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Abstract. We study the C∗-algebra C∗(κ) generated by the Koop-
man representation κ = κµ of a locally compact groupoid G acting on a
measure space (X,µ), where µ is quasi-invariant for the action. We in-
terpret κ as an induced representation and we prove that if the groupoid
GnX is amenable, then κ is weakly contained in the regular represen-
tation ρ = ρµ associated to µ, so we have a surjective homomorphism
C∗
r (G) → C∗(κ). We consider the particular case of Renault-Deaconu

groupoids G = G(X,T ) acting on their unit space X and show that in
some cases C∗(κ) ∼= C∗(G).

1. introduction

The concept of a group action on a space was generalized to a groupoid
action and it has applications to dynamical systems, representation theory
and operator algebras. If groups can roughly be described as the set of
symmetries of certain objects, then groupoids can be thought as the set of
symmetries of fibered objects.

A unitary representation of a locally compact groupoid G endowed with
a Haar system is a triple L = (µ,G(0) ∗H, L̂) consisting of a quasi-invariant

measure µ on the unit space G(0) of G, a Borel Hilbert bundle G(0) ∗H over
G(0), and a Borel homomorphism L̂ : G → Iso(G(0) ∗ H) such that L̂(g) =
(r(g), Lg, s(g)) and Lg : H(s(g))→ H(r(g)) is a Hilbert space isomorphism
between fibers (cf. [25, Definition II.1.6]; see also [36, Definition 7.7],[26,
27]).

A Koopman representation of G is a unitary representation of G deter-
mined by a pair (X,µ) consisting of a locally compact space X on which
G acts leaving the measure µ quasi-invariant. That is, X is fibered over
G(0) by a continuous open surjection ω : X → G(0), and µ admits a disin-

tegration dµ(·) =

∫
Xu

dµu(·)dµ̃(u) where each µu is a probability measure

supported on Xu := ω−1(u) and µ̃ = ω∗(µ) is a probability measure on G(0)
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2 VALENTIN DEACONU AND MARIUS IONESCU

that is quasi-invariant in the usual sense. The Hilbert bundle H for the
Koopman representation determined by (X,µ) is {L2(Xu, µu)}u∈G(0) and
the representation L, denoted here by κµ, is given by

κµg : L2(Xs(g), µs(g))→ L2(Xr(g), µr(g)),

κµg ξ(x) := D(g−1, x)
1
2 ξ(g−1x),

where D(g, ·) is the Radon-Nikodym derivative dgµs(g)/dµr(g) (see Section
4 for details). It is our main goal to study the C∗-algebra C∗(κµ) generated
by the Koopman representation.

We begin by fixing some notation associated with a locally compact
Hausdorff groupoid G with a Haar sytem. We recall the definition of a
groupoid action G y X on a locally compact space X fibered over the
unit space of G and of additional concepts like orbits, stabilizers and tran-
sitive actions. We illustrate with several examples of actions, including
the cases X = G(0), X = G, X = G/H for H a closed subgroupoid and

X =
⋃

x∈G(0)

G(x, S), where G(x, S) is the Cayley graph for a generating set

S. We also review the definition of the action groupoid G n X and of the
concepts of groupoid fibration and groupoid covering.

We continue with quasi-invariant measures on X for G y X and relate
them to measures for the action groupoid G n X. We recall some facts
about groupoid representations, induced representations and amenability.
The Koopman representation κµ : G → B(L2(X,µ)) associated to a quasi-
invariant probability measure µ on X can be understood as the induced rep-
resentation of the trivial representation ι of the groupoid G nX. Induced
representations in the case G is a Borel transformation group groupoid al-
ready appeared in Definition 3.5 of [23]. When G acts on itself by left
multiplication and the support of the quasi-invariant measure is full, the
Koopman representation is just the left regular representation.

We prefer to work with unitary representations of groupoids which ap-
pear in a natural way in our context rather than with the integrated forms
at the level of C∗-algebras. Most of our results could be recast in terms of
Hilbert modules à la Rieffel. Holkar has already shown in [12] that Rieffel’s
construction of induced representations is valid for topological groupoid cor-
respondences. We believe that Renault’s perspective from [32] of inducing
unitary representation at the groupoid level is better suited for examples
and to illustrate how one can recover the classical definitions and results
going back to Mackey’s work on induced representations of groups.

We define C∗(κµ) to be the closure of κµ(Cc(G)) in B(L2(X,µ)) and we
try to relate it to C∗r (G). In our main result, Theorem 5.3, we prove that
if the action groupoid GnX is σ-compact and amenable, and the measure
µ has full support, then the Koopman representation is weakly contained
in the left regular representation associated to µ, so we have a surjective

19 Sep 2024 10:28:45 PDT
231229-Deaconu Version 2 - Submitted to Rocky Mountain J. Math.



GROUPOID ACTIONS AND KOOPMAN REPRESENTATIONS 3

homomorphism C∗r (G)→ C∗(κµ). In some cases (see the examples involving
graph C∗-algebras in section 6), this is an isomorphism.

In the case when the Renault-Deaconu groupoid G(X,T ) associated to
a local homeomorphism T : X → X acts on a space Y , it is known that
the action groupoid is isomorphic to another Renault-Deaconu groupoid, see
[15]. The form of quasi-invariant measures for G(X,T ) with given Radon-
Nikodym derivative is studied in several papers, like [18, 15, 30]. We illus-
trate the theory with several examples in the last section of the paper.

Since we rely on [32] for some of our constructions and definitions, we are
assuming that our groupoids and spaces are Hausdorff, locally compact and
second countable.

Acknowledgments. The authors are grateful to the anonymous referee for
pointing out several typos and gaps in the exposition. The authors would
also like to thank Marcelo Laca whose suggestions led to an improvement
of our results, recovering the ideal structure of a graph C∗-algebra from
particular Koopman representations.

2. Groupoid actions

A groupoid G is a small category with inverses. We will use s and r for
the source and range maps s, r : G→ G(0), where G(0) is the unit space. We
always assume that G has a locally compact Hausdorff topology compatible
with the algebraic structure. The set of composable pairs is denoted by G(2).
Let Gu be the set of g ∈ G with s(g) = u, let Gv be the set of g ∈ G with

r(g) = v, and let Gvu = Gu ∩Gv. Two units x, y ∈ G(0) belong to the same
G-orbit if there exists g ∈ G such that s(g) = x and r(g) = y. When every

G-orbit is dense in G(0), the groupoid G is called minimal. The isotropy
group of a unit x ∈ G(0) is the group

Gxx := {g ∈ G | s(g) = r(g) = x},

and the isotropy bundle is

G′ := {g ∈ G | s(g) = r(g)} =
⋃

x∈G(0)

Gxx.

A groupoid G is said to be principal if all isotropy groups are trivial, or
equivalently, G′ = G(0).

To construct C∗-algebras from a groupoid G, we will assume that G is
second countable with a Haar system. Recall that a Haar system is given
by a family of Radon measures {λu}u∈G(0) such that supp(λu) = Gu and for
any f ∈ Cc(G), the map

u 7→
∫
G
f(g)dλu(g)
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4 VALENTIN DEACONU AND MARIUS IONESCU

is continuous and we have∫
G
f(hg)dλs(h)(g) =

∫
G
f(g)dλr(h)(g).

It is known that the existence of a Haar system implies that the range
and the source maps are open. We assume throughout the paper that our
groupoids have Haar systems.

An étale groupoid is a topological groupoid where the range map r (and
necessarily the source map s) is a local homeomorphism. The unit space

G(0) of an étale groupoid is always an open subset of G and a Haar system
is given by the counting measures.

Definition 2.1. Let G be a topological groupoid. A bisection is a subset
U ⊆ G such that s and r are both injective when restricted to U .

An open bisection U determines a homeomorphism πU = (r|U )◦ (s|U )−1 :
s(U) → r(U), πU (x) = r(s−1(x)). An étale groupoid has sufficiently many
open bisections which generate its topology.

Example 2.2. LetX be a locally compact Hausdorff space and let T : X → X
be a local homeomorphism. The Renault-Deaconu groupoid associated to
T is

G(X,T ) = {(x,m− n, y) ∈ X × Z×X : Tm(x) = Tn(y)}
with operations

(x, k, y)(y, `, z) = (x, k + `, z), (x, k, y)−1 = (y,−k, x).

We identify the unit space of G(X,T ) with X via the map (x, 0, x) 7→ x.
The range and source maps are then

r(x, k, y) = x, s(x, k, y) = y.

A basis for the topology consists of sets of the form

Z(U,m, n, V ) = {(x,m− n, y) : Tm(x) = Tn(y), x ∈ U, y ∈ V },
where U, V are open subsets of X such that Tm|U and Tn|V are one-to-
one and Tm(U) = Tn(V ). These are bisections for G(X,T ), and with this
topology, G(X,T ) becomes an étale groupoid.

We now recall the definition of a groupoid action on a space given in [36,
Definition 2.1] or [2, Definition 4.1]:

Definition 2.3. A topological groupoid G is said to act (on the left) on a
locally compact space X, if there are given a continuous surjection ω : X →
G(0), called the anchor or moment map, and a continuous map

G ∗X → X, write (g, x) 7→ g · x = gx,

where
G ∗X = {(g, x) ∈ G×X | s(g) = ω(x)},

that satisfy
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GROUPOID ACTIONS AND KOOPMAN REPRESENTATIONS 5

i) ω(g · x) = r(g) for all (g, x) ∈ G ∗X,
ii) (g2, x) ∈ G ∗ X, (g1, g2) ∈ G(2) implies (g1g2, x), (g1, g2 · x) ∈ G ∗ X

and
g1 · (g2 · x) = (g1g2) · x,

iii) ω(x) · x = x for all x ∈ X.

We denote by Xu the fiber ω−1(u) over u ∈ G(0).

We should mention that in [20, Section 2] the authors required that the
anchor map is open as well. This assumption was dropped in [36, Definition
2.1], see the comments in [36, Remark 2.2].

The action of G on X is called transitive if given x, y ∈ X, there is g ∈ G
with g · x = y and is free if g · x = x for some x implies g = ω(x) ∈ G(0).

The set of fixed points in X is defined as

XG = {x ∈ X : g · x = x for all g ∈ Gω(x)ω(x)}.

