j0 f, jk

∣∣∣∣∣∣ ( j,k = 1, ...,n)

=− f,0

∣∣∣∣ f,0 0
f, j0 f, jk

∣∣∣∣ ( j,k = 1, ...,n),

so all of the m solutions are nonsingular in the sense of Lemma 2.8 below. Since f, j has degree at most
d −1, it follows from the lemma that m ≤ d(d −1)n. □

Lemma 2.8. Let f1, ..., fn ∈ C[z1, ...,zn] be polynomials of degrees d1, ...,dn respectively, then the
number of nonsingular common zeros of them (i.e. at which [ fi, j]1≤i, j≤n has full rank) is at most the
product d1 · · ·dn.

Proof. Let F1, ...,Fn be the homogenizations of f1, ..., fn, respectively, whose degrees do not change.
Then (z1, ...,zn) is a nonsingular solution of the system { f1 = · · ·= fn = 0} if and only if [1 : z1 : · · · : zn]
is a nonsingular projective solution of the system {F1 = · · · = Fn = 0}, thus Lemma 11.5.1 of [2]
applies. □

Theorem 2.9. Given an algebraic hypersurface V = { f (z0, ...,zn) = 0, f prime with degree d} ⊂
Cn+1, let ω = (2π)−1i∂ ∂̄ log(|∇ f |2) defined in a neighborhood of the smooth locus V 0 of V . If
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AN INTEGRAL FORMULA 8∣∣∣∣ 0 f,k
f, j f, jk

∣∣∣∣ ( j,k = 0, ...,n) does not vanish identically on V , then the Gauss map Φ is dominant andd∫
V 0

ω
n = deg(Φ)≤ d(d −1)n .

Proof. Φ is dominant if and only if the smooth map Φ is regular at some point p ∈V 0, in which case
the determinant in the premise of the theorem is nonzero at p by Proposition 2.2. So Theorem 2.7 holds.
Moreover, the smooth locus V 0 of an irreducible complex variety is connected in the analytic topology,
thus a proper closed algebraic subset of V 0 is nowhere dense by the identity theorem of holomorphic
functions on connected complex manifolds, so it has measure zero according to Proposition 2.4.
Therefore the argument before Formula (1) goes through. □

Remark 2.10. Let S =C( f,0
/

f, j, ..., f,n
/

f, j), f, j ̸= 0 ∈C(V ) be the subfield of the rational function
field C(V ) generated over C by these n functions, then Φ is dominant if and only if the degree of the
field extension C(V )⊇ S is finite, in which case deg(Φ) = [C(V ) : S].

Example 2.11. nondegenerate quadrics in affine space
A nondegenerate quadric V ⊆Cn+1 is equivalent under the group of affine transformations to either of
the two canonical ones:

z0 + z2
1 + · · ·+ z2

n = 0,
z2

0 + z2
1 + · · ·+ z2

n = 1.
Since the index is affine invariant by Proposition 2.6, we need only to calculate it for the two canonical
quadrics. For the former,

S =C( f,1
/

f,0, ..., f,n
/

f,0) =C(z1, ...,zn),
C(V ) =C(z0, ...,zn) = S(z0).

Since
z0 =−z2

1 −·· ·− z2
n ∈ S,

we get
[C(V ) : S] = 1.

For the latter,
S =C( f,1

/
f,0, ..., f,n

/
f,0) =C(z1

/
z0, ...,zn

/
z0),

C(V ) =C(z0, ...,zn) = S(z0),
z2

0 = (1+(z1
/

z0)
2 + · · ·+(zn

/
z0)

2)−1 ∈ S, z0 /∈ S,
hence

[C(V ) : S] = 2.

Example 2.12. the surface V = {zp+2 = x2 + y2, p prime} ⊆C3

Let f = x2 + y2 − zp+2, then

S =C( fx
/

fz, fy
/

fz) =C(x
/

zp+1,y
/

zp+1),

and C(V ) =C(x,y,z) = S(z).
Dividing through the equatipon by z2p+2, we get

1
/

zp = x2/z2p+2 + y2/z2p+2,
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AN INTEGRAL FORMULA 9

or
zp = ((x

/
zp+1)2 +(y

/
zp+1)2)−1 = a ∈ S.