If G has trivial isotropy, then XG = X.
The orbit of x ∈ X is

Gx = {g · x : g ∈ G, s(g) = ω(x)}.
The set of orbits is denoted by G\X and has the quotient topology. The
action of G on X is called minimal if every orbit Gx is dense in X. For a
transitive action there is a single orbit.

For x ∈ X, its stabilizer group is

G(x) = {g ∈ G : g · x = x},
which is a subgroup of Guu for u = ω(x).

Remark 2.4. Note that if the action of G on X is transitive, then G(x) ∼=
G(y) for x, y ∈ X. Indeed, if h · x = y, then g 7→ hgh−1 is an isomorphism
G(x)→ G(y).

Example 2.5. A groupoid G with open source and range maps acts on its
unit space G(0) by g · s(g) = r(g). In this case, ω = id. The groupoid is
called transitive if this action is transitive. Notice that g · u = u for all
g ∈ Guu, in particular G(u) = Guu and (G(0))G = G(0). A transitive groupoid

with discrete unit space is of the form G(0) ×K ×G(0), where K is a copy
of the isotropy group. The operations are

(x, g, y)(y, h, z) = (x, gh, z), (x, g, y)−1 = (y, g−1, x),

where x, y, z ∈ X and g, h ∈ K.

Example 2.6. A groupoid G acts on itself by left multiplication with ω(g) =
r(g). More generally, if G is a groupoid and H is a closed subgroupoid
with the same unit space, we can form the set of left cosets G/H since H
acts on G on the right via multiplication. Since we assume that G and
H have Haar systems, the corresponding range and source maps are open.
Therefore G/H is locally compact and Hausdorff because H acts properly
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6 VALENTIN DEACONU AND MARIUS IONESCU

on G (see [20, §2]). The groupoid G acts on the G/H by left multiplication.

Here ω : G/H → G(0), ω(gH) = r(g) is an open map (see [20, §2]). Since
g1H = g2H if and only if g−11 g2 ∈ H, if follows that r(g1) = r(g2) and ω is
well defined. Note that this action is not necessarily transitive, since given
g1H, g2H ∈ G/H, the element g2g

−1
1 is defined only for s(g1) = s(g2).

Remark 2.7. If G acts on X, then the fibered product

G ∗X = {(g, x) ∈ G×X | s(g) = ω(x)}

has a natural structure of groupoid, called the semi-direct product or action
groupoid and is denoted by GnX, where

(GnX)(2) = {((g1, x1), (g2, x2)) | x1 = g2 · x2},

with operations

(g1, g2 · x2)(g2, x2) = (g1g2, x2), (g, x)−1 = (g−1, g · x).

The source and range maps of GnX are

s(g, x) = (s(g), x) = (ω(x), x), r(g, x) = (r(g), g · x) = (ω(g · x), g · x),

and the unit space (GnX)(0) may be identified with X via the map

i : X → GnX, i(x) = (ω(x), x).

Note that the source and range maps defined above are open even if the
anchor map ω is not assumed to be open (see [2, page 10]).

Remark 2.8. Recall that if λ = {λu}u∈G(0) is a Haar system for G then

λ = {λx}x∈X defined via∫
(GnX)x

f(g, y) dλ
x
(g, y) :=

∫
Gω(x)

f(g, g−1 · x) dλω(x)(g)

for all f ∈ Cc(GnX) and x ∈ X is a Haar system on GnX. We will use
this Haar system for the action groupoid, see Ex. 2.1.7 on page 37 in [36]
and [2, page 10].

Recall from [7, Definition 2.1] and [9, Definition 3.2] that a groupoid fi-
bration is a morphism of locally compact groupoids π : G → H with the
property that the map

G→ H ∗G(0), g 7→ (π(g), s(g))

is open and surjective, where H ∗G(0) = {(h, x) ∈ H×G(0) | s(h) = π(x)}.
In particular, for any h ∈ H and any x ∈ G(0) with π(x) = s(h) there is
g ∈ G with s(g) = x and π(g) = h. If g is unique for any such h and x, then
π is called a groupoid covering. Note that for a groupoid covering we have
π−1(H(0)) = G(0).

For G acting on X with ω : X → G(0) open, the projection map

π : GnX → G, π(g, x) = g
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GROUPOID ACTIONS AND KOOPMAN REPRESENTATIONS 7

is a covering of groupoids. Conversely, given a covering of groupoids π :
G→ H, there is an action of H on X = G(0) with ω = π|G(0) : G(0) → H(0)

and G ∼= H n X. The action is defined by h · x = r(g), where g ∈ G is
unique with π(g) = h and the isomorphism is given by g 7→ (π(g), s(g)).

Note that for G acting on X = G(0) by g ·s(g) = r(g), we get GnX ∼= G.

Example 2.9. Consider E = (E0, E1, r, s) a topological graph and G a topo-
logical groupoid. Recall that E0, E1 are locally compact Hausdorff spaces,
r : E1 → E0 is continuous and s : E1 → E0 is a local homeomorphism.
Let c : E0 ∪ E1 → G be a continuous function such that c(E0) ⊂ G(0),

c(s(e)) = s(c(e)), c(r(e)) = r(c(e)) and such that (c(e1), c(e2)) ∈ G(2) for
e1e2 ∈ E2. The map c is called a cocycle and it can be extended to finite
paths by c(e1e2 · · · ek) = c(e1)c(e2) · · · c(ek).

The skew-product graph E ×c G has vertices

E0 ×c G = {(v, g) : c(v) = s(g)),

edges

E1 ×c G = {(e, g) : (g, c(e)) ∈ G(2)}
and incidence maps

r̃(e, g) = (r(e), gc(e)), s̃(e, g) = (s(e), g).

Then (E0 ×c G,E1 ×c G, r̃, s̃) becomes a topological graph since s̃ is a local
homeomorphism and r̃ is continuous. Moreover, G acts freely on E0×cG by
h·(v, g) = (v, hg), where ω : E0×cG→ G(0), ω(v, g) = r(g). Similarly, G acts

freely on E1×cG by h·(e, g) = (e, hg) with ω : E1×cG→ G(0), ω(e, g) = r(g).
The action commutes with the incidence maps and the quotient graph is
isomorphic to E.

Example 2.10. Let G be a topological groupoid. We say that Y ⊂ G(0)

is a topological transversal if Y contains an open transversal (recall that a
transversal intersects every orbit). A compact generating pair (S, Y ) of G
is made of a compact subset S ⊂ G and a compact topological transversal
Y such that for every g ∈ G|Y = {g ∈ G : s(g), r(g) ∈ Y } there exists n

such that
⋃

0≤k≤n
(S ∪S−1)k is a neighborhood of g in G|Y . Here, for a subset

A ⊂ G, Ak is the set of all products a1a2 · · · ak where ai ∈ A.
If (S, Y ) is a compact generating pair for G and x ∈ Y , the Cayley graph

G(x, S) is the directed graph with vertex set GxY = {g ∈ G : s(g) ∈ Y, r(g) =
x} such that there is an edge from g1 to g2 whenever there is h ∈ S with

g2 = g1h. If G(0) is compact, then the groupoid G with generating set

(S,G(0)) acts freely on the union of Cayley graphs
⋃

x∈G(0)

G(x, S) by left

multiplication.
In particular, if σ : T → T, σ(z) = zd for d ≥ 2 and G = G(T, σ) is the

groupoid of germs of the pseudogroup generated by σ (see section 2 in [29]),
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8 VALENTIN DEACONU AND MARIUS IONESCU

then we can take the generating set S to be a finite set of germs of maps
σ−1 : σ(U) → U , where U ⊆ T is an open set such that σ : U → σ(U)
is a homeomorphism. Then the Cayley graphs G(z, S) are regular trees of
degree d + 1 and the groupoid G acts on their union. For more on Cayley
graphs of groupoids, see [21].

3. Quasi-invariant measures and representations

Let G be a locally compact groupoid with left Haar system {λu}u∈G(0)

and let µ be a measure on G(0). The measure ν = µ ◦ λ on G induced by µ
is defined via ∫

G
f(g) dν(g) =

∫
G(0)

∫
Gu
f(g) dλu(g)dµ(u)

for all f ∈ Cc(G). Let ν−1 be the push-forward of ν under the inverse map.

Definition 3.1. A measure µ on G(0) is called quasi-invariant ([25, Defini-
tion I.3.2]) if its induced measure ν is equivalent to its inverse ν−1, i.e. they
have the same nullsets (we write ν ∼ ν−1 in this case).

Remark 3.2. For an étale groupoid G, a Radon measure µ on G(0) is quasi-
invariant if for all open bisections U , the measures (πU ∗µ)|s(U) and µ|r(U) are

equivalent. Here πU : s(U) → r(U), πU (x) = r(s−1(x)) and (πU ∗µ)(B) =

µ(π−1U (B)) for B ⊂ G(0) a Borel set (see Definition 2.3.8 and Exercise 2.3.9
in [31]).

Remark 3.3. Recall from [25, Proposition I.3.3] that if ∆µ : G → (0,∞) is
a Radon-Nikodym derivative such that∫

G(0)

∫
Gu
f(g) dλu(g)dµ(u) =

∫
G(0)

∫
Gu

f(g)∆µ(g) dλu(g)dµ(u),

where λu is the push forward of λu under the inversion map for all u ∈ G(0),
then ∆µ is a cocycle a.e. Moreover, [24, Theorem 3.2] implies that one can

choose ∆µ to be a strict cocycle: ∆µ(gh) = ∆µ(g)∆µ(h) for all (g, h) ∈ G(2)

and ∆µ(g−1) = ∆µ(g)−1 for all g ∈ G.

Example 3.4. Let σ : T→ T be σ(z) = zd for d ≥ 2 an integer. Let G(T, σ)
be the associated Renault-Deaconu groupoid, isomorphic to the groupoid of
germs of the pseudogroup generated by σ. Then the Haar measure µ on T is
quasi-invariant and ∆µ(z, k− l, w) = (1/d)k−l for all (z, k− l, w) ∈ G(T, σ).
This fact follows from [14, §4.5] and [31, Proposition 3.4.1].
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GROUPOID ACTIONS AND KOOPMAN REPRESENTATIONS 9

We assume now that the topological groupoid G acts on the space X via
ω : X → G(0). Recall that if µ′ is a finite nontrivial measure on X then
there is a probability measure µ on X such that µ′ ∼ µ, i.e. they have the
same nullsets.