Since S contains pth roots of unity, and p is prime, C(V )/S is Kummer extension with degree p.

3. For general smooth affine hypersurfaces

For smooth projective hypersurfaces W = {F(Z0, ...,Zn) = 0} ⊂ Pn, there is a nice formula which
states that the integral of the top exterior power of the Kahler form η equals (up to a constant factor)
the degree d of the hypersurface ([5], page 227)

(5)
∫

W
η

n−1 = d.

One can check that the constant factor is correct by choosing V to be a hyperplane Z0 = 0 ⊂ Pn, then
the formula is consistent with the volume of Pn−1.
Let V = {F(1,z1, ...,zn)= f (z1, ...,zn)= 0}⊂Cn be its affine part, in a neighborhood of which the form

ω = (2π)−1i∂ ∂̄ log(|∇ f |2) is defined. Since |∇ f (z1, ...,zn)|2 =
n
∑
j=1

|F, j(1,z1, ...,zn)|2, the expression

(2π)−1i∂ ∂̄ log(|F,1(Z0,Z1, ...,Zn)|2 + · · ·+ |F,n|2) = ω̃

seems to extend ω , but it needs some interpretation.
n⋃

j=1
{F, j ̸= 0} = A is a nonempty Zariski open

subset of Pn whose preimage under π : Cn+1\{0}→ Pn is the domain of definition of ω̃ .

Proposition 3.1. ω̃ is the pull back via π of a unique form ξ on A that extends ω .

Proof. Recall that given a surjective submersion from manifold M to N with connected fibers, a basic
differential form on M is one that vanishes on any vertical vector, and so does its exterior derivative;
it is the pull back of a unique form on N. Now we show that ω̃ is a basic form. Since ω̃ is closed,
we need only to show that the form vanishes on any vertical vector. Any vertical vector is a linear
combination of Z, Z. Write (repeated indices indicate summation)

ω̃ = (2π)−1i∂ ∂̄ log(|F,1|2 + · · ·+ |F,n|2)
= (2π)−1i∂ ∂̄ logg = (2π)−1i(g−1g, j),kdZ j ∧dZk .

The contraction
Z j(g−1g, j),k = (g−1Z jg, j),k = 0

because
Z jg, j = Z jF,l jF,l = (d −1)F,lF,l = (d −1)g. (l = 1, ...,n, j = 0, ...,n)

Similar calculations show that its contraction with Z is also zero. So ω̃ = π∗ξ for some ξ defined on A.
To see what ξ looks like in an affine chart {Z j ̸= 0} of Pn, note that the chart map is the composition
ϕ = π ◦ τ:

(z0, ..ẑ j..,zn)→ (z0, ..,1, ..,zn)→ [z0 : · · · : 1 : · · · : zn] ;

so
ϕ
∗
ξ = τ

∗
π
∗
ξ ,
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AN INTEGRAL FORMULA 10

which means that we simply substitute (z0, ..,1, ..,zn) for (Z0, ...,Zn) in the expression of π∗ξ . For
example, in the case j = 0,

τ∗π∗ξ = (2π)−1i∂ ∂̄ log(|F,1(1,z1, ...,zn)|2 + · · ·+ |F,n|2)
= (2π)−1i∂ ∂̄ log(| f,1(z1, ...,zn)|2 + · · ·+ | f,n|2),

which coincides with ω defined on A∩{Z0 ̸= 0} ⊂ Pn = {∇ f ̸= 0} ⊂Cn. □

Proposition 3.2. ξ defined above is cohomologous to d −1 times the Kahler form η of Pn on their
common domain of definition.