Definition 3.5. Suppose that µ is a Radon probability measure on X and
let µ̃ := ω∗(µ) on G(0). That is, µ̃(B) = µ(ω−1(B)) for all Borel sets

B ⊂ G(0). A decomposition of µ relative to ω is a disintegration of µ along
ω (see, for example, [35, §I.2]):

(1) suppµu ⊆ Xu = ω−1(u) for µ̃-a.e. u ∈ G(0) and

(2) for all bounded Borel functions f onX, the map u 7→
∫
Xu

f(x) dµu(x)

is bounded and Borel on G(0) and∫
X
f(x) dµ(x) =

∫
G(0)

∫
Xu

f(x) dµu(x) dµ̃(u).

Definition 3.6. Let µ be a Radon probability measure on X. We say that
µ is G-quasi-invariant for the action of G on X if it admits a decomposition
{µu} relative to ω such that both of the following conditions hold:

(1) For µ̃ ◦ λ-a.e. g ∈ G, the measure gµs(g) is equivalent with µr(g),

where gµs(g)(B) := µs(g)(g
−1B) for any Borel set B ⊆ Xr(g); and

(2) the measure µ̃ = ω∗(µ) on G(0) is quasi-invariant for the groupoid
G.

Both of the two conditions in the definition are needed as the following
examples show.

Example 3.7. (1) Assume that G is a locally compact group acting on a

locally compact Hausdorff space. Therefore G(0) = {e} and ω(x) = e
for all x ∈ X. Let µ be a probability measure on X. Then µ̃ = δe,
the point mass at e, and µe = µ. Hence µ is G-quasi-invariant in
the sense of Definition 3.6 if and only if it is G-quasi-invariant in
the classical sense: the measure gµ is equivalent to µ for all g ∈ G,
where gµ(B) = µ(g−1B).

(2) Assume that G is a locally compact Hausdorff groupoid that acts

on its unit space X = G(0) as in Example 2.5. Thus ω(x) = x for

all x ∈ G(0), µ̃ = µ, Xx = {x}, and, hence, µx = δx. Therefore a

measure µ on G(0) is G-quasi-invariant in the sense of Definition 3.6
if and only if µ is a quasi-invariant measure for G in the usual sense.

Renault defined in [32, Definition 2.2] a G-quasi-invariant measure to
be a quasi-invariant measure for the action groupoid. The following theo-
rem proves that the two definitions are equivalent. For the case of Borel
groupoids, this result is Corollary 5.3.11 in [3] and a similar result appears
in [32, Proposition 3.1].
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10 VALENTIN DEACONU AND MARIUS IONESCU

Theorem 3.8. If the groupoid G acts on X, then a measure µ on X is G-
quasi-invariant iff µ is quasi-invariant for the action groupoid G nX with
unit space X.

Proof. Assume that µ is a G-quasi-invariant measure on X. For g ∈ G,
let D(g, ·) be the Radon-Nikodym derivative d(gµs(g))/dµr(g). Note that
since µ is a G-quasi-invariant measure and {λu} is a Haar system on G,
(G n X,µ ◦ λ) is a measured groupoid (see [22],[24]); the Haar system λ
on G n X was introduced in Remark 2.8. Therefore, using virtually the
same arguments as in the proof of [35, Corollary D.34], we can choose D to

be Borel and D(g1g2, x) = D(g1, g2 · x)D(g2, x) for all (g1, g2) ∈ G(2) and
µ-almost all x. Let ∆µ̃ be the modular function associated with µ̃ = ω∗(µ)

and set ∆µ(g, x) := D(g, x)∆µ̃(g) for all (g, x) ∈ G n X. Let ν := µ ◦ λ.
We prove that ν ∼ ν−1 and that a Radon-Nikodym derivative is given by
∆µ(g, x). Let f) be a bounded Borel function on GoX. We have∫
GnX

f(g, x) dν(g, x) =

∫
X

∫
Gω(x)

f(g, g−1 · x) dλω(x)(g) dµ(x)

=

∫
G(0)

∫
Xu

∫
Gu
f(g, g−1 · x) dλu(g) dµu(x) dµ̃(u)

which, by Fubini’s theorem,

=

∫
G(0)

∫
Gu

∫
Xu

f(g, g−1 · x) dµu(x) dλu(g) dµ̃(u)

which, since gµs(g) ∼ µr(g),

=

∫
G(0)

∫
Gu

∫
Xs(g)

f(g, x)D(g, x) dµs(g)(x) dλu(g) dµ̃(u)

which, since µ̃ is quasi-invariant for G,

=

∫
G(0)

∫
Gu

∫
Xu

f(g, x)D(g, x) dµu(x)∆µ̃(g) dλu(g) dµ̃(u)

which, using Fubini’s theorem again,

=

∫
G(0)

∫
Xu

∫
Gu

f(g, x)D(g, x)∆µ̃(g) dλu(g)µu(x) dµ̃(u)

=

∫
X

∫
Gu

f(g, x)D(g, x)∆µ̃(g) dλu(g) dµ(x)

=

∫
GnX

f(g, x)∆µ(g, x) dν−1(g, x).

Thus µ is quasi-invariant for GnX.
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Assume now that µ is a quasi-invariant measure on X for the action
groupoid G nX and let ∆µ(g, x) be the associated Radon-Nikodym deriv-
ative. Using [35, Theorem I.5] we disintegrate µ with respect to µ̃ = ω∗(µ),∫

X
f(x) dµ(x) =

∫
G(0)

∫
Xu

f(x) dµu(x) dµ̃(u),

where {µu} is a family of Radon probability measures with suppµu ⊆ Xu

for all f bounded Borel functions on X. We prove first that µ̃ is a quasi-
invariant measure for G. Let f be a bounded Borel function on G. Then

µ̃ ◦ λ(f) =

∫
G(0)

∫
Gu
f(g) dλu(g) dµ̃(u) =

∫
X

∫
Gω(x)

f(g) dλω(x)(g) dµ(x)

which by the quasi-invariance of µ

=

∫
X

∫
Gω(x)

f(g)∆µ(g, x) dλω(x)(g) dµ(x)

=

∫
G(0)

∫
Xu

∫
Gu

f(g)∆µ(g, x) dλu(x) dµu(x) dµ̃(u)

which by Fubini’s theorem

=

∫
G(0)

∫
Gu

f(g)

(∫
Xu

∆µ(g, x) dµu(x)

)
dλu(g) dµ̃(u)

which, by defining ∆µ̃(g) :=

∫
Xs(g)

∆µ(g, x) dµs(g)(x),

=

∫
G(0)

∫
Gu

f(g)∆µ̃(g) dλu(g) dµ̃(u) =

∫
G
f(g)∆µ̃(g) d(µ̃ ◦ λ)−1(g).

Therefore µ̃ ◦ λ ∼ (µ̃ ◦ λ)−1 and, thus, µ̃ is quasi-invariant for G.
Let g ∈ G. Then the set U := {(g, x) : x ∈ Xs(g)} is a measurable

bisection with respect to ν = µ◦λ. Note that s(U) = Xs(g) and r(U) = Xr(g).
Using the fact that {λu} is a Haar system for G, one can check that ν is
quasi-invariant under U in the sense of [25, Definition I.3.18 i)]. Since µ
is quasi-invariant for G n X, Proposition I.3.20 of [25] implies that µ is
quasi-invariant under U in the sense of [25, Definition I.3.18 ii)]. Thus, by
definition, gµs(g) ∼ µr(g). �

Definition 3.9. Given a groupoid G with Haar system {λu}u∈G(0) , if µ is

any Radon measure on G(0), then the regular representation on µ, denoted
Indµ, acts on L2(G, ν−1) via

(3.0.1) Indµ(f)(ξ)(g) =

∫
G
f(h)ξ(h−1g) dλr(g)(h)

for all f ∈ Cc(G), ξ ∈ L2(G, ν−1), and g ∈ G ([25, Definition II.1.8]; see also
[36, Proposition 1.41]).

19 Sep 2024 10:28:45 PDT
231229-Deaconu Version 2 - Submitted to Rocky Mountain J. Math.



12 VALENTIN DEACONU AND MARIUS IONESCU

If f ∈ Cc(G), then its reduced norm is

(3.0.2) ‖f‖r := sup
{
‖ Ind δu(f)‖ : u ∈ G(0)

}
,

where δu is the point mass at u ∈ G(0). The reduced C∗-algebra of G,
C∗r (G), is the completion of Cc(G) under the reduced norm. If µ is any

Radon measure on G(0) with full support then ‖f‖r = ‖(Indµ)(f)‖ for all
f ∈ Cc(G) ([36, Corollary 5.23]).

Recall ([25, Definition II.1.6]; see also [36, Definition 7.7],[26, 27]) that a
unitary representation of a groupoid G with Haar system λ = {λu}u∈G(0) is

a triple L := (µ,G(0) ∗ H, L̂) consisting of a quasi-invariant measure µ on

G(0), a Borel Hilbert bundle G(0) ∗H over G(0), and a Borel homomorphism
L̂ : G→ Iso(G(0) ∗ H) such that L̂(g) = (r(g), Lg, s(g)) and Lg : H(s(g))→
H(r(g)) is a Hilbert space isomorphism. Here H(u) denotes the fiber over

u ∈ G(0).
Given a Borel Hilbert bundle G(0) ∗ H and a measure µ on G(0), we can

define the Hilbert space

L2(G(0) ∗ H, µ) = {f ∈ B(G(0) ∗ H) : u 7→ ‖f(u)‖2H(u) is µ− integrable},

where B(G(0) ∗H) is the set of Borel sections of the bundle (see [36, Section
3.5] for an outline of Borel bundles and [35, Appendix F] for a detailed study
of them).

Given a unitary representation L = (µ,G(0)∗H, L̂) of G there is an I-norm

bounded representation L of Cc(G) on L2(G(0) ∗H, µ) via the vector-valued
integral

L(f)ξ(u) =

∫
G
f(g)Lgξ(s(g))∆µ(g)−1/2 dλu(g)

for ξ ∈ L2(G(0) ∗H, µ), where ∆µ is the modular function defined by µ. The
representation L is called the integrated form of the unitary representation
(see, for example, [36, Definition 7.14]). Moreover, by the powerful disin-
tegration theorem of Renault ([26]; see also [36, Theorem 8.2]) any such
representation of Cc(G) is equivalent to the integrated form of a unitary
representation of the second countable groupoid G.

The integrated form of a groupoid representation extends to a represen-
tation of the C∗-algebra of the groupoid ([36, Corollary 8.5]).

Remark 3.10. Two unitary representations L = (µ,G(0) ∗ H, L̂) and L′ =

(µ,G(0) ∗H′, L̂′) of G having the same quasi-invariant measure µ are equiva-

lent, L ∼= L′, if G(0) ∗H and G(0) ∗H′ are isomorphic as Hilbert bundles (see,

for example, [35, Definition F.22]) via a Borel bundle map U : G(0) ∗ H →
G(0) ∗ H′ which intertwines L and L′ in the sense that U(r(g)) ◦ Lg =
L′g ◦ U(s(g)) for all g ∈ G ([25, Definition II.1.6]). Recall that U is deter-

mined by a family of unitaries U(u) : H(u)→ H′(u) for all u ∈ G(0).
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Given two unitary representations L = (µ,G(0) ∗H, L̂) and L′ = (µ,G(0) ∗
H′, L̂′), we can construct their direct sum L⊕L′ = (µ,G(0)∗(H⊕H′), L̂⊕ L′)
and their tensor product L⊗ L′ = (µ,G(0) ∗ (H⊗H′), L̂⊗ L′) by taking

L̂⊕ L′(g) = (r(g), Lg ⊕ L′g, s(g)), L̂⊗ L′(g) = (r(g), Lg ⊗ L′g, s(g)),

where the direct sums and the tensor products of the Hilbert bundles are
done fiberwise.

Example 3.11. The trivial representation ι = (µ,G(0) × C, ι̂) on µ, where

µ is a quasi-invariant measure, G(0) × C is the trivial one-dimensional line
bundle and ιg(z) = z for all z ∈ C. Note that L ⊗ ι ∼= L for all unitary
representations L of G with the same quasi-invariant measure µ.

Its integrated form acts on L2(G(0), µ) via

ι(f)(ξ)(u) =

∫
G
f(γ)ξ(s(γ))∆µ(γ)−1/2 dλu(γ)

for all f ∈ Cc(G) and ξ ∈ L2(G(0), µ).

Example 3.12. Assume that µ is a quasi-invariant measure on G(0). Let
L2(G,λ) := {L2(Gu, λu)}u∈G(0) . The (left) regular representation ρ of G on

µ is the unitary representation (µ,G(0) ∗ L2(G,λ), ρ̂), where

ρg : L2(Gs(g), λs(g))→ L2(Gr(g), λr(g))

is defined via ρg(ξ)(h) = ξ(g−1h) for all ξ ∈ L2(Gs(g), λs(g)) and h ∈ Gr(g).
Even though in general ρ depends on µ, to ease the notation we write ρ
instead of ρµ, especially when the measure µ is fixed.

Its integrated form is called the (left) regular representation of Cc(G) on µ
and it is unitarily equivalent with Indµ defined in (3.0.1) via W : L2(G, ν)→
L2(G, ν−1), Wξ = ξ∆

1/2
µ ([25, Proposition II.1.10]; see also [19, Definition

3.29 and Exercise 3.30]). Therefore, if µ has full support, ‖f‖r = ‖ρ(f)‖ for
all f ∈ Cc(G).

Recall that if A is a C∗-algebra, π is a representation of A and S is a set
of representations of A, the following assertions are equivalent:

(1) kerπ ⊇
⋂
{kerσ | σ ∈ S};

(2) each vector state associated with π is a weak-∗ limit of states that are
sums of vector functionals associated to representations in S.

If either assertion holds, we say that π is weakly contained in S and write
π ≺ S. If S = {σ} has only one element, we say that π is weakly contained in
σ and write π ≺ σ. In this case there is a surjective homomorphism C∗(σ)→
C∗(π) given by σ(a) 7→ π(a), where C∗(π) is the C∗-algebra generated by
π(a) for a ∈ A. We say that π and σ are weakly equivalent if and only if
π ≺ σ and σ ≺ π; this happens if and only if kerπ = kerσ, and in this case
C∗(π) ∼= C∗(σ).
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14 VALENTIN DEACONU AND MARIUS IONESCU

A unitary groupoid representation π is wekly contained in a unitary repre-
sentation σ if the integrated form of π is weakly contained in the integrated
form of σ.

The following definitions and results about amenability are taken from [3]
and [4]; see also chapter 9 in [36].

Definition 3.13. (see Definition 2.6 in [4])
Let G be a locally compact groupoid with Haar system {λu}. A quasi-

invariant measure µ on G(0) is amenable if there is a net {fi} of non-negative
measurable functions on G such that

(1) For all i and a.e. u ∈ G(0) we have

∫
G
fidλ

u = 1;

(2) The functions g 7→
∫
G
|fi(g−1h) − fi(h)|dλr(g)(h) tend to the zero

function in the weak-∗-topology of L∞(G,µ ◦ λ).
The groupoid is called measurewise amenable in case each quasi-invariant

measure on G(0) is amenable ([3, §3.3]).

Definition 3.14. ([3, Definition 2.2.2]) We say that a locally compact
groupoid G (maybe without a Haar system) is topologically amenable if it
admits a continuous approximate invariant mean, i.e. a net {mi} of contin-
uous systems of probability measures for r which is approximately invariant,

in the sense that the function g 7→ ‖gms(g)
i −mr(g)

i ‖1 tends to zero uniformly
on the compact subsets of G, where ‖ · ‖1 denotes the total variation norm.

When G admits a continuous Haar system {λu}, the following Proposition
follows from [3, Proposition 2.2.6] since the action of G on itself is proper.

Proposition 3.15. A locally compact groupoid G with Haar system {λu} is
topologically amenable if and only if there exists a net {fi} of non-negative
compactly supported continuous functions on G such that

(i) For all i and u ∈ G(0) we have

∫
G
fidλ

u = 1;

(ii) The functions g 7→
∫
G
|fi(g−1h) − fi(h)|dλr(g)(h) tend to the zero

function uniformly on the compact sets of G.

Topological amenability implies measurewise amenability ([3, Proposition
3.3.5]). The converse is true under some additional hypotheses. For exam-
ple, [3, Theorem 3.3.7] proves that topological amenability is equivalent to
measurewise amenability if G has a continuous Haar system and has count-
able orbits.

Example 3.16. The Renault-Deaconu groupoid G(X,T ) constructed from
a local homeomorphism T : X → X as in Example 2.2 is topologically
amenable, see [29, Proposition 2.9] and [33, Proposition 3.1].

Note that amenability for groupoids is equivalent to the weak containment
of the trivial representation ι = (µ,G(0)×C, ι̂) in the regular representation
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GROUPOID ACTIONS AND KOOPMAN REPRESENTATIONS 15

ρ = (µ,G(0) ∗ L2(G,λ), ρ̂), see Proposition 3.4 in [28]. In particular, for
amenable groupoids there is a surjective homomorphism C∗r (G)→ C∗(ι).

4. Inducing representations from GnX to G and the Koopman
representation

Assume now that the groupoid G acts (on the left) on X and let GnX
be the action groupoid. We assume as in the previous section that λ =
{λu}u∈G(0) is a Haar system on G and the corresponding Haar system on

G n X is denoted by λ = {λx}x∈X (see Remark 2.8). Following the well
known case of the group action groupoid (see, for example, [1, Page 5]
for group actions and [27, Page 17] for groupoid dynamical systems) we
define the induction map from unitary representations of GnX to unitary
representations of G. Let L = (µ,X ∗ H, L̂) be a unitary representation of
G n X and let µ̃ = ω∗(µ). Since µ is quasi-invariant for G n X, Theorem
3.8 implies that µ̃ is quasi-invariant for G and there is a decomposition of
µ relative to ω such that gµs(g) ∼ µr(g). Let D : G n X → R+ be a Borel

choice of the Radon-Nikodym derivative
dgµs(g)

dµr(g)
such that D(g1g2, x) =

D(g1, g2 · x)D(g2, x) for all (g1, g2) ∈ G(2) and µ-almost all x (see the proof

of Theorem 3.8 ). For each u ∈ G(0) define

K(u) := L2(Xu, µu) :=

∫ ⊕
Xu

H(x) dµu(x),

where Xu = ω−1(u). The Borel structure on H defines a natural Borel

structure on K := {K(u)}u∈G(0) making G(0) ∗ K a Borel Hilbert bundle.
Specifically, let {fn} be a fundamental sequence for X ∗H (see, for example,
[35, Definition F.1]). Then one can define a sequence {gn} of sections of

G(0) ∗ K via gn(u)(x) = fn(x). This sequence satisfies the hypotheses of
[35, Proposition F.8] and, thus, there is a unique analytic Borel structure

on G(0) ∗K such that G(0) ∗K becomes an analytic Hilbert bundle and {gn}
is a fundamental sequence.

Definition 4.1. The induced representation of a unitary representation L =
(µ,X ∗H, L̂) of GnX to G is the unitary representation IndL = (µ̃, G(0) ∗
K, Ind L̂) of G, where Ind L̂ : G→ Iso(G(0)∗K), Ind L̂g = (r(g), IndLg, s(g))
and, for g ∈ G, IndLg : K(s(g))→ K(r(g)) is defined via

IndLgξ(x) = D(g−1, x)1/2L(g,g−1·x)
(
ξ(g−1 · x)

)
for all ξ ∈ K(s(g)).

Remark 4.2. Note that the above Definition can be deduced from [32, Sec-
tions 3.2 and 3.3] with a bit of effort. Indeed, let Z = G n X viewed as a
topological space. Then G acts properly on the left on Z via the natural
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16 VALENTIN DEACONU AND MARIUS IONESCU

action, and G n X acts properly and freely on the right on Z, since the
action of any groupoid on itself is free and proper. Moreover, one can check
that Z is a groupoid correspondence in the sense of Holkar (see, for exam-
ple, Definition 2.3 of [32]), with the cocycle ∆ in the definition being the
Radon-Nikodym derivative on GnX corresponding to µ and the system of
measures α = {αu} given by αu = λu for all u ∈ G(0). Then, following the
steps in Section 3.2 and 3.3 of [32], one can recover our Definition 4.1.