Proof. Replace F by Z2
0 + · · ·+Z2

n and let l run through 0, ...,n in the proof of Proposition 3.1, we get
that π∗η is also a basic form. We have

π
∗
ξ − (d −1)π∗

η = d(i∂ log(
n

∑
j=0

|Z j|2(d−1)/
n

∑
j=1

|F, j|2)) = dβ

on π−1(A). β is a basic form with respect to the submersion π onto A because

β = i∂ log f = i f−1 f, jdZ j ,

vertical vector Z = Z j∂ j, any vertical vector is a linear combination of Z, Z,

β (Z) = i f−1 f, jZ j = i f−1 d
dt |t=1 f (tZ0, ..., tZn)

= i f−1 d
dt |t=1 f (Z0, ...,Zn) = 0 = β (Z).

Therefore, β = π∗α , and

π
∗(ξ − (d −1)η) = π

∗
ξ − (d −1)π∗

η = dβ = dπ
∗
α = π

∗dα,

and by uniqueness, ξ − (d −1)η = dα on A, which proves the claim. □

Sometimes ω can extend to a neighborhood of the whole of W , this happens when A contains W .

Proposition 3.3. If the degree d hypersurface W = {F = 0} ⊂ Pn (d ≥ 2, n ≥ 2) is nonsingular and
transverse to the hyperplane L = {Z0 = 0}, then ξ can be defined on a neighborhood of the whole of W.
Furthermore, the premise is a Zariski open condition and satisfied by a general degree d hypersurface.

Proof. The transversality condition can be expressed as the Jacobian matrix having full rank at nonzero
points where F(0,Z1, ...,Zn) = 0 [

1 0 · · · 0
F,0 F,1 · · · F,n

]
,

or equivalently, the system of equations

{F = F,1 = · · ·= F,n = 0}
has no nonzero solution with Z0 = 0, so L∩W is contained in A. On the other hand, on {Z0 ̸= 0}∩W ,
by Euler’s identity,

Z0F,0 +Z1F,1 · · ·+ZnF,n = 0,
F,1 = · · ·= F,n = 0 would imply F,0 = 0, contradicting the smoothness hypothesis. So A contains W .
Now assume nonsingularity, which is a Zariski open condition as we know. That is, the projective
space Pm that parameterizes all degree d hypersurfaces in Pn contains a Zariski open subset U such
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that that a hypersurface is nonsingular if and only if it corresponds to a parameter value in U . The
system

{F = F,1 = · · ·= F,n = 0}
cannot have projective solution with Z0 ̸= 0 by the argument above, so the hypersurface is transversal
to L if and only if the system has no projective solution regardless of Z0. To show that this is also a
Zariski open condition, we work with a generic F ∈ Z[Y0, ...,Ym,Z0, ...,Zn] with m+1 indeterminate
coefficients. The system above defines a Zariski closed set in Pn ×Pm which projects to a Zariski
closed set B ⊂ Pm, because the projection Pn ×Pm → Pm is a closed map in the Zariski topology.
Points in U ∩Bc correspond to those hypersurfaces that are both nonsingular and transverse to L. To
show that U ∩Bc is nonempty, we need only to find a particular hypersurface satisfying the condition.

Set F =
n
∑
j=0

a jZd
j , a j ̸= 0, whose gradient never vanishes in Pn. If ∇F(Z0, ...,Zn) is proportional to

(1,0, ...,0), then Z1 = · · ·= Zn = 0; there is no such point on {F = 0} ⊂ Pn, so it is transverse to L. □

Theorem 3.4. For a nonsingular hypersurface V = { f (z1, ...,zn) = 0, f prime with degree d} ⊂Cn,
let ω = (2π)−1i∂ ∂̄ log(|∇ f |2) defined in a neighborhood of V . If the projective completion W of V is
also nonsingular and transverse to {Z0 = 0} ⊂ Pn, then

∫
V ωn−1 = d(d −1)n−1.

Proof. The formula is trivially true in the case of d = 1, henceforth we assume d ≥ 2. By Proposition
3.3, ω extends to a form ξ defined on a neighborhood of W , such that ξ is cohomologous to (d −1)η ,
so ∫

V
ω

n−1 =
∫

W
ξ

n−1 = (d −1)n−1
∫

W
η

n−1 = d(d −1)n−1

by Proposition 2.4 and Formula (5). □

Remark 3.5. If we parameterize affine hypersurfaces by the same parameter that parameterizes their
projective completions, then the theorem holds for a general affine hypersurface by Proposition 3.3.