As discussed above, the induced representation of G extends to an I-
bounded representation IndL : Cc(G) → B(L2(G(0) ∗ K, µ̃)) via the vector
integral

IndL(f)ξ(u) =

∫
Gu
f(g) IndLgξ(s(g))∆µ̃(g)−1/2 dλu(g)

for all ξ ∈ L2(G(0) ∗ K, µ̃). Equivalently, the induced representation is char-
acterized by (see [36, Proposition 7.12])

〈IndL(f)ξ , η〉

=

∫
G(0)

∫
Gu
f(g)

〈
IndLgξ(s(g)) , η(r(g))

〉
∆µ̃(g)−1/2 dλu(g) dµ̃(u)

=

∫
G(0)

∫
Gu
f(g)

∫
Xu

D(g−1, x)1/2
〈
L(g,g−1·x)ξ(s(g))(g−1 · x) , η(r(g))(x)

〉
dµu(x)∆µ̃(g)−1/2 dλu(g) dµ̃(u)

=

∫
G(0)

∫
Xu

∫
Gu
f(g)∆µ(g−1, x)

1/2〈
L(g,g−1·x)ξ(s(g))(g−1 · x) , η(r(g))(x)

〉
dλu(g)dµu(x)dµ̃(u)

=

∫
X

∫
Gω(x)

f(g)∆µ(g−1, x)
1/2〈

L(g,g−1·x)ξ(s(g))(g−1 · x) , η(r(g))(x)
〉

dλω(x)(g) dµ(x),

for all ξ, η ∈ L2(G(0) ∗ K, µ̃), where
〈
· , ·
〉

represent the inner products in

the corresponding Hilbert spaces and ∆µ(g−1, x) = D(g−1, x)∆µ̃(g−1) is the
Radon-Nikodym derivative on GnX corresponding to µ.

Definition 4.3. Assuming that the groupoid G acts on X, let µ be a G-
quasi-invariant measure on X or, equivalently, a quasi-invariant measure for
G nX. We define the Koopman representation κµ of G to be the induced
representation of the trivial representation ι = (µ,X×C, ι̂) of GnX, where,
recall from Example 3.11, ι(g,x)(z) = z for all (g, x) ∈ G n X and z ∈ C.
Since the measure µ is typically fixed, we write shortly κ for κµ when there
is no possibility for confusion. In general, the relationship between κ and µ
is complicated, and we plan to address this issue in a future project. In the
last section, we illustrate this relationship in some particular examples.
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Therefore the Koopman representation κ is given by (µ̃, G(0)∗K, κ̂), where
K = {L2(Xu, µu)}u∈G(0) and, for g ∈ G,

κg : L2(Xs(g), µs(g))→ L2(Xr(g), µr(g))

is given by

κgξ(x) = D(g−1, x)1/2ξ(g−1 · x),

which recovers the classical definition for group actions (see Definition 13.A.5
in [5] for example).

Hence κ extends to an I-bounded representation of Cc(G) on L2(G(0) ∗
K, µ̃) via

κ(f)ξ(u) =

∫
Gu
f(g)κgξ(s(g))∆µ̃(g)−1/2 dλu(g).

Note that we can identify L2(G(0) ∗ K, µ̃) with L2(X,µ) via the unitary

V : L2(G(0) ∗ K, µ̃) → L2(X,µ), V (ξ)(x) = ξ(ω(x))(x). Therefore we can
view the Koopman representation as a representation of Cc(G) on L2(X,µ)
via

κ(f)ξ(x) =

∫
Gω(x)

f(g)κg(ξ)(x)∆µ̃(g)−1/2 dλω(x)(g)

=

∫
Gω(x)

f(g)ξ(g−1 · x)∆µ(g−1, x)1/2 dλω(x)(g),

where recall that ∆µ(g−1, x) = D(g−1, x)∆µ̃(g−1). Equivalently, κ is char-
acterized by

〈κ(f)ξ , η〉 =

∫
X

∫
Gω(x)

f(g)ξ(g−1 · x)η(x)∆µ(g−1, x)1/2dλω(x)(g)dµ(x)

=

∫
G(0)

∫
Xu

∫
Gu
f(g)ξ(g−1 · x)η(x)∆µ(g−1, x)1/2dλu(g)dµu(x)dµ̃(u)

for all ξ, η ∈ L2(X,µ).
We denote by C∗(κ) the closure of κ(Cc(G)) in the operator norm of

B(L2(X,µ)).

Example 4.4. Let (G,E) be a level transitive self-similar groupoid action
(see [8]) such that |uE1| = p ≥ 2 is constant for all u ∈ E0. Then G acts
on X = E∞ and the uniform probability measure ν on E∞ is G-invariant.
Then the C∗-algebra C∗(κ) of the Koopman representation of G on L2(X, ν)
is residually finite dimensional and it has a normalized trace τ0. For G an
amenable group and for an essentially free self-similar action, it is proved in
Theorem 9.14 of [10] that C∗(κ) ∼= C∗r (G). We believe that this isomorphism
holds true for level transitive self-similar amenable groupoid actions.
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18 VALENTIN DEACONU AND MARIUS IONESCU

Remark 4.5. If X = G(0) and G acts on X via g · s(g) = r(g), then, since

G n G(0) ∼= G, the Koopman representation κµ of G associated to a G-
quasi-invariant measure µ on G(0) is given by the trivial representation ι =
(µ,G(0) × C, ι̂).

If X = G and G acts on itself by left multiplication, then assuming that
µ has full support, the Koopman representation κµ is just the left regular
representation ρ = ρG. If X = G/H where H is a closed subgroupoid, the

Koopman representation is the quasi-regular representation ρG/H .

Remark 4.6. Given a closed subgroupoid H of G with the same unit space
such that H is endowed with a Haar system β and G is endowed with a
Haar system λ, recall that G acts on G/H with ω : G/H → G(0), ω(gH) =

r(g). Given a unitary representation L = (ν,H(0) ∗ K, L̂) of (H,β), one can
induce it to a representation of (G,λ) following the steps in [32, Section

3]. Specifically, under the assumption that H(0) = G(0), one can define a
groupoid correspondence from (G,λ) to (H,β) in the sense of [32, Definition

2.3] by setting X = G and αu = λu for all u ∈ G(0). Therefore, ν defines
a G-quasi-invariant measure µ on G/H as in [32, Section 3.2]. Let µ̃ and
{µu}u∈G(0) as in Definition 3.6. Then the induced representation IndGH L of

G is (µ̃, G(0) ∗H, IndGH L̂), where H is the Hilbert bundle obtained from the
completion of

{ξ : G→ K : ξ(g) ∈ K(s(g)) and ξ(gh) = Lh−1ξ(g)}

and

(IndGH L)gξ(x) = D(g−1, xH)1/2ξ(g−1x).

We haveH(u) = L2((G/H)u∗K, µu) =

∫ ⊕
(G/H)u

K(x)dµu(x), where (G/H)u =

{gH ∈ G/H : r(g) = u}. The induced representation of a direct sum is the
direct sum of induced representations.

Example 4.7. If H = G(0) and ι = (µ,G(0)×C, ι̂) is the trivial representation
of H with ιu(z) = z, then IndGH ι is the left regular representation ρG of G.
For a general closed subgroupoid H with a Haar system, IndGH ι is the quasi-

regular representation ρG/H of G on L2(G/H,µ).

The following result is inspired from the similar result in the case of
groups, see [6, Appendix E].

Proposition 4.8. Suppose H is a closed subgroupoid of G with the same
unit space. Let L = (µ,G(0) ∗H, L̂) be a unitary representation of G and let

M = (µ,H(0) ∗ K, M̂) be a unitary representation of H. Then L⊗ IndGHM
is equivalent to IndGH((L|H)⊗M).

Proof. If G(0) ∗ M and G(0) ∗ L are the Hilbert bundles of IndGHM and

IndGH((L|H) ⊗M) respectively, define a Borel bundle map U : G(0) ∗ (H ⊗
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GROUPOID ACTIONS AND KOOPMAN REPRESENTATIONS 19

M)→ G(0) ∗ L by

U(u)(ξ ⊗ η)(x) = Lx−1ξ ⊗ η(x), ∀u ∈ G(0) and x ∈ Gu

and verify that U(u) is unitary for each u. Moreover, U intertwines Ind((L|H)⊗
M) and L⊗ IndGHM since((

IndGH(L|H ⊗M)g
)
U(s(g))(ξ ⊗ η)

)
(x) = D(g−1, xH)1/2Lx−1gξ⊗η(g−1x) =

= U(r(g))
(
Lgξ ⊗ (IndGHM)gη

)
(x).

�

Corollary 4.9. Let G be a locally compact groupoid and let H be a closed
subgroupoid with the same unit space. If L = (µ,G(0) ∗ H, L̂) is a rep-

resentation of G, then IndGH(L|H) is equivalent to L ⊗ ρG/H , where ρG/H

is the quasi-regular representation of G on L2(G/H,µ). In particular, for

H = G(0), L⊗ ρG is equivalent to (dimL)⊗ ρG, where (dimL)u = idH(u).

Proof. For the first part, we apply Proposition 4.8 for M the trivial repre-
sentation of H. For the second part, L|G(0) is a direct sum of trivial repre-

sentations on G(0) ∗ C, where for u ∈ G(0), C(u) = Cn(u) if n(u) = dimH(u)
is finite and C(u) is infinite dimensional otherwise. �

5. Properties of the Koopman representation

We still assume that the groupoid G acts (on the left) on X and let GnX
denote the action groupoid.

Lemma 5.1. Let L = (µ,X ∗ H, L̂) be a unitary representation of G nX.
Then for all non-negative f ∈ Cc(G) we have

‖ IndL(f)‖ ≤ ‖κµ(f)‖.

Proof. Recall that K(u) := L2(Xu, µu) :=

∫ ⊕
Xu

H(x) dµu(x), where Xu =

ω−1(u). For ξ ∈ L2(G(0)∗K) define ξ̃(x) = ‖ξ(ω(x))(x)‖. Then ξ̃ ∈ L2(X,µ)

and ‖ξ̃‖ = ‖ξ‖.
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20 VALENTIN DEACONU AND MARIUS IONESCU

Let f ∈ Cc(G) be a non-negative function, and let ξ, η ∈ L2(G(0) ∗ K).
We have

|〈IndL(f)ξ , η〉| =∣∣∣∣∫
G(0)

∫
Gu

∫
Xu

f(g)∆µ(g−1, x)1/2
〈
L(g,g−1·x)ξ(s(g))(g−1 · x) , η(r(g))(x)

〉
dµu(x)dλu(g)dµ̃(u)|

≤
∫
G(0)

∫
Gu

∫
Xu

f(g)∆µ(g−1, x)1/2
∣∣〈L(g,g−1·x)ξ(s(g))(g−1 · x) , η(r(g))(x)

〉∣∣
dµu(x)dλu(g)dµ̃(u)

which, since L(g,g−1·x) is a Hilbert space isomorphism,

≤
∫
G(0)

∫
Gu

∫
Xu

f(g)∆µ(g−1, x)1/2‖ξ(s(g))(g−1 · x)‖‖η(r(g))(x)‖

dµu(x)dλu(g)dµ̃(u)

=

∫
G(0)

∫
Gu

∫
Xu

f(g)∆µ(g−1, x)1/2ξ̃(g−1 · x)η̃(x)dµu(x)dλu(g)dµ̃(u)

= 〈κµ(f)ξ̃ , η̃〉 ≤ ‖κµ(f)‖‖ξ̃‖‖η̃‖ = ‖κµ(f)‖‖ξ‖‖η‖

The result follows. �

Theorem 5.2. With the notation as above, assume that µ is a G-quasi-
invariant probability measure on X with full support and let µ̃ be the push-
forward quasi-invariant measure on G(0). Then, for all non-negative f ∈
Cc(G) we have ‖ Ind µ̃(f)‖ ≤ ‖κµ(f)‖.

Proof. Recall from Example 3.12 that Ind µ̃ is unitarily equivalent with the
integrated form of the unitary representation ρ = (µ̃, G(0) ∗ L2(λ), ρ̂) of G,
where L2(λ) = {L2(Gu, λu)}u∈G(0) , and, for g ∈ G, ρg(ξ)(h) = ξ(g−1h) for

all h ∈ Gr(g).
Consider the unitary representation L = (µ,X ∗ H, L̂) of G n X, where

H(x) = L2(Gω(x), λω(x)) for all x ∈ X, and, for (g, x) ∈ G n X, L(g,x) :
H(x)→ H(g · x) is given by

L(g,x)(ξ)(h) = ξ(g−1h) for all ξ ∈ H(x) and h ∈ Gr(g).

Let f ∈ Cc(G) be a non-negative function. By Lemma 5.1, ‖ IndL(f)‖ ≤
‖κµ(f)‖. We prove next that ‖ρ(f)‖ ≤ ‖ IndL(f)‖. This implies the result.

By definition, IndL is given by (µ̃, G(0) ∗ K, Ind L̂), where

K(u) =

∫ ⊕
Xu

L2(Gu, λu) dµu(x).
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GROUPOID ACTIONS AND KOOPMAN REPRESENTATIONS 21

While K(u) ∼= L2(Xu, µu)⊗ L2(Gu, λu), we prefer to view elements of K as
sections ξ : Xu → L2(Gu, λu) endowed with the norm

‖ξ‖2 =

∫
Xu

∫
Gu
|ξ(x)(g)|2 dλu(g)dµu(x).

Then, for g ∈ G, ξ ∈ K(s(g)), x ∈ Xr(g) and h ∈ Gr(g),

IndLg(ξ)(x)(h) = D(g−1, x)1/2L(g,g−1·x)(ξ(g
−1 · x))(h)

= D(g−1, x)1/2ξ(g−1 · x)(g−1h),

for all ξ ∈ K(s(g)). Therefore, for f ∈ Cc(G), IndL(f) acts on L2(G(0)∗K, µ̃)
via

〈IndL(f)ξ , η〉 =

∫
G(0)

∫
Gu
f(g)

〈
IndLgξ(s(g)) , η(r(g))

〉
∆µ̃(g)−1/2 dλu(g)dµ̃(u)

=

∫
G(0)

∫
Gu

∫
Xu

∫
Gu
f(g)ξ(s(g))(g−1 · x)(g−1h)η(u)(x)(h)∆µ(g−1, x)1/2

dλu(h) dµu(x) dλu(g)dµ̃(u),

for all ξ, η ∈ L2(G(0) ∗ K, µ̃).

Let f ∈ Cc(G) be a non-negative function and let ξ, η ∈ L2(G(0) ∗
L2(λ), µ̃). Then ξ defines an element ξ̃ ∈ L2(G(0) ∗ K, µ̃) via ξ̃(u)(x)(h) :=

ξ(u)(h) and ‖ξ‖ = ‖ξ̃‖ since µu is a probability measure for all u ∈ G(0).

Similarly η defines η̃ ∈ L2(G(0) ∗ K, µ̃) such that ‖η‖ = ‖η̃‖. We have

|〈ρ(f)ξ , η〉| =
∣∣∣∣∫
G(0)

∫
Gu
f(g)

〈
ρg(ξ(s(g))) , η(u)

〉
∆µ̃(g)−1/2 dλu(g) dµ̃(u)

∣∣∣∣
=

∣∣∣∣∫
G(0)

∫
Gu

∫
Gu
f(g)ξ(s(g))(g−1h)η(u)(h)∆µ̃(g)−1/2dλu(h)dλu(g)dµ̃(u)

∣∣∣∣
which, since ∆µ̃(g−1) =

∫
Xu

∆µ(g−1, x)dµu(x) a.e. and ∆µ̃ is a cocycle,

=

∣∣∣∣∫
G0

∫
Gu

∫
Xu

∫
Gu
f(g)ξ̃(s(g))(g−1 · x)(g−1h)η̃(u)(x)(h)∆µ(g−1, x)1/2

dλu(h)dµu(x)dλu(g)dµ̃(u)|

=
∣∣∣〈IndL(f)ξ̃ , η̃〉

∣∣∣ ≤ ‖ IndL(f)‖‖ξ̃‖‖η̃‖ = ‖ IndL(f)‖‖ξ‖‖η‖.

It follows that ‖ρ(f)‖ ≤ ‖ IndL(f)‖ ≤ ‖κµ(f)‖. �

Theorem 5.3. Assume that the action groupoid (GnX,λ) is topologically
amenable. Assume also that µ has full support. Then the Koopman rep-
resentation κµ is weakly contained in the left regular representation ρ. In
particular, we have a surjection C∗r (G)→ C∗(κµ).
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22 VALENTIN DEACONU AND MARIUS IONESCU

We will write in the following ρG for the left regular representation on µ̃
of G and ρGnX for the left regular representation on µ of GnX. We break
the proof of the theorem into two parts. First we prove that the Koop-
man representation κ is weakly contained into the induced representation
Ind ρGnX . In the second part we prove that ‖ Ind ρGnX(f)‖ ≤ ‖ρG(f)‖ for
all f ∈ Cc(G). This implies the result.

Using [3, Proposition 2.2.7] (see the discussion following Definition 2.6 of
[33] for the equivalence between the various definitions of amenability in the
σ-compact case), there is a sequence of functions {fn} ∈ Cc(G n X) such
that the following conditions hold:

(5.0.1)

∫
Gω(x)

|fn(g, g−1x)|2 dλω(x)(g) = 1 for all x ∈ X

and

(5.0.2) lim
n→∞

∫
Gr(h)

|fn(h−1g, g−1hx)− fn(g, g−1hx)|2 dλr(h)(g) = 0

uniformly on compact subsets of GnX.

Proposition 5.4. Assume the hypotheses of Theorem 5.3. Then the Koop-
man representation is weakly contained in Ind ρGnX . Therefore, ‖κµ(f)‖ ≤
‖ Ind ρGnX(f)‖ for all f ∈ Cc(G).

Proof. The left regular representation ρGnX on µ of G n X is the unitary
representation (µ,X ∗ L2(G nX,λ), ρ̂GnX), where the fiber over x ∈ X of

the Hilbert bundle is L2((G nX)x, λ
x
). We will write 〈· , ·〉x for the inner

product in the fiber over x. It is useful to keep in mind that

(GnX)x = {(g, g−1x) : g ∈ Gω(x)}.

If (h, x) ∈ G n X then ρGnX
(h,x) : L2((G n X)x, λ

x
) → L2((G n X)hx, λ

hx
) is

given by
ρGnX
(h,x) ξ(g, g

−1hx) = ξ(h−1g, g−1hx).

Therefore if ξ ∈ L2((GnX)x, λ
x
) and η ∈ L2((GnX)hx, λ

hx
),

〈ρGnX
(h,x) ξ, η〉x =

∫
Gr(h)

ξ(h−1g, g−1hx)η(g, g−1hx) dλr(h)(g).

Then the induced representation Ind ρGnX is the unitary representation
(µ̃, G(0) ∗ L, Ind ρ̂GnX) of G, where

L(u) =

∫ ⊕
Xu

L2((GnX)x, λ
x
) dµu(x) ∼= L2(Xu, µu)⊗ L2(Gu, λu) ∼= K(u).

Thus, if ξ, η ∈ L(u)

〈ξ , η〉u =

∫
Xu

〈ξ(x), η(x)〉x dµu(x)

=

∫
Xu

∫
Gu
ξ(x)(g, g−1x)η(x)(g, g−1x) dλu(g) dµu(x).
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GROUPOID ACTIONS AND KOOPMAN REPRESENTATIONS 23

If h ∈ G, Ind ρGnX
h : L(s(h))→ L(r(h)) is given via

(Ind ρGnX
h ξ)(x)(g, g−1x) = D(h−1, x)1/2ξ(h−1x)(h−1g, g−1x)

for all ξ ∈ L(s(h)), x ∈ Xr(h) and g ∈ Gr(h). Therefore, if ξ ∈ L(s(h)) and
η ∈ L(r(h)) we have

〈Ind ρGnX
h ξ , η〉r(h)

=

∫
Xr(h)

∫
Gr(h)

D(h−1, x)1/2ξ(h−1x)(h−1g, g−1x)η(x)(g, g−1x) dλr(h)(g)dµr(h)(x).