4. For general smooth affine plane curves and beyond

Cohn-Vossen’s inequality ([9], section 4, Theorem 10 or [8]) states that a complete boundaryless finitely
connected (i.e. homeomorphic to a closed surface N minus a finite number l of points) Riemannian
2-manifold M whose curvature integral exists satisfies∫

M
KdM ≤ 2πχ(M),

where the Euler number
χ(M) = χ(N)− l.

By relation (2), we apply Theorem 2.9 in the case of irreducible affine plane curve V of degree d,∫
V 0

KdV 0 =−
∫

V
ω ≥ 2πd(1−d).

Corollary 4.1. For a nonsingular irreducible complex affine plane curve V of degree d,

d(1−d) ≤ 1
2π

∫
V KdV ≤ χ(V ).
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Proof. V = { f = 0} is a complete Riemann surface with the induced metric tensor because it is a
properly embedded submanifold of the complete Euclidean space C2. It is biholomorphic to a Zariski
open subset of a smooth projective curve, so V is finitely connected. Integrability of ω means that V
has finite total absolute curvature, hence Cohn-Vossen’s inequality applies. □

Example 4.2. Euler number of the affine part of a complex nonsingular irreducible projective plane
curve
Suppose the curve V ′ ⊂ P2 has degree d, then its Euler number χ(V ′) = d(3−d). Its affine part V is
V ′ minus a finite number l ≤ d of points, so

χ(V ) = χ(V ′)− l ≥ d(3−d)−d = d(2−d),

consistent with the inequality above.

Theorem 4.3. If the projective completion V of an affine plane curve V ⊂C2 is smooth and transverse
to the line at infinity (this is satisfied by a general affine hypersurface by Remark 3.5), then

1
2π

∫
V

KdV = 2χ(V )−χ(V ) = χ(V )−1−
√

1−χ(V ) .

Proof. Suppose the defing polynomial f (z1,z2) of V is irreducible and has degree d ≥ 1, the highest
degree terms H of f is homogeneous of degree d, so the homogenization F of f can be written as

F(Z0,Z1,Z2) = H(Z1,Z2)+Z0G(Z0,Z1,Z2) .

Since
∇F(0,Z1,Z2) = (G(0,Z1,Z2),∇H(Z1,Z2)),

V is transverse to {Z0 = 0} in P2, or equivalently,

(a1,a2) ̸= (0,0), H(a1,a2) = 0 ⇒ ∇H(a1,a2) ̸= 0.

H is a product of linear factors, and if one of them, say a1Z1 +a2Z2 has multiplicity bigger than one,
then

H(a2,−a1) = 0, ∇H(a2,−a1) = 0,

a contradiction. So F has exactly d distinct projective zeros in {Z0 = 0}. Therefore the Euler number

χ(V ) = χ(V )−d = d(3−d)−d = d(2−d).

Theorem 3.4 and relation (2) tell us that
1

2π

∫
V KdV = d(1−d) = χ(V )−d = 2χ(V )−χ(V ).

Solve the equation χ(V ) = d(2−d) for d, we get

d = 1+
√

1−χ(V ),

where we have dropped the solution d = 1−
√

1−χ(V ) since d ≥ 1. Finally,

1
2π

∫
V

KdV = χ(V )−d = χ(V )−1−
√

1−χ(V ) .

□
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Moreover, Yau and Yang proposed some generalizations of Cohn-Vossen inequality to higher
dimensional complete Riemannian and Kahler manifolds respectively ([10], Questions 1.1 and 1.2),
later Liu solved Yang’s question under some additional assumptions ([7], Theorem 1.6) such as
nonnegative bisectional curvature. But a complex hypersurface in complex Euclidean space has
nonpositive holomorphic sectional and bisectional curvature ([1], page 816, prop 1). Thus our integral
formula in this paper suggests that Yang’s question in the special case of integrating the top exterior
power of the Ricci form (proportional to the first Chern form) over complete noncompact Kahler
manifolds might also have a positive answer under other or no curvature assumptions.
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