The integrated form of Ind ρGnX of Cc(G) acts on L2(G(0) ∗ L, µ̃) via

〈Ind ρGnX(f)ξ , η〉

=

∫
G(0)

∫
Gu
f(h)

∫
Xu

∫
Gu
D(h−1, x)1/2ξ(s(h))(h−1x)(h−1g, g−1x)

· η(u)(x)(g, g−1x) dλu(g)dµu(x)∆µ̃(g)−1/2 dλu(h)dµ̃(u)

for all f ∈ Cc(G) and ξ, η ∈ L2(G(0) ∗ L, µ̃).
Let κµ be the Koopman representation acting on L2(X,µ) and let ξ ∈

L2(X,µ). For n ∈ N define ξn ∈ L2(G(0) ∗ L, µ̃) via

ξn(u)(x)(g, g−1x) = ξ(x)fn(g, g−1x).

We check that indeed ξn ∈ L2(G(0) ∗ L, µ̃) for all n ∈ N and ‖ξn‖ = ‖ξ‖:

‖ξn‖2 =

∫
G(0)

‖ξ(u)‖2u dµ̃(u)

=

∫
G(0)

∫
Xu

∫
Gu
|ξn(u)(x)(g, g−1x)|2 dλu(g)dµu(x)dµ̃(u)

=

∫
G(0)

∫
Xu

|ξ(x)|2
(∫

Gu
|fn(g, g−1x)|2 dλu(g)

)
dµu(x)dµ̃(x)

=

∫
G(0)

∫
Xu

|ξ(x)|2 dµu(x)dµ̃(u) = ‖ξ‖2.

We used (5.0.1) in the second to last equality.

Next we prove that lim
n→∞

〈Ind ρGnX(f)ξn , ξn〉 = 〈κµ(f)ξ, ξ〉 for all f ∈
Cc(G). This implies the weak containment of κµ in Ind ρGnX . We have

〈Ind ρGnX(f)ξn , ξn〉 =

∫
G(0)

∫
Gu
f(h)

∫
Xu

ξ(h−1x)ξ(x)D(h−1, x)

·
(∫

Gu
fn(h−1g, g−1x)fn(g, g−1x) dλu(g)

)
dµu(x)∆µ̃(h)−1/2dλu(h)dµ̃(u)
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Equation 5.0.2 implies that (see the proof of [3, Proposition 2.2.7])

2 lim
n→∞

∫
Gu
fn(h−1g, g−1x)fn(g, g−1x)dλu(g) =

lim
n→∞

(∫
Gu
|fn(h−1g, g−1x)|2dλu(h) +

∫
Gu
|fn(g, g−1x)|2dλu(g)

)
= 2

uniformly on compact subsets of GnX. Therefore

lim
n→∞

〈Ind ρGnX(f)ξn , ξn〉

=

∫
G(0)

∫
Gu
f(h)

∫
Xu

ξ(h−1x)ξ(x)D(h−1, x)dµu(x)∆µ̃(h)−1/2dλu(h)dµ̃(u)

= 〈κµ(f)ξ , ξ〉.
�

The hypotheses of amenability and σ-compactness of G are not needed
for the following proposition.

Proposition 5.5. Assume that µ has full support. Then ‖ Ind ρGnX(f)‖ ≤
‖ρG(f)‖ for all f ∈ Cc(G).

Proof. Note that the representation Ind ρGnX is equivalent with IndL of
Theorem 5.2. Indeed, if u ∈ G(0), V (u) : L(u)→ K(u) defined via

V (u)(ξ)(x)(g) = ξ(x)(g, g−1x) where r(g) = ω(x) = u

is a unitary. Moreover V intertwines Ind ρGnX and IndL in the sense of
Remark 3.10.

Therefore Ind ρGnX ∼= κµ ⊗ ρG and by Corollary 4.9 we have κµ ⊗ ρG

equivalent to (dimκµ)⊗ ρG. It follows that for all f ∈ Cc(G) we have

‖κµ(f)‖ ≤ ‖(κµ ⊗ ρG)(f)‖ = ‖((dimκµ)⊗ ρG)(f)‖ = ‖ρG(f)‖.
�

6. The Renault-Deaconu groupoid

Let X be a locally compact Hausdorff space and let T : X → X be a local
homeomorphism. Assume that T is positively expansive and exact (see [18,
Page 2069]). Then the Renault-Deaconu groupoid G(X,T ) associated to T
was described in Example 2.2.

Remark 6.1. A probability measure µ on X = G(0) defines a state φµ on

C∗(G(X,T )) such that φµ(f) =

∫
G(0)

f |G(0)dµ for f ∈ Cc(G(X,T )). It

is known that φµ is a KMS state for the R-action given by αt(f)(γ) =

eitc(γ)f(γ) at inverse temperature β iff µ is quasi-invariant for G(X,T ) with
Radon-Nikodym derivative Dµ = e−βc, see [18, Theorem 3.5]. Here
c : G(X,T )→ Z, c(x, k, y) = k.

19 Sep 2024 10:28:45 PDT
231229-Deaconu Version 2 - Submitted to Rocky Mountain J. Math.



GROUPOID ACTIONS AND KOOPMAN REPRESENTATIONS 25

If ψ : X → (0,∞) is continuous, then there is a continuous cocycle
Dψ : G(X,T )→ (0,∞) given by

Dψ(x,m− n, y) =
ψ(x)ψ(Tx) · · ·ψ(Tm−1x)

ψ(y)ψ(Ty) · · ·ψ(Tn−1y)
.

The transfer operator Lψ : C(X)→ C(X) is given by

(6.0.1) (Lψf)(x) =
∑
Ty=x

ψ(y)f(y).

We recall the following result, see Proposition 3.4.1 in [31].

Proposition 6.2. If µ is a probability measure on X, then µ is quasi-

invariant for G(X,T ) with Radon-Nikodym derivative Dµ =
dr∗µ

ds∗µ
if and

only if L∗ψµ = µ, where L∗ψ is the dual operator acting on the space of finite
measures on X.

Example 6.3. Assume that (X, d) is a metric space and T : X → X is a

local homeomorphism such that lim
y→x

d(Tx, Ty)

d(x, y)
= ϕ(x) > 0 for all x ∈ X.

Let ψ(x) = ϕ(x)−s, where s is the Hausdorff dimension of (X, d), Then the
normalized Hausdorff measure µ of d is quasi-invariant for G(X,T ) ([14,
Theorem 3.4]).

In particular, for 0 < rj < 1, j = 1, ..., k and X = {1, 2..., k}N with metric
d such that diam(Z(x0x1 · · ·xn)) = rx0rx1 · · · rxn , the Hausdorff dimension
s is the unique solution of the equation rs1 + rs2 + · · ·+ rsk = 1 and µ is given
by µ(Z(x0x1 · · ·xn)) = rsx0r

s
x1 · · · r

s
xn . The one-sided shift T : X → X gives

lim
y→x

d(Tx, Ty)

d(x, y)
= ϕ(x) =

1

rx0
and (µ, s) is such that

dT ∗µ

dµ
= ϕs.

Suppose G = G(X,T ) acts on the left on the space Y via ω : Y → X.
Define

T̃ : Y → Y, T̃ (z) = (T (ω(z)),−1, ω(z)) · z.
Then T̃ is a local homeomorphism such that ω ◦ T̃ = T ◦ ω. Moreover, the
action groupoid G n Y is isomorphic to the groupoid G̃ = G(Y, T̃ ) via the
map

Ψ : G̃→ G ∗ Y, Ψ((z,m− n, y)) = (ω(z),m− n, ω(y)), y),

for z, y ∈ Y , see [15, Theorem 2.2].
In particular, we can construct quasi-invariant measures on Y as quasi-

invariant measures on Gn Y ∼= G(Y, T̃ ).

Example 6.4. Let E be a locally finite directed graph which has no sources.

Let E∗ :=
⋃
k≥0

Ek be the space of finite paths, where

Ek = {e1e2 · · · ek : ei ∈ E1, r(ei+1) = s(ei)},
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and let E∞ be the infinite path space with the topology given by Z(α) =
{αx : x ∈ E∞} for α ∈ E∗. We assume that E∞ is a totally disconnected
space, homeomorphic to the Cantor set. On X = E∞, consider the shift
T : X → X, T (x)i = xi+1 which is a local homeomorphism. The groupoid
G(X,T ) is called the graph groupoid and its C∗-algebra is denoted by C∗(E).

Recall that for α, β ∈ E∗ with s(α) = s(β), we denote

Z(α, β) = {γ ∈ G(X,T ) | γ = (αx, |α| − |β|, βy)},
which are compact open bisections. The indicator functions {1Z(v,v) | v ∈
E0} and {1Z(e,s(e)) | e ∈ E1} generate C∗(E), see [16, Proposition 4.1]
(where the range and source maps are reversed).

If G(X,T ) acts on its unit space X by (x, k, y)·y = x, let µ be the Markov

measure on X determined by a map p : E → (0,∞) satisfying
∑
r(e)=v

p(e) = 1

for every v ∈ E0 and a map µ0 : E0 → (0,∞) satisfying
∑
v∈E0

µ0(v) = 1 such

that

µ(Z(e1e2 · · · en)) = µ0(r(e1))p(e1)p(e2) · · · p(en).

Then µ is quasi-invariant for G(X,T ) and D(ex, 1, x) = 1
p(e) .

The Koopman representation κµ of G(X,T ) associated to µ acts on
L2(X,µ) by rank 1 operators, since L2(ω−1(s(g)), µs(g)) reduces to C.

We now determine the operators κµ(f) ∈ B(L2(X,µ)) for the above indi-
cator functions. We have for ξ ∈ L2(X,µ)

κµ(1Z(v,v))ξ(x) =
∑
r(γ)=x

1Z(v,v)(γ)κµγ(ξ)(x) =
∑
y

1Z(v,v)((x, k, y))ξ((y, k, x)·x) =

=
∑
y

1Z(v,v)((x, k, y))ξ(y) =

{
ξ(x) if r(x) = v

0 if r(x) 6= v,

κµ(1Z(e,s(e)))ξ(x) =
1√
p(e)

∑
r(γ)=x

1Z(e,s(e))(γ)κµγ(ξ)(x) =

=
1√
p(e)

∑
y

1Z(e,s(e))((x, k, y))ξ(y) =

{
1√
p(e)

ξ(z) if x = ez

0 if x 6= ez.

Denote by Pv = κµ(1Z(v,v)) and Se = κµ(1Z(e,s(e))). Since L2(X,µ) de-

composes as
⊕
v∈E0

L2(vX, µ), we note that Pv acts as identity on L2(vX, µ)

and is 0 otherwise. It follows that P ∗v = Pv = P 2
v and

∑
v∈E0

Pv = I. Also, Se

takes L2(s(e)X,µ) to L2(eX, µ) and

S∗eSe = Ps(e),
∑
r(e)=v

SeS
∗
e = Pv.
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Since {Pv, Se} satisfy the same relations as {1Z(v,v)} and {1Z(e,s(e))} for v ∈
E0, e ∈ E1, it follows that C∗(κµ) is a quotient of C∗(E). Since µ0(v) 6= 0 for
all v ∈ E0 and p(e) 6= 0 for all e ∈ E1, it follows that the partial isometries
Se are all non-zero. Using the same proof as Theorem 3.7 of [17] it follows
that κµ is faithful and, thus, C∗(E) is isomorphic with C∗(κµ).

Remark 6.5. By allowing µ0 and p to take zero values at specific vertices
and edges, one can recover the ideal structure of C∗(E) from the resulting
Koopman representations.

Assume, for simplicity, that E satisfies condition (K): every vertex v ∈ E0

either has no loop based at v or at least two loops based at v ([17, Section
6] where the notation for r and s is reversed compared to ours). Recall also
that a subset H of E0 is called hereditary if whenever e ∈ E1 and s(e) ∈ H,
then r(e) ∈ H. The set H is called saturated if whenever r(s−1(v)) ⊂ H,
then v ∈ H. It is known that there is an isomorphism between the lattice of
saturated hereditary subsets of E0 and the lattice of ideals of C∗(E) ([16,
Theorem 6.6]) given via H 7→ I(H), where

I(H) = span{1Z(α,β) : α, β finite paths with s(α) = s(β) ∈ H}.

Let H be a saturated hereditary set and let µ0 : E0 → [0,∞) and p :
E1 → [0,∞) be defined such that

∑
v∈E0 µ0(v) = 1,

∑
r(e)=v p(e) = 1 for

all v ∈ E0, µ0(v) = 0 for all v ∈ H and p(e) = 0 for all e ∈ s−1(H). Then
(µ0, p) defines a quasi-invariant measure µ on X as above and one can easily
check, using computations like in the previous example, that kerκµ = I(H).

Example 6.6. In this example we follow the notation of [15]: we let W =
{1, . . . , N} for some integer N ≥ 2, Wn is the set of words of length n over
the alphabet W , and W ∗ =

⋃
n≥0W

n is the set of finite words over W . We

let X = W∞ be the set of infinite words (sequences) with elements in W
and T : X → X be the shift map: T (x1x2x3 · · · ) = (x2x3 · · · ). As in the
previous example, the topology on X is given by the clopen cylinders Z(w) =
{wx : x ∈ X} for all w ∈ W ∗. Then G = G(X,T ) is the Cuntz groupoid
([25, Section III.2]) and C∗(G) is isomorphic with the Cuntz algebra ON .
Let (Y, d) be a complete metric space and let (F1, . . . , FN ) be an iterated
function system on Y ([13]). That is, each Fi is a strict contraction on Y . We
assume further that each Fi is a homeomorphism. There is a unique compact
invariant set K ([13, Theorem 3.1.3]) such that K =

⋃N
i=1 Fi(K). Assume

that the iterated function system is totally disconnected: Fi(K)
⋂
Fj(K) =

∅ if i 6= j. In this case K is a totally disconnected set.
We recall next the construction of a “fractafold” bundle F on which G

acts and an invariant measure on F as given in [15, Section 3]. For w ∈Wn

we write F−1w (A) = F−1w1
◦ · · · ◦F−1wn (A) and Fw(A) = Fwn ◦ · · · ◦Fw1(A). For

x ∈ X or x ∈W ∗ we write x(n) := x1 · · ·xn and set Fn(x) = F−1x(n)(K). Then

Fn(x) ⊂ Fn+1(x) and the infinite blow-up of K at x is F(x) =
⋃
n≥0 Fn(x)

endowed with the inductive limit topology (see [34, Section 5.4] for a short
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introduction to blow-ups). The fractafold bundle F is defined as the increas-
ing union of Fn :=

⊔
w∈W ∗ Z(w) × Fn(w) endowed with the inductive limit

topology. Then F is a Hausdorff space and the map ω : F→ X, ω(x, t) = x
is continuous, open and surjective. Under the assumption that the iterated
function system is totally disconnected, F is locally compact. The groupoid
G(X,T ) acts on F via

(x,m− n, y)(y, t) = (x, F−1x(m)(Fy(n)(t))).

There is a unique invariant probability measure µ on K ([13, Theorem 4.4.1])

such that µ(A) =
1

N

N∑
i=1

µ(F−1i (A)) for all Borel subsets A of K. One can

extend µ to an infinite measure µx on Fx via µx(A) = Nnµ(Fx(n)(A)) if A ∈
Fn(x). Consider the measure ν on X generated by weights {1/N, . . . , 1/N}.
That is ν(Z(w)) = (1/N)n for all w ∈Wn and n ≥ 0. Then there is a unique
G-invariant measure µ∞ on F such that µ∞(U×A) = ν(Tn(U))·µ(Fw(n)(A))
for all n ≥ 0, w ∈Wn, and U ×A ⊂ Z(w)× Fn(w) ([15, Proposition 3.11]).
Note that the measure µ̃ in the decomposition of µ∞ equals ν and is quasi-
invariant for G.

The Koopman representation κ of G on µ∞ extends to a representation
of ON that acts on L2(F, µ∞) via

κ(f)ξ(x, t) =
∑

(x,m−n,y)∈G

f(x,m− n, y)ξ(y, F−1y(n)(Fx(m)(t)))

for all (x, t) ∈ L, ξ ∈ L2(F, µ∞), and f ∈ Cc(G). In particular, if Si = 1Z(i,∅)
are the Cuntz isometries generating C∗(G) ∼= ON , where

Z(i, ∅) := {(ix, 1, x) : x ∈ X},
then

κ(Si)ξ(x, t) =

{
ξ(T (x), Fi(t)) if x ∈ Z(i)

0 otherwise

for all i = 1, . . . , N . We note that κ(Si) 6= 0 for all i = 1, . . . N . To see this,
let ξ ∈ L2(F, µ∞) be defined via

ξ(x, t) = 1F0(x, t) =

{
1 if x ∈ X and t ∈ K
0 otherwise.

Note that ξ ∈ L2(L, µ∞) since µ∞(F0) = 1. Then κ(Si)(ξ) = ξi where

ξi(x, t) = 1Z(i)×F−1
i (K) =

{
1 if x ∈ Z(i) and t ∈ F−1i (K)

0 otherwise,

for all i = 1, . . . , N . Since∫
F
ξi(x, t) dµ∞(x, y) = µ∞(Z(i)× F−1i (K)) = µ(K) = 1

by the definition of µ∞, we get κ(Si) 6= 0. Therefore C∗(κ) ∼= ON .
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One can build other G-invariant measures on F by considering invariant
measures for K using non-equal strictly positive weights {p1, . . . , pN} such

that
∑N

i=1 pi = 1. There is a unique measure on K that satisfies µ(A) =∑N
i=1 piµ(F−1i (A)) for all Borel subsets A of K. Also, one can define a

measure ν on X based on the weights via ν(Z(w)) = pw1 · · · · pwn for all
w ∈ W ∗. Then one can prove that the measure µ∞ defined as above,
µ∞(U × A) = ν(Tn(U)) · µ(Fw(n)(A)) for all n ≥ 0, w ∈ Wn, and U × A ⊂
Z(w)×Ln(w), is a G-invariant measure. Under our assumption that pi > 0
for all i = 1, . . . , N , a similar analysis proves that C∗(κ) ∼= ON .

Example 6.7. Consider again the Cuntz groupoid as defined in the previous
example: X = {1, . . . , N}N and T : X → X is the shift. We show that if
Y is any left G-space and if µ is any G-invariant measure on Y with full
support, then C∗(κ) ∼= ON . This example generalizes easily to the case of
finite graphs that satisfies the (K)-condition or, equivalently, Cuntz-Krieger
algebras that satisfy condition (II).

Let Y be a locally compact Hausdorff left G-space with anchor map ω :
Y → X = G(0) and assume that µ is a G-invariant measure on Y . Recall
that T lifts to a local homeomorphism T̃ : Y → Y defined via T̃ (z) =

(T (ω(z)),−1, ω(z)) ·z for all z ∈ Y and GnY ∼= G(Y, T̃ ). Therefore there is
ψ : Y → R∗+ such that µ is invariant for the dual of the transfer operator Lψ
defined as in (6.0.1). Let Si = 1Z(i,∅), i = 1, . . . , N , be the Cuntz isometries
that generate C∗(G). Then

κ(Si)ξ(z) =
∑

(ω(z),m−n,x)∈G

Si(ω(z),m− n, x)ξ((x, n−m,ω(z)) · z)

· · ·∆µ((x, n−m,ω(z)), z)1/2

=

{
ξ((T (ω(z)),−1, ω(z)) · z)∆µ((T (ω(z)),−1, ω(z)), z)1/2 if z ∈ ω−1(Z(i))

0 otherwise

which, by the identification of Gn Y with G(Y, T̃ )

=

{
ξ(T̃ (z))∆µ(T̃ (z),−1, z)1/2 if z ∈ ω−1(Z(i))

0 otherwise

=

{
ξ(T̃ (z))ψ(z)−1/2 if z ∈ ω−1(Z(i))

0 otherwise.

Since ψ is strictly positive and µ has full support, it follows that κ(Si) 6= 0
for all i = 1, . . . , N and, thus, C∗(κ) ∼= ON .

References

[1] C. Anantharaman-Delaroche, On spectral characterizations of amenability. Israel
J. Math. 137 (2003), 1–33.

19 Sep 2024 10:28:45 PDT
231229-Deaconu Version 2 - Submitted to Rocky Mountain J. Math.



30 VALENTIN DEACONU AND MARIUS IONESCU

[2] C. Anantharaman-Delaroche, Amenability, exactness and weak containment prop-
erty for groupoids, to appear in Münster J. Math; arXiv: 2306.17613.

[3] C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, L’Enseignement
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